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Abstract

We study a special kind of online auction known as Lowest
Unique Bid Auction (LUBA) which allocates a good to the
agent who submits the lowest bid that is not matched by any
other bid (i.e., the least and the unique bid). We exhaus-
tively analyze this kind of auction mechanism by construct-
ing various networks and studying their properties from the
weblogs available as bid histories. We also study how the
top winners differ from others in their bidding strategies by
analyzing various parameters. Profit analysis of all bidders
reveals that top winners need not be high profit bidders,
and there might exist a few “crazy” bidders who frequently
participate in various auctions irrespective of their profit or
loss. Finally, we propose a memory-driven agent based dy-
namical model where both bidder participation and bidding
choices are decided preferentially based on the previous par-
ticipation and winning histories of the individual bidders.
Remarkably, our model accurately predicts the participa-
tion and winning distribution of the bidders.

1 Introduction

Owing to the rapid expansion and the importance of online
auctions, researchers recently have begun to pay attention
to the various aspects of online auctions. One of the
greatest contributions of online auctions is their ability to
provide detailed bidding records in the form of weblogs
often termed as bid history. In such online transactions,
the pattern of bidding activity is more complex than
traditional offline transactions. The representations of
online auctions in the form of complex systems have gained
momentum recently [14, 4]. In this paper, we focus on one
of the typical and unconventional online auctions called
Lowest Unique Bid Auction (LUBA) [12] which allocates a
good to the agent who submits the lowest bid that is not
matched by any other bid. In other words, rather than the
bidder with the highest bid (as in the case of traditional
auctions), in LUBA, the winner of an auction is decided by
the lowest and the unique bid submitted by a bidder among
all the bids placed so far in the auction, i.e., the offer which
is not made by any other bidder and is lowest (see Figure 1).

Lowest Unique Bid Auctions (LUBAs): Websites of-
fering LUBAs first appeared in Scandinavian countries in
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early 2006 [2]. Since then, they rapidly developed in many
other European countries (France, Germany, Holland, Italy,
Spain, and the UK). Gradually, this auction format is gain-
ing increasing media attention. Let us introduce in more de-
tail the functioning of a LUBA. As a first step, agents must
register to one of these websites and transfer an amount of
money of their choice to a personal deposit. Users can then
browse through the items on sale and submit as many bids
as they want on the items in which they are interested. A
maximum bid amount (generally lower than ten hundreds
of cents) is associated with each bidding item. Bids are gen-
erally expressed in cents and are private. Every time that a
user places a bid, a fixed amount of money (typically 2 Eu-
ros) is deducted from her deposit. The auctioneer justifies
this cost as a price for a “packet of information” that she
sends to the bidder. In fact, as soon as a bid is submitted,
the user receives one of the three following messages: (i)
your bid is currently the unique lowest bid; (ii) your bid is
unique but is not the lowest; or (iii) your bid is not unique.
Note that, each agent knows only what she has bid, without
any information on which values the other agents have bid.
In general, there is no restriction for the number of bids that
a particular agent may place. During the bidding period,
which usually lasts for a few days, users can at any time
log into their account in order to check the current status
of their bids, to add new ones, or to refill the deposit. Once
the auction closes (decided previously either by time stamp
limit or by the total number of bids), the object is sold to
the bidder who submitted the lowest unique bid.

This allocation mechanism is, therefore, considerably dif-
ferent with respect to traditional auction formats. In par-
ticular, it is the requirement about the uniqueness of the
winning bid that represents a novelty. On the one hand,
this requirement undermines key objectives that lie at the
core of standard auction theory like, for instance, the effi-
ciency of the final allocation. Moreover, LUBA adds some
new strategic elements. In fact, from a strategic point of
view, a LUBA is more similar to other well-known games
like Guessing Game [5] than to a standard auction. LUBAs
are particularly profitable for both the auctioneers and the
winners of the auctions and lead to winning items at an im-
pressively low cost, generally far less than 2% of the market
value of the item in the auction [2]. Regarding the auction
policy and success/failure of LUBA, different people have
different points of view: while some groups say LUBA is a
game of strategy, some say that it is just a lottery; even few
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Figure 1: (Color online) An example comparing general auc-
tion and LUBA. Four bidders participate in the auction. In
each time stamp, every bidder is allowed to submit the bid.
In general auction, the participants can see other bids and
accordingly decide the bid values. At the end, the bidder
submitting the highest bid is selected as the winner. In
contrast, in LUBA no participant can see bids placed by
other participants. Finally, whoever bids the lowest unique
positive amount wins the auction.

suspect it is a plain scam [1].

Contributions of the paper: In our work, we attempt
to investigate several questions related to the gaming strat-
egy and individual role of the participants in LUBAs. In
particular, the questions are as follows: (i) when a bid-
der joins a new auction, does she use any experience of
the past when submitting a new bid? (ii) is this auction
mechanism a game, lottery or a scam? (iii) are winning
bidders rational? (iv) whether bidders follow any partici-
pation or bidding pattern? We have collected a reasonable
amount of auction history in the period of 2007-2010 from
www.uniquebidhomes.com. We generate various networks
and try to answer the above questions by studying various
properties and patterns of the networks, constructed from
the dataset.The most important component of this study is

to unfold the relationship between the number of auctions

that a bidder won and her net profit. To the best of our

knowledge, this aspect has not been systematically investi-

gated in spite of a lot of literature on this topic. Remark-

ably, we observe that the bidders are highly addictive to win-

ning while being almost indifferent to the net profit gained.

Finally, we attempt to represent LUBA using a memory-
driven agent based model that can accurately reproduce
the real-world bidding phenomenon of LUBA. The simu-
lation results of the agent-based model show a reasonable
resemblance with the real-world LUBA results in terms of
different probability distributions such as the participation
degree distribution (unweighted and weighted) and the win-
ning distribution of bidders.

2 Related work

Apart from the classical contributions discussed in [2], few
researchers have recently studied the dynamics of unique
bid auctions. Houba et al. [3] and Rapoport et al. [10]
analyze the equilibrium of a LUBA in which bidders sub-
mit a unique bid, there is a non-negative bidding fee, and

the winner pays her bid. Both these studies find that in
the symmetric mixed equilibrium, bidders randomize with
decreasing probabilities over a support that comprises the
lowest possible bid and is made of consecutive numbers.
Rapoport et al. [10] also analyze HUBAs, i.e., unique bid
auctions in which the winner is the bidder who submits the
highest unmatched offer. Such a mechanism is also stud-
ied by Raviv and Virag [11]. Östling et al. [6] obtain a
similar result for what they call a LUPI (Lowest Unique
Positive Integer) game in which players can again submit
a single bid, but there are no bidding fees, and the winner
does not have to pay for her bid. Finally, Eichberger and
Vinogradov [1] analyze a LUBA (that they call LUPA, i.e.,
Least Unmatched Price Auction) where bidders can submit
multiple costly bids, and the winner must pay her winning
bid. Given that no information about other bidders behav-
ior is disclosed during the auction, they model the game as
a simultaneous game. For some special ranges of the param-
eters, they show the existence of a unique Nash equilibrium
in which agents mix over bidding strings that comprise the
minimum allowed bid and are made of consecutive numbers.
Gallice [2] studies the influence or the role played by signals
that the seller sends to the bidders about the status of their
bids.

Recently, Radicchi and Baronchelli [8] observe agents
adopting “Levy flight search strategy” in their exploration
of bid space and develop a model revealing agents using ra-
tional bidder strategies. In extension to this paper, Radic-
chi et al. [9] again rationalize these findings by adopting an
evolutionary perspective which is able to account for the
observed empirical measurements. Pigolotti et al. [7] use
a grand canonical approach to derive an analytical expres-
sion for the equilibrium distribution of strategies. They
also study the properties of the solution as a function of the
mean number of players, and compare them with a large
dataset of internet auctions.

3 Description of the dataset

Many online auction sites provide bid histories and
make them publicly available for the bidders. Some
of the sites where datasets could be extracted in-
clude auctionair.co.uk, bidster.com, bidbudgie.co.

uk, bidson.com, bidandclick.com, bidson.com, lowbids.
com.au, cashop.co.uk etc. We collected the data from
www.uniquebidhomes.comwhich was also used by Radicchi
et al. [9] for their analysis. The data includes all auctions
organized during 2007, 2008, 2009 and part of 2010. We
collected the following information concerning the auctions:
the value of the goods, the amount of fee, the maximum bid
amount, duration of the auction or the required number of
bids. The dataset also made available information about
each single bid, getting information about its value, the
time when it was made and the agent who made it. Note
that, 14% of the auctions do not have any maximal bid
value allowed for the auction; 14% of auctions use duration
to expire an auction, while the remaining use the total num-
ber of bids to expire an auction; 48% of the auctions have
limit on the maximal number of bids allowed per bidder.



Total number of auctions 189
Total number of bidders 3740
Total number of bids 55041

Average number of agents involved in an auction 50
Average number of bids made by a single agent in an auction 5.81

Table 1: Description of the auction dataset.
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Figure 2: (Color online) A schematic diagram of (a) un-
weighted and (b) weighted bipartite networks of an online
auction. Bidders and auctions are represented by circles
and squares respectively.

Detailed description of the dataset is noted in Table 1.

4 Bidder-auction bipartite network

The data contains the information of the auctions where the
bidders (uniquely identified by the bidder IDs) submit their
bid. Thus, we can construct a bipartite network comprising
two disjoint sets of vertices, i.e., bidders and auctions with
an edge between bidder i and auction j if i bids at least
once in the auction j, as shown in Figure 2(a). Similarly,
a weighted bipartite network is also constructed with edges
having weights where weight of the edge joining bidder i

and auction j represents the number of bids placed by i in
an auction j as shown in Figure 2(b).
The degree of a bidder node in Figure 2(a) signifies the

number of auctions she has participated so far. Similarly,
the degree of an auction node in Figure 2(a) represents the
number of distinct bidders participating in that particular
auction. On the other hand, the weight of an edge in Figure
2(b) represents the activeness of the bidders, i.e., number
of bids submitted by a bidder in that auction. We notice
that the unweighted (weighted) average degree of a bidder
node and an auction node are 2.53 (5.81) and 50.81 (98.29)
respectively. The cumulative degree distribution of bidder
nodes follows a power-law behavior asymptotically in both
the networks as shown in Figure 3.
One-mode projection of the bidder partition: A bid-
der network can be constructed from the bipartite network
by projecting it on to the bidder nodes. The projected net-
work consists of all bidders as the set of vertices, and there
exists an edge between two bidders i and j if i and j partic-
ipate in the same auction at least once. A weighted projec-
tion can also be constructed by edges having weights rep-
resenting the number of common auctions in which both i

and j participated. Figure 4 shows the binary and weighted
one-mode projection of the bipartite network of Figure 2(a).
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Figure 3: (Color online) Cumulative degree distributions
of bidder nodes in the (a) unweighted and (b) weighted
bipartite networks.
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Figure 4: (Color online) The (a) unweighted and (b)
weighted one-mode projections of the bidder-auction bipar-
tite network (shown in Figure 2(a) on to the bidder parti-
tion.

5 Winners under the lens

One of the most critical components of such a LUBA system
is its winners. The strategies adopted by the winners in turn
actually reflect most of the important characteristic features
of a LUBA system. Therefore, in this section, we specifi-
cally focus on the behavioral dynamics of the winners of the
auctions. We notice that there are only 51 unique bidders
who won at least one of the 189 auctions. We call the bid-
ders “top winners” if they won a large number of auctions.
We observe that the top five winners participated in 70% of
the auctions and have won 57% of them. Among these, the
top three winners participated in 55% of the auctions and
won 50% of the auctions. These percentages show that the
top winners are highly efficient and cover most of the win-
ning space. This statistics raises the question of “strategic
playing” or any possibility of “scam” in the LUBAs. We in-
vestigate some general statistics and few properties related
to the networks in the following subsections.

5.1 Network properties

We investigate several properties of the top winner nodes
in the constructed networks. In particular, we investigate
the degree of the winner node in bipartite network signify-
ing her experience or activity, weighted degree of bipartite
network signifying her intensity of participation or her total
bid space, degree of projected bidder network representing
the level of participation in the auctions participated by
the winners, degree of weighted projected bidder network
representing the co-activity, degree-centrality representing
the importance of the winner node, clustering coefficient,



average neighbor degree etc.

Bidder ID
Property 433B 434B 81B 2016B 1715B Avg.

bidder
Number of wins 37 30 28 7 5 –

Deg. in bipartite network 40 36 34 20 29 2.53
Weighted degree 2333 2083 3192 489 994 14.72

in bipartite network
Degree in projected 822 2230 2494 2008 2060 881.87
bidder network

Weighted degree in 1170 3081 3410 2456 2608 919.53
projected bidder network

Degree centrality 0.22 0.6 0.67 0.54 0.55 0.235
Clustering coefficient 0.27 0.61 0.50 0.74 0.71 0.8
Avg. neighbor degree 877.73 1397.92 1269.34 1539.45 1505.83 1280.78

Avg. neighbor 959.26 1448.93 1332.94 1510.55 1522.31 1290.01
weighted degree

Table 2: Network properties of the bidder network for top
five winners. The bidder with ID ‘433B’ is the topmost
winner and the bidder with id ‘1715B’ is the fifth ranked
winner. The last column indicates the average behavior of
a bidder in the network.

Table 2 shows the properties of the top five bidders and
the corresponding average properties. As shown in the ta-
ble, the degrees (weighted degrees) of top winners in the
bipartite network are very high compared to the average
degree and are found to be among top five (six) high degree
values (except the fourth ranked bidder, i.e., ‘2016B’) im-
plying top winning bidders aggressively participate in many
auctions. It also raises the question whether they really
learn from their experience. However, there are also few
bidders with high participation but very low number of wins
(even zero). For instance, Bidder ‘435B’ has participated in
the highest number of auctions (i.e., 57) but did not win
any of the auctions. This raises a question whether these
auctions are addictive making few bidders play with high
losses. We notice that the properties of the topmost winner
(i.e, ‘433B’) are quite different relative to other winners.
Therefore, we intensively study the properties of the top-
most winner in detail in later sections.

5.2 Other properties

5.2.1 Item values

The item value represents the market value of an item as
described by the auctioneer prior to the auction. We study
the values of the items on which usually top bidders try
to concentrate. For this, we average the item values of all
the auctions participated by a particular bidder and cal-
culate the Mean Item Value (MIV) corresponding to the
bidder. We then find out the average item value of any
bidder by averaging the MIV of all the bidders and com-
pare this average behavior to the MIV of the top winners
as shown in Table 3. The last column of Table 3 shows
that the top winners other than topmost bidder participate
in auctions with high item values expressed as a percent-
age increase/decrease from the average case. This seems to
be followed in any auction game where the highly rational
players usually participate in only high valued items. In-
terestingly, for the topmost bidder MIV is around 52% less
than the average MIV which indicates that she participates
in low valued items where competition with rational bidders
might be relatively less.

Bidder Id MIV % increase w.r.t. average value
Average (AVG) 76421.61 –

433B 36337.5 – 52.45
434B 193905.42 +153.73
81B 237708.82 +211.05

2016B 293379.25 +283.90
1715B 221727.41 +190.14

Table 3: Mean Item Values (MIV) of top five winners along
with the percentage increase/decrease of MIV with respect
to the average value.

5.2.2 Number of bids

The number of bids placed by a bidder in an auction indi-
cates her intensity of bidding in that auction. To see how
aggressive are top bidders in their bidding, we calculate the
Mean Number of Bids (MNB) for every bidder by averaging
the number of bids placed by a bidder in all the auctions she
participated. Averaging the MNBs of all bidders indicates
the mean behavior of an arbitrary bidder.

Bidder ID MNB
Average 5.81
433B 58.32
434B 57.86
81B 93.88
2016B 24.45
1715B 34.27

(a)

Table 4: MNB for the top
winners.

Bidder ID MNB Wins
1632B 904 0
1B 477 2

1642B 239 0
1576B 215 0
1645B 178 0

(b)

Table 5: Top five bidders
having largest MNBs and
their number of wins.

In Table 4, it can be observed that top winners are highly
aggressive in their bidding whose values are very high com-
pared to the average MNB. Especially, third ranked winner
(‘81B’) has high MNB, which is also reflected in Table 3.
It indicates that she has won many auctions with relatively
high item values. Interestingly, highly aggressive bidders
having largest MNBs are not top winners in terms of the
number of auctions she has won. Precisely, even top 12 bid-
ders having high MNBs do not fall in the list of top five
winners. Table 5 shows the top five bidders having largest
MNBs along with their total number of wins. The table also
indicates that except the bidder with second-largest MNB,
none of the others have won even a single auction, though
they are the most aggressive bidders. This result indicates
that LUBA mechanism may not have the general lottery
system characteristic where the probability of winning is
directly proportional to the number of bids [6].

5.2.3 Number of other bidders

The number of bidders co-participating in an auction indi-
cates the level of competition that a particular bidder faces
in an auction. While the auction is in progress the bidder
has no idea about this value. Here, we measure the Mean

number of Other Bidders (MOB) for a particular bidder
by taking average of the number of other bidders for all
auctions she participated. Therefore, average MOB is the
average of MOBs of all the bidders taken together. Table 6
notes the average MOB of an arbitrary bidder as well as the



Bidder Id Mean number of Other Bidders (MOB)
Average 50.08
433B 30.25
434B 86.58
81B 101.29

2016B 123.8
1715B 90.93

Table 6: Mean number of Other Bidders (MOB) partici-
pated in an auction for the top five winners.

individual MOBs of the top five winners. It can be observed
from the table that all the top five winners other than the
topmost winner have very high MOB values compared to
the average MOB. This indicates that the winners mostly
participate in auctions of high-valued items where the com-
petition is usually more than average. For topmost winner,
MOB is lower than the average suggesting that she is more
interested to participate in auctions where the number of
other bidders is relatively low. Since the MIV of the top-
most winner is less (see Table 3), the MOB could also be
less. The statistics of the second, third, fourth and fifth
ranked winners are interesting because they are able to win
many high-valued auctions where the pressure of competi-
tion is relatively higher than average which should usually
be the case.

5.2.4 Range bids

Range bids are performed by selecting a range of bid values
within the maximum allowable range set by the auctioneer
and then placing a bid on each single value in that interval.
This is an opportunity offered by the web site hosting the
auctions. Each bid in this case is characterized by the same
time stamp. Such a system is beneficial for agents who make
a significant number of bids, but becomes less relevant for
agents who invest relatively small amount of money. The
idea behind this strategy is as follows. The first goal of
a bidder (B) is to find a relatively small free number x,
i.e., a number that was not bid so far by any bidder. If
such a number is found, the second goal is to invalidate
all the unique bids of other bidders on numbers lower than
x, i.e., to bid on a number that was less than x and was
bid by a single bidder (unique bid), thereby removing it
from the list of potential winning bids. The third goal is
to make it too costly for other bidders to invalidate the
bid of B on x. To achieve the second goal, a bid (say, m)
should be as small as possible, and, of course, smaller than
x. To achieve the third goal, another bid (say, n) should
be as large as possible and larger than x. A large n has
the additional advantage that other possibly free numbers
higher than x receive a bid. Therefore, if some other bidder
invalidates x, a different possibility of winning the auction
is still preserved. Having a large interval [m,n] is costly, so
that a strategic bidder faces a trade-off between increasing
the probability of winning and having a lower bidding cost.

To see the usage of range bids in winning, we investigate
the usage of range bids in the bid space of the winners. As
given in Table 7, the percentage of range bids covering the
total bid space of all the bidders in all auctions is 71.38%.
Next, we only observe the winning bid in each auction and

% of rangebids in total bidspace 71.38
% of rangebids in win-bids 87.30

% of rangebids in all winners bidspace 92.18
% of rangebids in all non-winners bidspace 58.91

Table 7: Usage of range bids in the bid space by the winners.

find that the percentage of these winning bids that fall in
range bids sums up to 87.3%, which is quite high. To see
the usability of range bids for the winners, we only consider
the bid space of the winners in all the auctions and find that
92.18% of their bid space is covered by range bids and the
same test for non-winners shows that only 58.91% of their
bid space comprises range bids. All these values together
indicate that the winners significantly rely on range bids for
their success.

5.2.5 Number of wins per participation

We hypothesize that just the number of wins may not be
indicative of the efficiency of a bidder. Rather a more mean-
ingful quantity might be the number of wins per participa-
tion (denoted by ρ) which is the ratio of the number of wins
and the total number of auctions a bidder participated. We
rank bidders based on the ρ value. Note that, the more the
value of ρ of a bidder, the more she is placed at the top rank.
We observe that top five winners hold the third, fourth,
fifth, thirteenth and thirty-first positions respectively based
on the value of ρ. We notice that the top two bidders hav-
ing high ρ values have participated in just one auction, thus
making their ρ values equal to 1. However, the next three
rankers with high ρ values are also the top three winners
which suggests that these bidders have a high success rate.
Even fifth high ρ valued bidder has participated only in five
auctions and won four out of them.
To observe how the ρ value changes as the bidders par-

ticipate in the auctions, we plot the ρ values of the top
five winners after a certain number of auctions she played
where the auctions are time-ordered. Figure 5(a) shows that
initially ρ remains zero until a bidder has not started par-
ticipating in an auction. Once she starts participating, her
ρ value rises up or goes down depending on her wins/loses
or remains same if she does not participate. It can be ob-
served from Figure 5(a) that the topmost winner initially
won all the auctions she participated but lost only three
times later thus making the ρ value very high in her com-
plete history. Second and third ranked winners also won
many initial auctions and lost only few auctions at various
time steps. However, forth and fifth ranked winners started
participating later while maintaining a steady behavior in
terms of the ρ values. The slope of the plot in Figure 5(b)
shows how fast the ρ changes for the top five winners.

6 Profit analysis: winners not gain-

ers

The primary interest of both the auctioneers and the bid-
ders is to increase each of their profit levels. However, in
LUBA the winning of a bid for a bidder may not always
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Figure 5: (Color online) (a) Non-cumulative and (b) cumu-
lative distributions of ρ for top five winners with auctions
sorted by the time. To smooth the curves, the best sliding
window size of five years has been used.

imply a significant profit. Rather, the net profit of a bid-
der essentially depends on the frequency of bids she has
submitted, final bidding amount and success/failure. In
this section, we focus on analyzing profit for the bidders
with an emphasis on the top five winners and their winning
strategies.

6.1 Formulation of profit

Using the real data, profit/loss can be calculated for each
bidder in every auction she participated using the number
of bids placed, fee amount of the bid, actual value of the
auction item put up for auction and the winning bid value.
Precisely, the profit (Π) of a bidder can be measured by the
following equation:

Π(p,A) =

{

N − (np × BA) − Nw if bidder p is a winner
−(np × BA) otherwise

(1)

where Π(p,A) is the profit of the bidder p in auction A,
np= number of times she has submitted bids in auction A,
BA= predefined bid fee per bid submission, N and Nw are
the actual value of the bidding item and the final winning
value of the item respectively. If a bidder incurs a loss in
an auction, her profit in that auction is negative; whereas
if the bidder wins an auction, her profit is estimated as the
actual value of the item announced prior to the auction less
the total bid fees across the multiple biddings and the final
winning value of the item. Once the profits of all the bidders
for all the auctions are calculated, the net profit (Π̃) of a
bidder can be calculated by summing up the profit in each
auction the bidder participated as shown below.

Π̃(p) =
∑

A∈Cp

Π(p,A) (2)

where Cp represents the set of auctions where the bidder
p participated so far.

6.2 Comparing profits and wins

Once the net profit is calculated for every bidder, we notice
a surprising result that 3712 out of 3740 bidders (i.e., 99% of
the bidders) are in loss suggesting that LUBA involves high
risk and this is even more for newer users. It also raises the

question whether this kind of auction mechanism is addic-
tive as it makes participants play even with a negative net
profit (Π̃) which is possibly increasing over time. Table 8
shows the net profits of top winning bidders, and Table 9(a)
shows the net profits of bidders with high net profit values.
One might be tempted to believe that the top winners who
won the maximum number of auctions are the bidders who
gain high net profits. Interestingly, Table 8 and Table 9(a)
indicate that this intuition may not be always true. Only
two out of five high net profit bidders (marked in bold font
in Table 9(a) belong to the list of top five winners. On the
other hand, first, fourth and fifth ranked bidders in terms
of net profit won only two, five and two auctions respec-
tively. Table 9(b) shows the net profits of the bidders with
high loss. Second most high loss bidder (‘134B’) won two
auctions. Interestingly, fourth ranked bidder with high loss
(‘1715B’) is one of the top five winners. This suggests that
winners are not always rational with their bids.

Bidder ID Π̃ Rank w.r.t. Π̃
433B – 1127 1223
434B 230701 3
81B 1260639 2

2016B 30793 13
1715B – 244366 3737

Table 8: Net profit (Π̃) of the top five winners and their

rank w.r.t Π̃.

Bidder ID Π̃ Number of Wins
1B 2713933 2
81B 1260639 28
434B 230701 30
144B 163986 5
580B 117841 2

(a)

Bidder ID Π̃
1632B – 90400
134B – 809695
438B – 244600
1715B – 244336
1601B –243000

(b)

Table 9: (a) Top five bidders with high Π̃ values (top win-
ners are highlighted in bold font); (b) net profit of top five
high losers (fifth ranked winner is highlighted in bold font)

6.3 Profit distributions

In the previous subsection, we observed that the net profit
of few top winners is negative even after winning many auc-
tions. Therefore, in this section, we look into the profit dis-
tributions of the winners over the time scale. Figure 6 shows
the distribution of profit for the top two winners with all the
auctions arranged in time-order. The curves of rest of the
winners follow the similar pattern as in Figure 6. All posi-
tive points in the distribution (marked by red circles) indi-
cate that these are the auctions where the bidder won with
a positive profit. The negative points show that the bid-
der incurred losses in the corresponding auctions. Among
these, the green points are the ones where the bidders won
the auctions but the profit for that auction was negative.
From Figure 6(a), it is apparent that the topmost bidder
won the initial 23 auctions with significant loss. Since a
bidder is supposed to know the actual value of the item and
the bid fee prior to joining an auction, it is easy to esti-
mate the maximum number of bids that she would attempt



to place or the risk she would wish to take to win with
a positive profit even before the auction starts. Therefore,
winning the item continuously with loss might indicate that
the bidder is crazily addicted to win an auction even while
incurring losses. We notice a similar behavior (shown in
Figure 6(b)) for the second ranked winner who won first 12
auctions with loss. Hence one can suspect a possibility of
scam by the members of the online auction site using these
two bidders in expiring the auctions. The reason can be ex-
plained in two different ways: first of all, the popularity of
the site could have been less in the initial days; secondly, to
increase the interest in public, an illusion could have been
created among them to portray that the site is very active.
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Figure 6: (Color online) Profit distributions of top two win-
ners. The red points indicate the auctions where the bidder
won with a positive profit while the green points indicate
the auctions where the bidder won with a loss. Rest of
the points represent the auctions where the bidder lost the
auctions.

We also try to find out how do the bidders end with high
losses by observing the profit distributions of high net loss
bidders (i.e., the profit is highly negative as shown in Ta-
ble 9. For this analysis, we concentrate on those bidders
who suffered a series of low to medium losses throughout
the auction rather than those who just suffered only one
or two very high valued losses. Figure 7 shows the profit
distribution of second ranked high loss bidder (‘134B’). We
observe from the figure that the highest proportion of her
loss is caused by just one auction which immediately fol-
lows a significant win. This behavior is quite consistent for
many bidders where high losses generally follow a significant
win. The behavior can be explained in the following way:
winning an auction can affect people to take higher risks
in subsequent auctions making them bid aggressively which
might eventually lead to a high loss. This again suggests
that the LUBA auctions might be addictive making people
play with high loss.

7 Memory-driven agent based dy-

namical model

As mentioned earlier, one of our primary objectives is to
propose a dynamical agent based model in which multiple
agents are selected to play a series of auctions so that the
simulation results describe the real-world LUBA as accu-
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Figure 7: (Color online) The profit distribution of second
ranked high loss bidder (‘134B’).

rately as possible. In this section, we describe a memory-
driven model where each agent acts as a bidder. The bidders
participating in the subsequent auctions are chosen prefer-
entially based on their previous participation history. The
eagerness of a bidder to submit multiple bids in an auc-
tion is modeled as a function of her previous success, profit
and a randomness factor which is a parameter of the model.
Algorithm 1 systematically describes the entire procedure.

The model works as follows. At the beginning, all the
auctions in the real-world dataset are chronologically or-
dered according to the time of occurrences (represented as
a set A). Then, the history of the first m auctions (denoted
by the set M0) are directly taken into account in the model
in order to avoid the cold-start problem [13]. This serves as
the initial database of our model. After this at each step,
an auction a is selected from the list of remaining auctions
(denoted by A \M0) (step 1); its corresponding bid buffer
(BIDS(a)) is initialized as empty (step 2); and the auction
parameters of a such as the number of bidders participat-
ing in the auction (U), the actual value of the item (I),
the total number of allowable bids (T ), the maximum al-
lowable bid value (M) are taken from the real dataset for
fair comparison (step 3). Bidders participating in a partic-
ular auction are chosen preferentially based on their extent
of previous participations (step 4). Once the bidders are
chosen, the actual bidding process starts for the auction a.
Each bidder b maintains a memory (BUFFER(b)) where
all the bids she has placed so far in this auction are stored.
To make sure that every bidder participates in this auction,
each bidder is initially made to place a random bid (step 6)
and this bid is added to her memory as well as to the bid
buffer (steps 7 and 8). These bids are treated as the initial
bids for that auction. Now for each bidder, an optimizing

value is calculated (step 9) which indicates the expertise of
the bidder in LUBA. We hypothesize that the optimizing
value of a bidder depends on the following parameters: pro-
portion of wins (indicating the proficiency of the bidder to
win auctions), normalized profit which is calculated using
the previous history (indicating how rational the bidder is
in playing auctions) and a random factor (probability of
a new bidder to win the auction). Individual weights are
associated with these factors, and these weights act as the
tunable parameters in our model for a particular auction.
Once these optimizing values are calculated for all the par-



Algorithm 1 Memory-driven agent based dynamical model

Input: B=a set of bidders, A= list of auctions chronologically ordered by the time of occurrences
Initialization: History of previous m auctions denoted by the set M0; BUFFER(b) = φ,∀b ∈ B

1: for all a ∈ A \ M0 do

2: BIDS(a) = φ ⊲ Initialize the bid buffer that will contain all the raised bids for the auction a.

3: Select the action parameters: U = number of bidders participating, I= actual value of the item, T= total number of allowable bids, M= maximal allowable bid
value (these values are directly taken from the real data for fair comparison).

4: Preferentially select U number of bidders from B (denoted by Bu) with high previous participations. If a bidder b has participated in nb number of previous auctions,

then the probability of selecting b is p(b) =
nb+1

∑

b∈B (nb+1)
(add-one smoothing is used)

5: for all b ∈ Bu do

6: Select a bid Sb = Rand(1,M)

7: Place the bid: BIDS(a) = BIDS(a) ∪ {Sb}

8: BUFFER(b) = BUFFER(b) ∪ {Sb}

9: Calculate optimizing value (Ob) using the following equation:

Ob = [K1 ×
Wb

K2

] + [K3 ×
∑

ab∈AUC(b)

Πab
(b)

Iab

] + [K4 × Rand(0, 1)] (3)

where Wb=number of bids that b has won; AUC(b)=a set of auctions where b has participated; Πab
(b)=profit of b in the auction ab; Iab

=actual item value

in the auction ab; K1, K3, K4 ∈ {0, 1}; K2 ∈ {1, |AUC(b)|}, i.e., K1, K2, K3 and K4 are tunable parameters of the system; Rand(0, 1) function generates a
number between 0 to 1. Note that, nb = |AUC(b)|.

Endfor

10: i = 0 ⊲ Starting of sub-steps

11: while i <= (T − U) do

12: Preferentially select a bidder b using optimizing value (Ob), i.e., probability of selecting a bidder b is determined by p(b) =
Ob

∑

bj∈Bu
Obj

13: Select a bid Sb = Rand(0,M) such that Sb 6∈ BUFFER(b)

14: Place the bid BIDS(a) = BIDS(a) ∪ {Sb}

15: BUFFER(b) = BUFFER(b) ∪ {Sb}
Endwhile

16: Find the lowest and unique bid Sj ∈ BIDS(a) and its corresponding bidder bj . Declare her as the winner of the auction a

17: Set BUFFER(b) = φ,∀b ∈ B
Endfor

ticipating bidders in a particular auction, the rest of the
bidding process continues. Now, placing a bid is considered
as a sub-step. In each sub-step, the bidder who places a bid
is chosen preferentially based on the high optimizing value
(step 12). Once a bidder is selected, her bid value is ran-
domly chosen within the auction limit such that it has not
been placed by her before (step 13). This bid is added into
the bid buffer (step 14) and appended to her own memory
(step 15). If the number of sub-steps reaches the expiring
limit of bids predefined by the auction, the auction stops.
The winner of this auction is found by choosing the lowest
and the unique bid from the bid buffer (BIDS(a)) (step
16). Once all these tasks are completed, the next auction
is added into the system and the above steps are repeated.
When all the auctions are completed, the model is ready for
the evaluation. An illustrative example of the execution of
our model for a particular bid is shown in Figure 8.

8 Evaluation of the model

In our model, the number of auctions (|A|), the number
of bidders (|B|) and the number of initial auctions whose
statistics are known to the model (m) are taken as 189, 3740
and 20 respectively. After completing the simulation, we
compare the performance of our proposed model with the
real-world LUBA data using Pearson correlation coefficient
(ρ). In particular, our comparison is based on the following
two parameters: (i) degree distribution and (ii) winning
distribution of the bidders.

8.1 Comparing degree distributions

Evaluation of the model can be done by comparing the un-
weighted degree distribution of the bidder nodes of the real
data with that obtained from our model. As mentioned ear-
lier, the unweighted degree of a bidder indicates the number
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Figure 9: (Color online) The (a) unweighted and (b)
weighted degree distributions of the bidders obtained from
the model (circles) and from the real data (line).

of auctions she has participated so far. We observe that the
simulation results match quite well (ρ = 0.94) with the real
data for any permitted choices of parameters (K1,K2,K3

and K4) which are used to calculate the optimizing func-
tion of each bidder as mentioned in equation 3 of the algo-
rithm. Figure 9(a) depicts the unweighted degree distribu-
tions of the bidders obtained from real-world data and from
the model.

Evaluation can also be performed by comparing the
weighted degree distribution of bidders obtained from the
sum of all bids placed by a bidder in all the auctions she
played so far. We compare the weighted degree distribu-
tion of the bidders obtained from the model and from the
real data. We tune the parameters of the optimizing func-
tion to obtain the best similarity of the model output with
the real distribution (ρ = 0.97), and the observed param-
eter values are: K1 = 1, K4 = 0 and for any permitted
values of K2 and K3. Therefore, the optimizing function

becomes Ob = Wb

K2
+ K3 ×

∑
ab∈AUC(b)

Πab
(b)

Iab

(the repre-
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sentative symbols are similar as mentioned in equation 3).
Figure 9(b) depicts the weighted degree distributions of the
bidders obtained from real-world data and from the model
with K1 = 1,K2 = |AUC(b)|,K3 = 1 and K4 = 0.
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Figure 10: (Color online) The cumulative winning distribu-
tion of the bidders obtained from the model (circles) and
from the real data (line). The value in y-axis corresponding
to a particular value (say, m) in x-axis indicates the number
of bidders who have won less than or equals to m number
of auctions.

8.2 Comparing winning distributions

We further perform the evaluation by comparing the win-
ning distribution of the bidder, i.e., number of bidders hav-
ing a particular number of wins in real data and that gen-
erated by the model. Here also, we tune the parameters
for gaining maximum similarity between the two distri-

butions. We obtain the maximum similarity (ρ = 0.98)
for K1 = 1,K2 = 1 and K4 = 0 and for any permitted
value of K3; and therefore, the optimizing function becomes

Ob = Wb+K3×
∑

ab∈AUC(b)

Πab
(b)

Iab

(the representative sym-

bols are similar as mentioned in equation 3). The results
are most accurate with K3 = 0, i.e., when the optimizing
value completely depends on the number of wins of a bidder
in all her participated auctions till that step. A boundary
condition is carefully handled when Ob = 0, i.e., when a
bidder has not won a single auction she participated so far.
In such a situation, a small random value is assigned to Ob

and therefore the immediate next selection is not preferen-
tial. Figure 10 shows the cumulative winning distribution
of the real data and that generated from the model for the
following choice of parameters: K1 = 1,K2 = 1,K3 = 0
and K4 = 0.

8.3 Discussions

From the two subsections discussed above, it is quite evi-
dent that the proposed model quite remarkably mimics the
real-world behavior of LUBA. The values of different pa-
rameters are chosen in such a way that it can capture the
real-world phenomenon as efficiently as possible. The final
values of the parameters reported in the evaluation section
lead us to infer few interesting insights mentioned below.
(i) We have noticed that while in Figure 9(a) the best cor-
relation is achieved by combining all three factors involved
in calculating optimizing function, the contribution of the
random factor may be neglected in Figure 9(b) for the best
accuracy measurement. This indicates that though the ran-



dom factor is partially involved in modeling the distribution
of the number of auctions the bidders have participated, the
average number of times that a bidder tends to bid in a sin-
gle auction seems to be mostly determined by the two other
factors, namely the proportion of wins and the net profit.
(ii) In Figure 10, we have noticed that the highest accuracy
is achieved by considering only the proportion of wins. It
indeed indicates that the bidders tend to bid only based on
their past number of wins. They generally tend to avoid the
factor that they are either in profit or loss. It again sup-
ports our earlier observation that these auctions might be
so addictive that people would tend to participate without
bothering much about investments.
(iii) From the two evaluation results, one might believe that
the random factor does not seem to be quite important for
calculating the optimizing function since most of the times
the weight corresponding to the random factor has to be
set to zero to obtain the most accurate match with the real
data. However, we retain this random factor so that the
model is generally applicable to other similar dataset where
the random factor might be necessary to improve the accu-
racy of the results.

9 Conclusion

The paper has introduced and analyzed a peculiar selling
mechanism that is becoming increasingly popular over the
Internet: Lowest Unique Bid Auctions (LUBAs) that allo-
cate valuable goods to the agent who submits the lowest
bid that is not matched by any other bid. We conclude by
summarizing our main observations, few important remarks
and outlining some of the possible future directions. We ob-
serve that:
(i) the degree distribution (both unweighted and weighted)
of the bidders follows power law behavior,
(ii) there are only 51 unique winners who won all the 189
auctions; among them 57% of the auctions are won by the
top five winners (probably they learn from the previous
wins),
(iii) top five winners aggressively participate in most of the
auctions,
(iv) surprisingly, the bidder who participated in maximum
number of auctions did not win a single one (this might be
an outcome of addiction),
(v) top winners except the topmost winner participate in
auctions with high item values which is quite expected in
any kind of strategic endeavor – highly efficient players gen-
erally participate for only high returns,
(vi) the aggressive bidders are not always top winners,
(vii) range bid plays a key role in winning and the aggres-
sive winners tend to heavily use this strategy,
(viii) most surprisingly, about 99% of the bidders are in loss
in terms of the net profit,
(ix) the stochastic agent-based model efficiently captures
two fundamental characteristics of LUBAs, i.e., the degree
distribution and winning distribution of the bidders.
Sealed bid and range bid concepts have not been included

in our model. In future, besides incorporating these two fre-
quently used strategies in the model, we plan to design more
sophisticated ways of evaluation that would strengthen the
basic hypothesis on which our model is based. Moreover, we

would also like to investigate other types of auctions games
like HUBA, LUPI, LUPA etc.
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