Input four integers a, b, c and d with b and d positive.
Part 1:
Output the rational numbers (not their float
equivalents) (a/b)+(c/d), (a/b)-(c/d)
and (a/b)*(c/d).
Example:
Input a : 2 Input b : 3 Input c : -4 Input d : 5 (a/b)+(c/d) = -2/15 (a/b)-(c/d) = 22/15 (a/b)*(c/d) = -8/15
Example:
Input a : 2 Input b : 3 Input c : -5 Input d : 6 (a/b)+(c/d) = -1/6 (a/b)-(c/d) = 3/2 (a/b)*(c/d) = -5/9
SET 1 SET 2 ---------- ------------ a = -377 a = -100 b = 481 b = 31753 c = -899 c = 125 d = 1147 d = 19951
Input a : 2 Input b : 3 Input c : -5 Input d : 6 Raw output: (a/b)+(c/d) = -3/18 (a/b)-(c/d) = 27/18 (a/b)*(c/d) = -10/18 Reduced output: (a/b)+(c/d) = -1/6 (a/b)-(c/d) = 3/2 (a/b)*(c/d) = -5/9
Input four integers a, b, c and d with c or d (or both) non-zero
and with a or b (or both) non-zero.
Part 1:
Output the complex numbers (a+ib)/(c+id)
and (c+id)/(a+ib) in
the form (r/s)+i(u/v) with r,s,u,v integers
and s,v>0.
Example:
Input a : 2 Input b : 3 Input c : -4 Input d : 5 (a+ib)/(c+id) = (7/41)+i(-22/41) (c+id)/(a+ib) = (7/13)+i(22/13)
Example:
Input a : 1 Input b : 2 Input c : -3 Input d : 4 (a+ib)/(c+id) = (1/5)+i(-2/5) (c+id)/(a+ib) = (1/1)+i(2/1)
SET 1 SET 2 ---------- ------------ a = 37 a = -15163 b = -33 b = 11387 c = -2 c = 6667 d = 35 d = -4189
Input a : 1 Input b : 2 Input c : -3 Input d : 4 Raw output: (a+ib)/(c+id) = (5/25)+i(-10/25) (c+id)/(a+ib) = (5/5)+i(10/5) Reduced output: (a+ib)/(c+id) =(1/5) + i(-2/5) (c+id)/(a+ib) =(1/1) + i(2/1)
[Course home] [Home]