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Lowest Unique Bid Auction (LUBA)

Quite popular in many European countries

Winner is the bidder whose bid is lowest and unique

General Auction LUBA

~
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® Introduction

o Problem Definition
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Problem Definition

o Analysis:

® Whether bidders learn from their experiences or participations?
® Whether this mechanism is a game/ lottery/ scam?
e On what parameters do winners rely on?

* Can winning be correlated with activity, co-activity, value of item,

competition etc.?

o Synthesis:

° Modeling LUBA which explains user behavior
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°* Dataset




~
Dataset

® We collected data from; uniquebidhomes.com i

[Radicchi et al., PloS ONE, 2012]

Number of Auctions 189
Number of Bidders 3740
Number of Bids 55041

® Detailed information of all parameters of auction (value etc.) and bid

(amount, timestamp etc.) are collected
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o Analysis
o Network Analysis
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Bidder-Auction Bipartite Network

Bidders Auctions

Bidders

1

One mode projection

, , on bidder node
Bipartite Network




Bidder-Auction Bipartite Network

Cumulative degree distributions of bidder nodes
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o Analysis

O Winners under the Lens
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O

O

Top winners

Out of 3740, only 52 bidders won at least one auction.

Seems to be an addiction

Top 5 winners Seem to be very efficient

» Participated 70% auctions
" Won 57% of auctions

Are they so 777
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Top winners: Other Properties

* “Mean Item Value” per bidder => Bid Selection
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Rank 1
Rank 2
Rank 3
Rank 4
Rank 5

- Rank based on p
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Top winners: Other Properties

(Contd...)

H of wins might not be an efficient measure

P = Number of wins per participation for each user
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o Analysis

o Profit Analysis




" Profit per bidder: Formulation

Item Bidder A

(Winner)
Actual price: a
$1000
A’s Bids
Bid Bid
fee value
$2 $0.02

Winning bid
A’s Profit = $1000 — ($2 x 4) - $0.04 2 S °

$2 $0.05
$2 $0.06

= $991.96




" Profit per bidder: Formulation

Item Bidder A
(Loser)
Actual price: a
$1000

A’s Bids

Bid Bid
fee value
$2 $0.02
A’s Profit = — (82 x 4) 52 $0.04
$2 $0.05

= - $8

$2 $0.06




a . : I
Winners are not Gainers !!

® 99% of the bidders are in loss => Chance of addiction 777

* Among top 5 winners —> only 2 are 1n top 5 high proﬁt
bidders

* Winners are in loss, even top most winner who won 37/40 has
Net Profit -1127

° High loss in an auction generally followed after a win

* Top two winners win with losses => Crazy / Scam 20?

. /
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° Synthesis
O Modeling user behavior in LUBA

o
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Memory-driven Agent Based Model

Auction i

~
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Memory-driven Agent Based Model

Auction i

Preferentially selected with
high participation

e @ @ @ O
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Memory-driven Agent Based Model

e @ @ @ O

Auction i

Calculate OV1

Preferentially selected with
high participation

Optimizing value

OV, oV, OV,

f (past win, participation, profit, randomness)

23
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Optimizing value
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Memory-driven Agent Based Model

e @ @ @ O

Auction i

Calculate OV1

Preferentially selected with
high participation

Start Bidding:

OV, oV, OV,

~
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Memory-driven Agent Based Model

Auction i

high participation

e @ @ @ O

Calculate OV1 OV2 OV3 OVu
Optimizing value

l Preferentially selected with

Start Bidding:
O Preferentially select bidders based on OV

25
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Optimizing value
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Memory-driven Agent Based Model

Auction i

Calculate OV1

l Preferentially selected with

high participation

e @ @ @ O

Start Bidding:

ov,

ov,

oV

u

O Preferentially select bidders based on OV
o Place random bid
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Memory-driven Agent Based Model

Auction i

Preferentially selected with
high participation

e @ @ @ O

Calculate OV1 OV2 OV3 OVu
Optimizing value

Start Bidding:
O Preferentially select bidders based on OV
o Place random bid

57 Stop when Stopping Condition encountered

.




Evaluation.
Comparing Degree Distribution
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(a) Unweighted and (b) Weighted degree distributions of the bidders

obtained from the model (circles) and from the real data (line).




Evaluation:
Winning Distribution
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37201

Mo of bidders

p =008

The cumulative winning distribution of the bidders obtained from the
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¢ Conclusion
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Conclusions

* 57% of the auctions are won by the top five winners (probably they

learn from the previous wins)

* The bidder who participated in maximum number of auctions did not

win a single one

o Top winners except the topmost winner participate in auctions with

high item values

* Most surprisingly, about 99% of the bidders are in loss in terms of the
net profit

* The stochastic agent—based model efficiently captures two fundamental
characteristics of LUBAs

©
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