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Abstract In this work, we propose for the first time a suite of metrics that
can be used to perform post-hoc analysis of the temporal communities of a
large scale citation network of the computer science domain. Each community
refers to a particular research field in this network and therefore they act as
natural sub-groupings of this network (i.e., ground-truths). The interactions
between these ground-truth communities through citations over the real time
naturally unfolds the evolutionary landscape of the dynamic research trends in
computer science. These interactions are quantified in terms of a metric called
inwardness that captures the effect of local citations to express the degree of
authoritativeness of a community (research field) at a particular time instance.
In particular, we quantify the impact of a field, the influence imparted by
one field on the other, the distribution of the “star” papers and authors, the
degree of collaboration and seminal publications in order to characterize such
research trends. In addition, we tear the data into three subparts representing
the continents of North America, Europe and the rest of the world, and analyze
how each of them influences one another as well as the global dynamics. We
point to how the results of our analysis correlate with the project funding
decisions made by agencies like NSF. We believe that this measurement study
with a large real-world data is an important initial step towards understanding
the dynamics of cluster-interactions in a temporal environment. Note that this
paper, for the first time, systematically outlines a new avenue of research that
one can practice post community detection.
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1 Introduction

Over the last fifty years, the domain of Computer Science has moved from its
infancy to mature adulthood. The history of this development is peppered with
contributions that attempted to increase the computational speed while signif-
icantly reducing the physical size of the computers so that they could be used
more meaningfully. However, the landscape of the development of the different
fields within this domain (e.g., computer hardware, programming languages,
compilers, operating systems, databases, artificial intelligence, algorithms and
theoretical computer science) is surely not flat [26]; in contrast, it has been
throughout guided by the constant shift of focus of the research community
causing some of the fields to emerge at the forefront at a particular point in
time subsiding the others.

Thousands of scientific papers are being published in this domain every
year and it is very crucial to understand which research areas are growing or
declining, thereby, unfolding the possibility to rank the popularity and predict
the evolutionary trend of various research topics. The utilities of such a rank-
ing scheme are manifold: (a) a new researcher wishing to continue research
in computer science can conduct a survey of each field in the light of how it
evolved over the years and subsequently decide to choose her topic of research,
(b) a funding agency that provides financial support to research projects might
be interested in visualizing the landscape of development of the fields to locate
bursts of certain research topics as well as to understand how the interactions
between different fields change over time, (c) developing nations that are usu-
ally also late-beginners can align themselves with the rest of the world at a
much quicker pace if they have a worldwide picture of the time-trend of growth
and decline of the research fields. Note that precise quantitative estimates of
the above factors form a first and a fundamental step toward the design and
implementation of a recommendation system capable of predicting research
trends in the immediate future. The central objective of this work is to exe-
cute this fundamental step by formulating suitable quantitative measures that
can accurately unfold the evolutionary trend of the different research fields.

On the other hand, detecting clusters or communities in real-world graphs
such as large social networks, web graphs, and biological networks is a prob-
lem of considerable practical interest and has, of late, received a great deal of
attention [10] [24]. Though several works on detecting and tracking commu-
nities in a temporal environment have been conducted [1] [30], the interactive
patterns of the detected communities over a temporal scale still remain un-
explored mainly due to the lack of standard ground-truth communities. More
specifically, one can ask for a metric to understand the dynamics and also
rank the importance of various communities over time. This paper stresses on
developing ground-truth overlapping communities in the form of the research
fields of a large-scale directed citation network of computer science. It then
systematically explores the longitudinal (i.e., with the progress of time) inter-
cluster interactive patterns to unfold the latent characteristics of the network
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that indeed explains the rise and the fall of the impact of scientific research
communities over the last fifty years.

The major contributions of our work are manifold. To start with, we de-
scribe for the first time a large-scale paper-paper directed citation network of
the computer science domain with the fields annotated thus representing the
natural partitioning of the network into ground-truth community structures.
Each field represents a community [6] [28], the communities overlap as some
papers belong to multiple fields; we rigorously analyze the quality of these
community structures as ground-truth using well-known community-centric
metrics [33]. Next, we propose a simple edge-centric measurement called “in-
wardness” of a community (research field in this case) to capture the dynamics
of inter-cluster interactions across time points which can explain the vary-
ing degree of impact of the scientific research communities. Subsequently, to
understand this phenomenon at a more granular level, we postulate several
explanations to unveil the possible reasons for such a dynamical behavior of
research communities using exhaustive statistical analysis. In particular, we
quantify the impact of a scientific community, the influence imparted by one
community on the other, the distribution of the “star” papers and authors, the
degree of collaboration and seminal publications; all these properties together
contribute to quantify the typical dynamics of research communities efficiently.
In addition, we classify the entire data into three parts corresponding to the
continents of North America, Europe and the rest of the world, and repeat our
experiments on these three parts separately to demonstrate how each of them
are connected to the worldwide shift in research focus. Finally, we validate our
primary predictions by establishing their correlations with the project funding
decisions made by NSF (National Science Foundation of the USA). Interest-
ingly, the fields that are presently at the forefront influence the current funding
decisions much less than the funding decisions influencing the emergence of a
field at the forefront in the immediate future. It is important to remark here
that the above observation indicates that predictions of our results are in lines
with the intuitions of the expert researchers who are usually involved in such
crucial funding decisions. We also believe that this work additionally makes
important contributions purely from the perspective of citation network. This
is one of the first large scale studies to understand the trends in a research
field. A recent work on the computer science knowledge networks [23] has been
carried out with the aim to understand its structure and to determine clus-
ters of similar and high-prestige venues. Yang and Leskovec [32] developed
ground-truth communities of real-world undirected static networks and de-
tected overlapping communities from these networks [33]. In this experiment,
we adopt a longitudinal framework to represent the ground-truth communi-
ties of citation network, and understand their evolution using simple statistical
analysis. Note that through this work we present for the first time a precise
methodology for post-hoc analysis of the community structures obtained from
a large scale network.
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2 Related work

The analysis of research trend was started with the pioneering study of Kuhn
[18]. Scientometric data has been available for several decades and so it was al-
ready in the 1960s that de Sola Price [29] first observed power laws in the scien-
tific citation networks and developed models for citation dynamics. Thereafter,
a huge number of works on the analysis of citation networks have been con-
ducted either on ranking researchers [9,14,31] or on ranking publications [8].
The work by Zhao et al. [34] studies the relationship between authors using
community mining techniques. The empirical work by Guimera et al. [11] has
shown that new collaborations between experienced authors are more likely to
result in a publication in a high impact journal. A related study [27] has shown
the information diffusion in citation networks by analyzing the correlations be-
tween various citation choices and the subsequent impact of the articles. They
tried to establish that citing recent papers and papers within the same schol-
arly community garners a slightly larger number of citations on average. There
has also been interest in visualizing and quantifying the amount of information
flow between different areas of science [4] – in effect, mapping the generation
of human knowledge through information flow. The development of efficient
network algorithms has led not just to discoveries of the overall properties of
citation networks, but also the detection of changes in citation patterns where
a new trend or paradigm emerges [20]. Recently, Mazloumian et al. [21] con-
solidated the claim of “rich-gets-richer effect” in predicting the Nobel prize
winners through citation network analysis. Redner [25] analyzed the citation
statistics of 110 years of Physical Review journal and unleashed few unfamiliar
characteristics of citation networks of physics.

On the other hand, there has been some research on modeling evolution of
trends that have become popular over the last few years [16,19]. One of the
recent models proposed by Bornholdt et al. [3] considers an interactive agent-
based information spreading game with a suitable tuning parameter called
“innovation rate”. In addition to providing a theoretical understanding of how
scientific research trends change over time, the model also provides insights
that help explain some related observations in real life. Recently, Pan et al. [22]
and Chakraborty et al. [5] demonstrated how, over time, interdisciplinarity is
increasingly becoming more dominant thus triggering a shift in the overall
trend of physics and computer science research respectively.

Despite such a burgeoning number of research contributions in this area,
a systematic approach to analyze how the research focus of the computer
science community has evolved over time through a “tug-of-war” amongst
the constituent fields remains largely unidentified. This serves as the primary
motivation for the current study that attempts to present a full-fledged analysis
of the temporal behavior of citation networks. The study attempts to explicitly
measure the time-varying importance of various fields along with a rigorous
investigation of the factors that regulate the growth and the decline of the
popularity of these fields.
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3 Preliminary definitions

In this section, we outline the definitions of certain terms which we shall be
repeatedly using throughout the rest of the paper.
Domain: We define domain as the broad subject of interest that can be fur-
ther categorized into multiple sub-classes. Computer science, physics, biology,
chemistry are some representative examples of broad research domains.
Field: Fields are more fine-grained research sub-topics of a domain. Algorithm,
artificial intelligence, database management system are a few examples of fields
within the computer science domain. Sometimes, interdisciplinary research ac-
tivities across several fields/domains are responsible for the emergence of new
fields. For example, computational biology refers to the application of com-
puter science and information technology to the field of biology and medicine.
Citation network: Our method is primarily based on suitable statistical
analysis of various properties of citation networks that can be formally de-
fined as a graph G =< V,E > where each node vi ∈ V represents a paper
and a directed edge eji pointing from vj to vi indicates that the paper corre-
sponding to vj cites the paper corresponding to vi in its references. For the
purpose of our analysis, we label all the papers in the network with the infor-
mation about the field to which each of them belong. At a higher tier, each
field (i.e., a collection of papers) can be thought of as a single node and two
field nodes can be again linked by a directed edge with edge-weights calculated
using Equation 1 mentioned below.
Impact of a field: Impact defines how important a field is in terms of the re-
search activities going on in that field. We quantify the importance of a paper
in terms of the total number of inward citations to the paper (aka inwardness).
The inwardness In(fi) of a field fi (i.e., a collection of papers) can be defined
as

In(fi) =
∑
j 6=i

wj→i (1)

where wj→i represents the weight of the edge connecting field fj to fi. Here,
it is worth noting that this metric is only applicable for the network of fields
since the weight wj→i is determined by the ratio of the number of citations
(cj→i) from the papers of field fj to the papers of field fi to the total number
of papers in field fi (say (pi)). In other words,

wj→i =
cj→i

pi
(2)

Note that this inwardness metric is a measure of the degree of authoritativeness
of a research field proposed here for the first time and defined in the lines
of what has been already discussed in the context of individual publications
in [17].
Lead and Lag: We define lead(x, y, t) to denote that the event x took place
t years before the event y. Similarly, we define lag(x, y, t) to denote that the
event x took place t years after the event y.
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Fig. 1 (Color online) Degree distribution ((a) indegree and (b) outdegree; inset: cumulative
degree distribution) of the raw citation dataset.

Table 1 General information of raw and filtered dataset.

Raw Filtered
dataset dataset

Number of valid indices 1,079,193 702,973

Number of entries with no venue 582 –
Number of entries with no author 5,773 –

Handbook 1,649 –
Archive 86,169 –

Number of papers before 1960 886 –
Number of papers having no in-citation –

and out-citation 272,325 –
Partial data of the year 2009 8,836 –

Number of authors 662,324 495,991
Average number of papers by an author 3.82 3.52
Average number of authors per paper 2.615 2.609

Number of unique venues 2,319 1,705

4 Description of the dataset

The traditional information pertaining to citation networks like papers and
citation distributions are not adequate in this study to meet all the experi-
mental needs. The analysis needs several other related information about each
paper, e.g., publication year, publication venue (journal/conference), research
field, authors and their continents. We have used the dataset of the computer
science domain developed by Tang et al. [31]1 for our experiments. It has
been constructed using the DBLP web repository which contains information
about various research papers from different fields of computer science domain
published over the years. This information includes the name of the research
paper, index of the paper, its author(s), the year of publication, the publi-
cation venue, the list of research papers the given paper cites and (in some
cases) the abstract of the papers. Certain general information pertaining to
the downloaded raw dataset is noted in the second column of the Table 1.
Figure 1 shows the degree distribution of the raw citation network.

In order to make the data suitable for our experiments, we extract only
those entries which contain the information about the paper index, the title,

1 http://arnetminer.org/citation, named as DBLP-Citation-network V4
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the venue of publication, the year of publication and the citations. In general,
scientific focus shifts are affected manifold by contributory papers than by
reviews, surveys and text books, and therefore we exclude these items from
our data. Further, in order to make our data bounded we consider only those
papers that cite or are cited by at least one paper. Some of the general in-
formation pertaining to the filtered dataset are presented in Table 1. The
degree-distribution of the filtered network is in Figure 2.
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Fig. 2 (Color online) Degree distribution ((a) indegree and (b) outdegree; inset: cumulative
degree distribution) of the filtered citation dataset.

4.1 Field tagging

Since the filtered dataset does not have the necessary field information of
the papers, we tag them using the Microsoft Academic Search Engine2. This
website covers more than 38 million publications and over 19 million authors
across a wide variety of domains with updates added every week. It categorizes
papers of computer science domain into the fields as noted in Table 2. We have
crawled the site to find the field(s) of papers present in the filtered dataset
using the title of the paper. Approximately, 88.12% of the papers could be
tagged with their respective fields when searched with the paper title. Fields
of rest 11.88% of the papers have been inserted using the conference/journal
name of the paper. About 11.23% of the papers have more than one field.
Table 2 notes the percentages (decreasing order) of various fields in the tagged
dataset. We also show in the table the average ten-year impact (Equation 3) for
each field between the years 1960 and 2008. Note that this value indicates the
average number of citations that each individual paper within a field receives
from the papers belonging to the other fields.

4.2 Continent tagging

Microsoft Academic Search also provides location of the authors like the name
of the university/company he/she is affiliated to and the continent information

2 http://academic.research.microsoft.com/
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Table 2 Percentage of papers in various fields and their average inwardness in each decade
(for each decade, top and second ranked inwardness measures are in bold font).

No. Subject Abbreviation % of papers Average Inwardness
60-69 70-79 80-89 90-99 00-08

1. Artificial Intelligence AI 15.30 0.02 0.67 4.94 5.14 3.29
2. Algorithms and Theory ALGO 14.09 4.13 4.49 3.39 2.12 0.55
3. Networking NW 8.63 0.19 0.53 1.06 3.42 1.76
4. Databases DB 8.12 3.75 3.67 1.80 1.14 0.17
5. Distributed and DIST 7.63 0.02 2.02 2.86 1.55 0.56

Parallel Computing
6. Hardware & Architecture ARC 7.29 0.41 2.49 2.29 1.12 1.04
7. Software Engineering SE 6.40 1.98 3.21 1.89 1.67 0.52
8. Machine Learning ML 6.09 0 0.43 2.51 2.97 2.62

and Pattern Recognition
9. Scientific Computing SC 4.02 0 1.14 2.38 2.91 0.19
10. Bioinformatics BIO 3.88 0 0 0.71 1.27 0.56

& Computational Biology
11. Human-Computer HCI 3.42 0 0.03 1.65 2.05 1.39

Interaction
12. Multimedia MUL 3.34 0 0.53 2.51 2.22 1.33
13. Graphics GRP 3.32 0 0.56 2.58 2.63 1.07
14. Computer Vision CV 3.03 0 0.86 1.29 2.73 1.27
15. Data Mining DM 3.02 0 0.27 1.80 1.83 1.02
16. Programming Languages PL 3.00 0.41 2.49 3.86 2.46 1.29
17. Security and Privacy SEC 2.94 0 0.86 3.80 2.56 1.59
18. Information Retrieval IR 2.26 0 0.42 1.32 2.62 1.79
19. Natural Language NLP 2.11 0 0.13 1.16 2.82 1.92

and Speech
20. World Wide Web WWW 1.76 0 0 1.86 2.10 1.83
21. Computer Education EDU 1.67 0 0 0.80 0.83 0.39
22. Operating Systems OS 1.07 0.31 1.73 1.39 1.98 1.20
23. Real Time RT 0.90 0 0.67 1.56 2.52 0.54

Embedded Systems
24. Simulation SIM 0.14 0 0.30 1.20 2.70 0.87

(North America, South America, Asia, Europe and Africa) of all the universi-
ties. In order to tag the authors with their respective continents, we search for
their location through the search engine. Initially, “exact name” of an author
is searched to get the location. In case of more than one match, i.e., the case
where many authors have exactly the same name, the continents of all the
matching authors are checked and the continent of an author is approximated
by the continent name that recurs the largest number of times across the search
results. Almost 71% of the authors get tagged after this step. For tagging the
rest of the authors, we attempt to match an author name with names which
have all tokens (ignoring unit length tokens) of the query author name. For
instance, the query “Jason A Blake” can be matched with “Jason Blake Au-
drey”. About 9% of the authors get tagged after this step. For tagging the rest
of the authors, we find names that have maximum overall token match with
the query author name. Around 12.4% of the authors get matched after this
step. In both the previous steps, continent of query author is approximated
by the one that appears the largest number of times across the search results.

Out of the 7.6% data to be tagged, we could approximate the continent
of 6.6% by the most common continent that the collaborators of an author
belong to. This is because we find that within the tagged set 73% of times
the continent of an author matches with the continent that is most common
across his/her collaborators. At the end of the above steps, 99% of the authors
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Table 3 Heuristics applied for continent tagging.

Heuristics Percentage
Exact matching with query name 71%

Matching with all tokens of 9%
query name (except unit tokens)
Maximum overall token match 12.4%

Tagging approximated by the most 6.6%
common continent of the collaborators

Untagged authors 1%

finally get tagged while the rest 1% of the authors are left untagged and are
not used further in our analysis. The above steps are summarized in Table 3.
The number of authors from Africa, South America and Asia being relatively
low, we merge them together into a new category called “Others” which we
use for our future experiments.

5 Characteristics of the citation network

Before proceeding to the main experiments detailing how scientific focus shifts,
we analyze the dataset systematically and explore certain interesting results
mentioned below.
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Fig. 3 (Color online) (a) Number of publications over the years; (b) Number of new pub-
lications (mti ) as a function of total number of publications (nti ).

5.1 Year-wise growth of overall publications

We first plot the number of publications over the years in Figure 3(a). Fig-
ure 3(b) shows how the number of new publications (mti) correlates with the
number of all existing publications (nti), i.e., nti =

∑ti
t=t0

mt, where t0 is the
starting year and ti is the year under consideration). The linear correlation
between the two quantities indicates that the number of new publications is
proportional to the number of already published articles.
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Fig. 4 (Color online) Year-wise average inward citations (inset: same measure for every
field; (a) DB, AI, PL, SC, DM, SIM; (b) ALGO, SE, ARC, NLP, WWW, IR; (c) HCI, NW,
MUL, EDU, RT, GRP; (d) SEC, ML, BIO, DIST, OS, CV). Y-axis value corresponding to
year x indicates the average number of citations received by a paper at the xth year of its
publication. Note that, the average inward citation count of a paper in our dataset is 4.36.

5.2 Distribution of average inward citation over the years

Some of the previous experimental results [12,13,15] show that the trend of
citations received by a paper after its publication period is not linear in general;
rather there is a fast growth of in-citations within the initial few years after the
publication, followed by an exponential decay. We notice the same property
in our dataset and observe that the average number of inward citations per
paper peaks within three years from its publication and then slowly declines
over time (see Figure 4). Note that this property is also prevalent across the
different fields of the domain (see inset of Figure 4). Therefore, in order to
measure the importance of a paper (or a field) around its time of publication,
all our analysis throughout the rest of the paper assumes only the citations
received by the paper within three years from its publication. This three-
year time window helps in capturing the local importance of a paper (say,
p) around its publication time and discards those citations coming from the
papers published long after the publication of p.

5.3 Year-wise growth of overall inward and outward citations

Here we analyze the total number of citations received (Figure 5(a)) as well as
the total number of citations made (Figure 5(c)) by all the papers. It is found
that both of the characteristics grow over time. Note that the last two bars
in Figure 5(a) have a lower height because it is not possible for the recently
published papers to receive a very high number of citations since our dataset is
bounded up to the year 2008. In addition, we also study how the number of ci-
tations (both inward and outward) received in the current year correlates with



Rise and fall of scientific research in computer sciences 11

the total number of citations received over all the years. We define IC(OC)
and CIC(COC) as the inward (outward) citation and the cumulative inward
(outward) citation respectively. Therefore CICti =

∑ti
t=t0

ICt, where t0 is the
starting year and ti is the current year. A similar definition also holds for COC.
Figure 5(b) and Figure 5(d) respectively show the correlation of IC with CIC
and the correlation of OC with COC. A linear correlation is observed in both
the plots indicating that the number of citations (inward as well as outward)
at any point in time is governed by the total number of citations so far (similar
to the case of publications illustrated through Figure 3(b)). Note that, there is
an order of magnitude difference between the number of inward and outward
citations since the number of inward citations is always restricted within the
three-year window.
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Fig. 5 (Color online) Growth of inward citations (ICs) (Fig.(a)) and outward citations
(OCs) (Fig.(c)) over the years; relationship between new inward and outward citations with
the existing cumulative inward (CIC) and cumulative outward (COC) citations respectively
(Fig.(b) and Fig.(d)). Both axes of (b) and (d) are in logarithmic scale.

6 Community scoring functions

We now discuss various scoring functions defined by Yang and Leskovec [32]
that characterize how “community-like” is the connectivity structure of a given
set of nodes. The idea is that given a community scoring function, one can find
sets of nodes with high/low score (depending upon the function) and consider
these sets as communities. All scoring functions are built on the common
intuition that communities are sets of nodes with many connections within the
members and few connections from the members to the rest of the network.
Out of 13 commonly used scoring functions proposed in [32], a few have been
proved to be capable enough to capture the effect of all the functions. We will
discuss five such effective functions that are again naturally grouped into three
coarse-grained categories.

Let G(V,E) be a graph with n = |V | nodes and m = |E| edges. Given
a set of nodes S with nS = |S|, mS = |(u, v) ∈ E : u ∈ S, v ∈ S|, cS =
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|(u, v) ∈ E : u ∈ S, v /∈ S| and d(u) the degree of node u, we consider a func-
tion f(S) that characterizes how community-like is the connectivity of nodes
in S. The symbols used in the following definitions are described in Table 4.

(A) Based on external connectivity:
1. Expansion (EXPN): It measures the number of edges per node that point
outside the cluster, i.e., f(S) = cS

nS
.

2. Cut Ratio (CUT): It is the fraction of edges (out of all possible edges)
leaving the cluster, i.e., f(S) = cS

nS×(n−nS) .

(B) Based on internal connectivity:
3. Fraction over median degree (FOMD): It is the fraction of nodes of
S that have internal degree higher than the median degree of a vertex in the

entire network, i.e., f(S) = |u:u∈S,|(u,v):v∈S|>dm|
ns

where dm is the median value
of d(v) for all v ∈ V .

(C) Combining internal and external connectivity:
4. Conductance (COND): It measures the fraction of total edge volume
that points outside the cluster, i.e., f(S) = cS

mS+cS
.

5. Flake-ODF (ODF): It is the fraction of nodes in S that have fewer edges
pointing inside than to outside of the cluster, i.e., f(S) =

|u:u∈S,|(u,v)∈E:v∈S|<d(u)/2|
nS

.

Table 4 Used symbols to describe the community scoring functions.

Notation Description
V Set of nodes in the graph G
E Set of edges in the graph G
n Number of nodes in the graph G
m Number of edges in the graph G
S A selected subset of nodes drawn from V (i.e., S ⊆ V )
nS Number of nodes in S
mS Number of edges whose both end points are in S
cS Number of edges whose one end point is in S and another is outside S
d(u) Degree of vertex u
dm Median value of the degree of vertices present in V

Note that, the less the values of EXPN, CUT, COND, and ODF, the
better is the community structure of the network. But for FOMD, the reverse
argument is true. However, the above mentioned functions have been proposed
for the undirected graphs [32]. In the present experiment, we calculate each of
the functions separately for incoming and outgoing edges and report the value
after averaging them. These scoring functions are used to obtain individual
scores for each community, and by averaging them we get the scores for the
entire network. For the purpose of comparison, all the scores reported are
rescaled within the range of 0 and 1. Since the present work deals with the time-
varying communities, we report the above functions for the network in five
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Fig. 6 (Color online) Community scoring functions for real-world ground-truth communi-
ties (sold lines) in different time windows (2004-2008, 1994-2003, 1960-1981, 1982-2008 and
1960-2008). Results from the randomized versions (10% and 100%) of the ground-truth com-
munities are presented in the right-most panel (indicated by RN). For better visualization,
all the functional values are rescaled between 0 and 1. In each slice of the figure, Pearson’s
correlation coefficient (ρ) between two similar functions is reported.

time-windows (2004-2008, 1994-2003, 1960-1981, 1982-2008 and 1960-2008)3 to
demonstrate the robustness of these natural groupings to different sample sizes
of data (ranging from 5-year aggregate to 49-year aggregate) (see Figure 6).
For each time-window, we calculate Pearson’s correlation coefficient (ρ) [7]
between the functions in each category (except FOMD). Across all different
time points and for all different data sets we observe that the correlation
between the scoring functions from within a group of measures is always almost
close to one. In order to further show that the ground-truth communities
are not arbitrarily formed and are actually tightly knit, we randomly swap
members between communities (10% and 100% of all the nodes) keeping the
community sizes intact and show that the scores as well as the correlations
heavily degrade as one increases the degree of random swaps (see the last
column of Figure 6). Note that, we perform the randomization experiment only
on the entire network (containing all the papers published in 1960 to 2008).
The intuition is that if the community scoring functions and their correlations
obtained from the actual ground-truth communities outperform those values
obtained from the randomized communities in the entire graph, then a similar
behavior should also be observed for the subgraphs constructed at different
time stamps as well [2]. We report further the actual value of the functions

3 Note that, these results are representative and therefore hold for any reasonable size
sampling of the data. The first set represents a period of the most recent 5 years; the second
set corresponds to a period of 10 years from the immediate past; the third and fourth sets
represent the full data partitioned into two chunks, and the last set presents the results on
the entire dataset.
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Table 5 Community scoring functions of the network in different time-windows with the
ground-truth (GT) and random (RN) communities.

Time-windows EXPN CUT COND ODF FOMD
GT (04-08) 0.411 0.84e(-6) 0.251 0.003 0.542
GT (94-03) 0.437 1.40e(-6) 0.332 0.004 0.522
GT (60-81) 0.710 1.02e(-6) 0.381 0.006 0.538
GT (82-08) 0.701 9.06e(-6) 0.283 0.002 0.559
GT (60-08) 0.610 1.02e(-6) 0.270 0.002 0.593

RN-10% (60-08) 0.768 1.18e(-6) 0.328 0.006 0.465
RN-100%(60-08) 0.985 2.15e(-6) 0.485 0.008 0.216

for the entire network in Table 5. Once again, note that for all different time
points and sample sizes, the ground-truth data have significantly better scores
as compared to their randomized counterparts. We also notice in Table 5 that
the community scores obtained in the latest time-window (graph in 2004-
2008) are better in comparison to the earlier time-window (graph in 1994-
2003). This observation is also true for the two twenty-year time windows (i.e.,
community scores in 1982-2008 time-window outperform the scores in 1960-
1981). This indicates that as time progresses, due to the maturity of the fields,
the communities tend to become more well-formed and well-knit thus serving
as better ground-truth structures. These time-varying community structures
might also be very interesting in order to explain the evolutionary landscape
of different fields in a particular domain [5].

7 Time transition of scientific communities

In this section, we analyze the time transition of the scientific focus showing
how one field has taken over another during the time evolution of the computer
sciences. In particular, we measure the inwardness of a field so as to construct
the time transition diagram reflecting the focus shifts. However, here again
we restrict our analysis to citations that are received within the three-year
window. Consequently, we redefine the inwardness metric as follows:

In(f ti ) =
∑
j 6=i

wt
j→i (3)

where wt
j→i =

ctj→i

pt
i

with ctj→i corresponding to the number of citations re-

ceived by the papers of field fi from the papers of field fj , p
t
i corresponding

to the total number of papers in field fi and 1 ≤ t ≤ 3. Note that for all our
estimates, in addition to this three-year window we also include the year of
publication of the paper.

In order to investigate the global time transition pattern (i.e., the world-
wide behavior) we compute the inwardness of each field (Equation 3), rank
them and plot the top two values (see the solid and broken lines respectively
in Figure 7(a)) as a function of time. Each field is uniquely color coded and
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Fig. 7 (Color online) (a) Top two scientific communities (based on inwardness) at the fore-
front of scientific research trend (names of topmost backup communities for the communities
in the forefront of every trend-window are mentioned). Cause analysis: Fig.(b) fraction of
papers for the top and second ranked communities among the 10% high impact papers in
each year; Fig.(c) change of citations from the topmost backup communities; Fig.(d) frac-
tion of papers for the top and second ranked communities among the 10% highly influential
papers in each trend-window. To smoothen the curves, the best sliding window size of five
years has been used.

the relative height of the y-axis shows the inwardness of the field for a par-
ticular year. In each focus-window, we also mention the name of the top hub
(backup) field that on an average produces the largest number of citations for
the top ranking field. This information, as we shall see in section 8, forms one
of the major reasons for focus shifts. The total number of transitions of re-
search focus during 1960 to 2005 is 11 (i.e., there are 12 trend-windows in the
global time transition diagram). A careful inspection of the behavior of the
curves shows that in every focus-window, a similar pattern is followed with
the inwardness first rising and then gradually declining near the transition.
Simultaneously, the second rank field which comes to the top position in the
next focus-window in every case starts reflecting a relative growth of inward-
ness at the middle of the current focus-window. Bornholdt et al. [3] mention
a similar observation that the competing communities are as if running in a
continuous race to dominate others and when the magnitudes of dominance
(in this case, it is In) are nearly equal between the top and second top ranked
communities, a sudden chaos among the research communities suppresses one
of them and makes the other popular. However, in their model once a field
declines it never rises again; in contrast, real data analysis here shows that
there are at least two cases (Algorithm: 3 times, AI: 3 times) where a field can
decline and then rise again at a later time. Another important issue is that
the differences of inwardness between the top and the second top ranked fields
in the long-ranged and short-ranged focus-windows are largely different. We
investigate this property in further detail in the next section.
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Table 6 Ranking of top fields in each trend-window in terms of collaborative papers, multi-
continent papers and diversity (average ranks of top fields in two segments of 6 trend-
windows are shown in third, fifth, seventh, tenth, twelfth and fourteenth rows).

60-64 65-69 70-73 74-77 78-79 80-81
Collaborative Rank 13 8 13 11 3 13

Avg. 10.16
Multi-continent Rank 12 8 12 10 1 12

Avg. 9.87
Diversity Rank 11 8 11 13 12 11

Avg. 11

82-87 88-91 92-96 97-99 2000-2002 2003-2005
Collaborative Rank 6 12 2 6 1 6

Avg. 5.5
Multi-continent Rank 7 11 3 7 2 7

Avg. 6.17
Diversity Rank 3 9 10 3 4 3

Avg. 5.33

8 Reasons for transitions

In this section, we conduct a diverse set of experiments to investigate the rea-
sons behind the typical dynamics of scientific communities in the longitudinal
scale observed in the previous section. We focus on different orthogonal char-
acteristics all of which converge to reasons for the transitions observed. While
the first cause that we propose is from an overall estimate of the data, the
following three are time-varying estimates of the data.

Cause I: Impact of collaborations
In this section, we show that, in the current years, the expansion of collabo-
rative work within and across continents as well as the diversity in research
interest can have direct influence on the emergence of a scientific community
at the forefront. To this purpose, we measure the impact of collaborative re-
search by ranking all fields globally based on (i) the number of papers in that
field having multiple authors (collaborative papers), (ii) the number of pa-
pers involving authors from multiple continents (multi-continent papers) and
(iii) the diversity of a field (say, f) measured by the average number of fields
that the authors of f have worked. These three ranks act as three different
indicators of collaboration. Note that in case (iii), the more the diversity the
higher is the rank of the field. Moreover, we suitably normalize each of the
above three factors for any particular field by the total number of papers in
that field. Thus, each factor indicates the average collaborative nature of a
field. We then rank the fields based on each of the three normalized scores.
Table 6 notes the ranks in cases (i), (ii) and (iii) for those fields that are at
the forefront in terms of inwardness in each trend-window and the average
rank of these fields in two segments each composed of six trend-windows. We
observe that in all the three cases the average rank in the second segment is
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much higher4 than that in the first segment. This indicates that in the current
years, those fields that enjoy a higher number of collaborations and a higher
overall diversity in the research interests of its constituent authors have an
increased chance of emerging at the forefront. The collaborative ranks of the
top fields in the earlier time periods are lower mainly because of the less pro-
portion of the collaborative/multi-continent/diverse papers in those fields. We
also observe that during the earlier time periods the high ranked collaborative
fields are mostly the newly emerging fields such as AI, ML, NLP. Earlier, these
emerging fields contained very few papers compared to the papers in the core
fields. It seems that in the early years, the top ranking fields like Algorithms
and Databases (the so-called core-fields of computer science) acted as the only
and therefore indispensable sources of citation for any other field. Therefore,
they were able to maintain their high ranks at least in the initial years even
without having much collaborations. This is precisely the reason for their low
collaboration score in spite of a high inwardness score.

Cause II: High impact papers
We extract the top 10% of the papers that have the highest number of in-
citations (considering the last three years and the current year) from among
all the papers published in a year. We call them as high-impact papers. Next
we measure the fraction of papers out of this 10% that belong to a particular
field. The fields are then ranked by this fraction and the fractional values are
plotted in Figure 7(b) for the top and the second ranked fields. We observe
that in 9 out of 11 cases a decline in the fraction of high-impact papers of
the top ranked field and the simultaneous increase of high-impact papers in
the second ranked field trigger a transition in Figure 7(a). Another important
point to note is that in the later years, out of the 10% high impact papers, the
fractions from the top and the second ranked fields diminish rapidly. While
in the initial years this fraction is found to be close to 1, in the later years
it drops to around 0.5. This partially indicates the maturity of the computer
science domain as a whole, whereby several fields become effective and now
have a place in the list of 10% high-impact papers unlike in the earlier years.

Cause III: Citation patterns of backup communities
The impact of a paper in our experiment is determined by the citations re-
ceived from other papers. Therefore, one of the important factors that helps a
particular scientific community to rise up to the top is the contribution of its
backup communities that direct most of their outward citations to push this
community to the top. In Figure 7(c), we plot bars for each year indicating the
fraction of citations that the top ranked community (according to Figure 7(a))
received from its primary backup community (i.e., the backup community that
brings in the largest number of citations). Note that, in 75% of the cases, the
citation received from the primary backup community falls abruptly close to

4 Note that, in this case, the rank x is higher than rank y if x < y conforming to the usual
notion of any ranking system.
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the transition indicating that they play a pivotal role in keeping the domi-
nant field “dominant”. This abrupt fall could be possibly caused because the
citations coming from the backup communities start getting shared by other
competing communities and the current community at the forefront start los-
ing its charm owing to its member topics slowly becoming dated, thereby,
losing the “timeliness” advantage. We observe that the backup fields for a
particular top field are not same in all time windows. Moreover, the citations
from the backup fields which are mostly focused towards the top field in the
initial time periods, split among multiple fields at the time of transition. In [5],
Chakraborty et al. pointed out that as a field becomes more and more mature,
the citations emitted to the other fields get more dispersed with a significant
proportion being retained within the field (unlike in the initial years). In our
experiment, we observe that the increase in the diversity of citations from the
backup field is one of the main triggering factors behind the time transition,
and this might be possibly tied to the overall maturity of the backup field
itself to emerge as an altogether new scientific paradigm (see the example of
the emergence of WWW as a new field in [5]).

Cause IV: Effect of seminal papers
The two causes discussed above have a direct bearing with the time transi-
tion of the research trend. However, there can be indirect factors affecting
the rank of a community – one such factor could be the inception of seminal
papers that have potential to completely mould the direction of research in
the immediate future. In this section, we attempt to quantify the impact of
such papers by introducing a metric called Influence. In particular, we con-
sider only those citations that a paper receives from the papers belonging to
its own field published within the three-year window, however, ensuring that
the paper being cited does not have any author in common with the paper
citing it. This expresses how important a particular paper is within its own
scientific community. The influence (Influence(pti)) of paper pi at time t is
defined as follows:

Influence(pti) =
∑

pj∈P t

1

dpj

(4)

where P t is the set of all papers that cite pi within the three year window
(1 ≤ t ≤ 3) and belong to the same field as of pi, and dpj corresponds to the
total number of outward citations from the paper pj - the fraction is used to
suitably normalize the impact of citation.

We extract the top 10% influential papers in each trend-window and find
out from among them the fraction of influential papers for each field. We then
rank the fields based on this fraction and plot once again the top and second
ranked influential fields in each trend-window in Figure 7(d). The results cor-
roborate our hypothesis that the top rank field (inwardness based) in a certain
trend-window has the highest number of influential papers in the previous win-
dow (almost in 65% cases). In the earlier years (1960 to 1975), the two fields,
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namely Algorithms and Databases completely shadow all other fields in terms
of papers and citations. The competitive pressure starts to appear mainly af-
ter 1975. If we measure this fraction from after 1975, we observe that in six
out of seven cases (excluding the last window) the field that sees the birth
of the largest number of influential papers in a trend-window emerges in the
forefront in the immediate next trend-window. This observation points to the
fact that the influential papers can play a very crucial role in determining the
shape of the future research trend.
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Fig. 8 (Color online) (a) Number of publications over the years where all authors are from
the same continent; (b) Number of publications over the years where either of the authors
belong to one of the considered continents.

9 Comparison of the continents

The citation patterns within and across different continents have an impor-
tant role in the transition of worldwide research trend. Therefore, in order to
complete our empirical study, in this section, we inspect the continents sepa-
rately and analyze their time transition patterns in comparison to the global
pattern. As a first step, we note in Table 7 the number of authors as well as
the percentage authors (among the total number of authors) who belong to
a particular continent. Table 8 shows the number of publications as well as
the percentage of publications (among the total number of publications) that
have at least one author of a given continent. As a following step, we inves-
tigate the distribution of the number of publications over the years for the
three continents separately. From Figure 8(a), it is evident that this number
is always higher for North America. While considering number of pairwise col-
laborative publications across the three continents, the collaboration between
North America and Europe emerges as the strongest (Figure 8(b)).
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Table 7 Number of authors from different continents.

Continent Number of Authors Percentage
Europe (EU) 181,978 36.69%

North America (NA) 162,104 32.68%
Others (OT) 151,909 30.63%

Table 8 Number of papers having at least one author from the corresponding continent.

Continent(C) # of publications with % with total
at least 1 author of C publications

Europe 340,191 47.79%
North America 355,143 49.89%

Others 253,743 35.65%

9.1 Effect of cross-continent collaborations

In this section, we analyze the effects of the cross-continent collaborations.
To this purpose, we first illustrate through Figure 9(a) that there has been
a continuous increase in team size over the years. Figure 9(b) makes this
picture more clear by showing that not only team size but also multi-continent
collaboration has increased largely over the years.
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Fig. 9 (Color online) Increase in (a) average team-size and (b) multi-continent collaborative
papers over the years.

9.2 Continent-wise impact of papers

The Venn diagram in Figure 10(a) depicts the distribution of publications by
author(s) within and across continents. For instance, 11.62% of the publica-
tions have authors from Europe and North America only. In addition, the Venn
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Fig. 10 (Color online) (a) Percentage of intra and inter-continent publications (terms within
the parenthesis in each segment denote the average impact of the papers in that segment;
(b) average impact of papers written by single-continent authors.

diagram also indicates the average inwardness (equation 3) of the publications
within and across the continents. Note that North American papers by them-
selves have the largest inwardness. Next we compare the average impact of
the papers written by authors all of whom belong to a single continent. Fig-
ure 10(b) indicates this value over the years for the three continents. Clearly,
once again North American papers on an average seem to have a much more
pronounced inwardness in comparison to the other continents.

9.3 Time transition patterns in the continents

We plot the time transition pattern for the three continents in Figure 11
with the continents marked as “NA” (North America), “EU” (Europe), “OT”
(Others). One of the first important points to note is that the transitions take
place more frequently here. The total number of transitions for NA, EU and
OT are 19, 15 and 17 respectively (as opposed to 11 for the global case). Note
that, in this experiment we have considered that a paper belongs to continent
C if one of the authors belongs to C. Surprisingly, in 60% of the cases in NA,
the top ranking field of a certain trend-window is not the second rank field
in the previous trend-window which is in contrast with the global behavior.
For EU and OT, this value is 62% and 60% respectively. Furthermore, for
all the above cases (60% (NA), 62% (EU) and 60%(OT)), we have found
that the third rank field in the previous trend-window plays the lead role in
the immediate future. This is possibly because the behavioral patterns of the
continents have a correspondence with the global behavior that either lags
or leads in time (we shall revisit this issue in the following section). Another
observation is that in most of the cases, the second rank fields continuously
remain second for significantly long times. For instance, Operating System
(OS) consistently holds the second position from 1978 to 1985 constituting
four consecutive trend-windows in NA, however never coming to the top in any
of the subsequent trend-windows. This implies that the worldwide behavior is
not fully governed by any one single continent, rather it could be a combined
effect manifesting itself in the form of the observed global patterns.
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Fig. 11 (Color online) Continent-wise transition of research trend (North America (NA),
Europe (EU) and others (OT)). Names of the topmost backup fields for the field at the
forefront in each trend-window are also mentioned. To smooth the curves the best sliding
window size of five years has been taken. Note that, the time transition for EU starts from
1962 since before that year there was no paper with at least one author from EU in our
dataset.

9.4 Cross correlation in time transition patterns

An important question that has so far remained unanswered is whether the
individual time-transition patterns of the continents affect the global behavior.
For this purpose, we find the extent of similarity between the field that is
most dominant at the global level and the field that is most dominant within
a continent for each individual year. Since, there are data for n = 45 years in
our dataset, we calculate a similarity metric τ that is defined as

τ =
s

n
(5)

where s is the number of similar pairs. As the number of data points are
not many, exact similarity might be a very strict assumption in this case.
Therefore, we relax τ by calling a pair similar if there is any match between
the top two pairs (instead of top one). The pairwise similarity measures are
reported in Table 9. The global behavior at any point in time seems to be
most similar to that of Europe. However, what is possibly more important is
to investigate if a field that is at the peak in one continent at any point in
time emerges as the globally dominant one in the near future. This would then
indicate that what one continent finds important today is adopted by the rest
of the world within a few years. In order to quantify this delayed similarity,
we redefine τ where we compare (a) the current global figures (GLO) with
that of any continent t years earlier (i.e., lead(continent,GLO, t)) as well as
(b) the current global figures (GLO) with that of any continent t years later
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Table 9 Correlations between transitions in research trend (GLO: global transition, NA:
transition in North America, EU : transition in Europe and OT: transition in the other
continents). lead(X,Y, t) denote that the event x took place t years before the event y.
Similarly, lag(x, y, t) denote that the event x took place t years after the event y.

τ
Pairs Time (t)

0 yr 1 yr 2 yrs 3 yrs
lead(GLO,NA, t) 0.76 0.72 0.68 0.58
lag(GLO,NA, t) 0.76 0.86 0.68 0.63
lead(GLO,EU, t) 0.91 0.84 0.79 0.68
lag(GLO,EU, t) 0.91 0.77 0.72 0.51
lead(GLO,OT, t) 0.65 0.60 0.57 0.49
lag(GLO,OT, t) 0.65 0.60 0.50 0.55
lead(NA,EU, t) 0.09 0.73 0.72 0.69
lag(NA,EU, t) 0.09 0.71 0.63 0.53
lead(NA,OT, t) 0.40 0.66 0.59 0.65
lag(NA,OT, t) 0.40 0.62 0.54 0.46
lead(EU,OT, t) 0.13 0.57 0.50 0.37
lag(EU,OT, t) 0.13 0.55 0.61 0.51

(i.e., lag(continent,GLO, t)) as defined earlier in Section 3. In similar line, we
compute pairwise this measure for all the continents. Note that, lead(X,Y, t =
0) is equivalent to lag(Y,X, t = 0). The results are presented in Table 9. While
the European time transition pattern is almost similar to the global pattern
at a particular year (lead(GLO,EU, t = 0)=0.91), we observe the maximum
concordance of North American transition one year before with the transition
of the global pattern at the current time (i.e., lag(GLO,NA, t = 1)=0.86). It
indicates whatever is popular in North America today would become popular
in the rest of the world within one year. In fact, this trend is also observed
in the similarity values across continent pairs – North America seems to be a
“torch-bearer” for both the other continents.

10 Correlation with research funding

It could be interesting as well as important to validate our measurements with
other extraneous real-world statistics directly or indirectly reflecting the evo-
lution of scientific research in the computer science domain. To this purpose,
we collect the fund disbursal data of one of the major funding agencies of
the United States – the National Science Foundation (NSF)5. Although this
agency has a long funding history, the publicly available data that we could
gather is from 2003 to 2009. In Table 10, we compare the top three fields ranked
by our inwardness metric with the top three fields ranked by (i) the number
of NSF proposals submitted and (ii) the number of proposals accepted in that
field. The high-impact fields predicted by our method match accurately with
the trend of proposal submission. To compare the two statistics, we propose a

5 http://www.nsf.gov/
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similarity metric τ that is defined as

τ =
s

n
(6)

where s is the number of similar pairs and n is the number of data points.
As the number of data points are not many, exact similarity might again be
a very strict assumption in this case. Therefore, we relax τ by calling a pair
similar if there is any match between the top two pairs (instead of top one).
In Table 11, we report the pairwise similarity (τ) between the fields ranked
by our method and fields ranked by (a) the number of proposals submitted
and (b) the number of proposals granted in those fields. While measuring the
similarity using equation 6, we increment the value of s when (i) at least one
field is matching, and (ii) at least two fields are matching with 50% weight for
each matching. We report the similarity values in the first row (REC vs. SUB-
MIT) and fourth row (REC vs. AWARD) of Table 11 for the same year where
REC refers to what is recommended by our method based on inwardness. The
results clearly show that our predictions are very well aligned with proposal
submission while it is moderately aligned with the fund disbursal patterns.

Table 10 Funding statistics compared with the inwardness results (top three ranked fields
are tabulated from left to right).

NSF
Years Inwardness Proposal Proposal

results submitted awarded
2003 AI/IR/NW NW/AI/HCI NW/ALGO/SE
2004 AI/IR/NW AI/HCI/RT RT/ARC/DIST
2005 AI/IR/NW AI/ML/HCI GRP/SE/ALGO
2006 IR/ML/AI ML/ALGO/SEC ALGO/SEC/ML
2007 ML/AI/ALGO ALGO/ML/HCL ALGO/HCI/SEC
2008 ML/AI/ALGO ML/ALGO/SE ALGO/ML/SE

It is often observed that the current funding patterns significantly affect
the research directions of the future. Further, at times, the current research
trend seems to strongly influence the funding decisions of the immediate fu-
ture. The above observations can be illustrated quantitatively here. In or-
der to do so, we introduce lagging and leading similarities between fields
ranked by the inwardness metric (REC) and those ranked by the number
of proposals submitted/awarded. We measure two different similarity values –
lead(fund,REC, t = 1) and lag(fund,REC, t = 1). From the results depicted
in Table 11, we observe that the influence of funding decisions on the future
research trend is much more (lead) than the influence of the current research
trend on the future funding decisions (lag). This shows that our results are
remarkably in line with the decisions made by the expert researchers involved
in such important proposal selection committees. However, we remark that
all our results are based on only a small number of data points and should
therefore be considered indicative.
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Table 11 Correlations between our recommendations (REC) with the submit (SUBMIT)
and award (AWARD) patterns of grants.

τ
Pairs At least 1 At least 2

matching matching
REC Same year 1 0.78
vs. lead(SUBMIT,REC, t = 1) 1 0.83

SUBMIT lag(SUBMIT,REC, t = 1) 0.83 0.50
REC Same year 0.71 0.50
vs. lead(AWARD,REC, t = 1) 0.75 0.42

AWARD lag(AWARD,REC, t = 1) 0.33 0.25

11 Conclusion and future work

The lack of reliable ground-truth communities has made network commu-
nity detection a very challenging task. In this paper, we developed ground-
truth overlapping communities of a directed paper-paper citation network
that emerge from the natural grouping of research papers in various fields
of the computer science domain. Subsequently, we validated the existence of
such tightly knit ground-truth communities through well-established scoring
functions proposed in the literature. We demonstrated the dynamics of inter-
community interactions across a longitudinal timescale that in turn unfolds the
research trend in the computer sciences for the last fifty years. We conclude
by summarizing our main observations as follows:

• the ground-truth communities indeed represent natural groupings of any
scientific research discipline,

• quite remarkably, for the last fifty years one observes a very robust behavior
of the dynamics – the field that is the strongest contender of the field
currently at the forefront almost surely emerges as the top ranked field
after the transition,

• in contrast to what is predicted by the model described in [3], our empirical
analysis shows that a field can once again emerge as a top ranker after
undergoing a decline,

• the key factors that keep a field at the forefront include the citations from
the backup field, the inception of the seminal papers and the existence of
the highly cited papers,

• North American papers seem to have the largest overall impact; in addition,
North America seems to regulate the research focus of the rest of the world.
However, North America enjoys very less citation support from the papers
of the other continents in comparison to what it receives from within,

• finally, funding statistics obtained from NSF is in very good agreement
with the results predicted by our method.

The availability of ground-truth communities allows for a range of inter-
esting future investigations. For example, further examining the connectivity
structure in and across ground-truth communities could lead to novel commu-
nity detection methods especially in citation network. Moreover, the present
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empirical study marks the foundation for the design and implementation of a
specialized recommendation engine that would be capable of answering search
queries pertaining to the (a) impact of papers/authors, (b) fields at the fore-
front (currently and in the near future), (c) seminal papers within a field and
many such other factors. These results can be useful for (i) the funding agen-
cies to make appropriate decisions as to how to distribute project funds, (ii)
the universities in their faculty recruitment procedure. The dataset is available
at http://cnerg.org for the research community to facilitate further inves-
tigations. In summary, this paper shows that the usual consensus on the fact
that suggesting an efficient community detection technique usually marks the
“endpoint” in research in this area might not be true; in contrast, it possibly
triggers the beginning of a new dimension of research, whereby, the temporal
interaction, influence, shape and size of the communities so obtained can be
suitably analyzed thus allowing for newer insights into the complex system
under investigation.
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