
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

22 Jan 2018

LeNet-5 (LeCun, 1998)

The original Convolutional Neural Network model goes back
to 1989 (LeCun)

Lecture 7 Convolutional Neural Networks CMSC 35246

3

Example: 200x200 image
 40K hidden units
 ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
 training samples anyway..

Fully Connected Layer

Ranzato

4

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10
 4M parameters

Ranzato

Note: This parameterization is good when
input image is registered (e.g., face recognition).

5

STATIONARITY? Statistics is similar at
different locations

Ranzato

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10
 4M parameters

6

Convolutional Layer

Share the same parameters across different
locations (assuming input is stationary):
Convolutions with learned kernels

Ranzato

Convolution
Kernel

w7 w8 w9

w4 w5 w6

w1 w2 w3

Feature Map

Grayscale Image

Convolve image with kernel having weights w (learned by
backpropagation)

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

wT x

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

wT x

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

wT x

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

wT x

What is the number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246

Output Size

We used stride of 1, kernel with receptive field of size 3 by 3

Output size:
N − K + 1

S

In previous example: N = 6, K = 3, S = 1, Output size = 4
For N = 8, K = 3, S = 1, output size is 6

Lecture 7 Convolutional Neural Networks CMSC 35246

The replicated feature approach

• Use many different copies of the
same feature detector with
different positions.
• reduces the number of free

parameters to be learned.

• Use several different feature
types, each with its own map of
replicated detectors.
• Allows each patch of image to be

represented in several ways.

The red connections all
have the same weight.

Learn Multiple Filters

Lecture 7 Convolutional Neural Networks CMSC 35246

Backpropagation with weight constraints

• It’s easy to modify the
backpropagation algorithm to
incorporate linear constraints
between the weights.

• We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.
• So if the weights started off

satisfying the constraints, they
will continue to satisfy them.

What does replicating the feature detectors achieve?

• Equivariant activities: Replicated features do not make the
neural activities invariant to translation. The activities are
equivariant.

• Invariant knowledge: If a feature is useful in some locations
during training, detectors for that feature will be available in all
locations during testing.

representation
by active
neurons

image

 translated
representation

translated
image

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 19

Fully connected

Convolutional
:

input
layer hidden layer

output layer

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

32x32x3 image

width

height

depth

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter 𝑤

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product +
bias) 𝑤𝑇𝑥 + 𝑏

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial
locations

activation maps

1

28

28

consider a second, green filter

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

ConvNet is a sequence of
Convolution Layers,
interspersed with activation
functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

ConvNet is a sequence of Convolutional Layers, interspersed with activation
functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters

28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

[From recent Yann
LeCun slides]

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

convolving the first filter in the input gives
the first slice of depth in output volume

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

N

N
 F

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

In practice: Common to zero pad the
border

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the
output?

(recall:)
(N - F) / stride + 1

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters

28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Convnets

• every layer of a ConvNet transforms
one volume of activations to
another through a differentiable
function.

Layers used to build ConvNets:
• a stacked sequence of

layers. 3 main types
• Convolutional Layer,

Pooling Layer, and Fully-
Connected Layer

55

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to the
exact location of the eye?

Pooling Layer

Ranzato

56

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Pooling layer

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2
filters and stride 2 6 8

3 4

MAX POOLING

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

General pooling

• Other pooling functions: Average pooling, L2-norm pooling

• Backpropagation. the backward pass for a max(x, y) operation
routes the gradient to the input that had the highest value in the
forward pass.

• Hence, during the forward pass of a pooling layer you may keep
track of the index of the max activation (sometimes also called the
switches) so that gradient routing is efficient during
backpropagation.

Getting rid of pooling

1. Striving for Simplicity: The All Convolutional Net proposes to
discard the pooling layer and have an architecture that only
consists of repeated CONV layers.

• To reduce the size of the representation they suggest using larger
stride in CONV layer once in a while.

• Argument:
• The purpose of pooling layers is to perform dimensionality reduction to

widen subsequent convolutional layers' receptive fields.
• The same effect can be achieved by using a convolutional layer: using a stride

of 2 also reduces the dimensionality of the output and widens the receptive
field of higher layers.

• The resulting operation differs from a max-pooling layer in that
• it cannot perform a true max operation
• it allows pooling across input channels.

2. The second is Very Deep Convolutional Networks for Large-
Scale Image Recognition.

• The core idea here is that hand-tuning layer kernel sizes to
achieve optimal receptive fields (say, 5×5 or 7×7) can be
replaced by simply stacking homogenous 3×3 layers.

• The same effect of widening the receptive field is then
achieved by layer composition rather than increasing the kernel
size
• three stacked 3×3 have a 7×7 receptive field.
• At the same time, the number of parameters is reduced:
• a 7×7 layer has 81% more parameters than three stacked 3×3 layers.

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case Studies
• LeNet. The first successful applications of Convolutional Networks were

developed by Yann LeCun in 1990’s. was used to read zip codes, digits, etc.

• AlexNet. popularized Convolutional Networks in Computer Vision,
developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.

• The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and
significantly outperformed the second runner-up (top 5 error of 16%
compared to runner-up with 26% error). The Network had a very similar
architecture to LeNet, but was deeper, bigger, and featured Convolutional
Layers stacked on top of each other

• ZF Net. The ILSVRC 2013 winner was a Convolutional Network from
Matthew Zeiler and Rob Fergus. It was an improvement on AlexNet by
tweaking the architecture hyperparameters, in particular by expanding the
size of the middle convolutional layers and making the stride and filter size
on the first layer smaller.

http://www.image-net.org/challenges/LSVRC/2014/

LeNet
• Yann LeCun and his collaborators developed a really good

recognizer for handwritten digits by using backpropagation in a
feedforward net with:
• Many hidden layers
• Many maps of replicated units in each layer.
• Pooling of the outputs of nearby replicated units.
• A wide net that can cope with several characters at once

even if they overlap.
• A clever way of training a complete system, not just a

recognizer.
• This net was used for reading ~10% of the checks in North

America.
• demos of LENET at http://yann.lecun.com

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

The 82 errors made by
LeNet5

Notice that most of the
errors are cases that
people find quite easy.

The human error rate is
probably 20 to 30 errors
but nobody has had the
patience to measure it.

The ILSVRC-2012 competition on ImageNet

• The dataset has 1.2 million
high-resolution training
images.

• The classification task:
• Get the “correct” class in

your top 5 bets. There are
1000 classes.

• The localization task:
• For each bet, put a box

around the object. Your box
must have at least 50%
overlap with the correct
box.

• Some of the best existing
computer vision methods
were tried on this dataset by
leading computer vision
groups from Oxford, INRIA,
XRCE, …
• Computer vision systems

use complicated multi-
stage systems.

• The early stages are
typically hand-tuned by
optimizing a few
parameters.

Examples from the test set
(with the network’s guesses)

Error rates on the ILSVRC-2012 competition

• University of Tokyo
• Oxford University Computer Vision

Group
• INRIA (French national research

institute in CS) + XRCE (Xerox
Research Center Europe)

• University of Amsterdam

• 26.1%
53.6%

• 26.9%
50.0%

• 27.0%

• 29.5%

• University of Toronto (Alex Krizhevsky) • 16.4% 34.1%
•

classification
classification
&localization

A neural network for ImageNet

• Alex Krizhevsky (NIPS 2012)
developed a very deep
convolutional neural net of
the type pioneered by Yann
Le Cun. Its architecture was:
– 7 hidden layers not counting

some max pooling layers.
– The early layers were

convolutional.
– The last two layers were

globally connected.

• The activation functions

were:
– Rectified linear units in every

hidden layer. These train much
faster and are more expressive
than logistic units.

– Competitive normalization to
suppress hidden activities
when nearby units have
stronger activities. This helps
with variations in intensity.

Tricks that significantly improve generalization

• Train on random 224x224
patches from the 256x256
images to get more data. Also
use left-right reflections of the
images.
• At test time, combine the

opinions from ten different
patches: The four 224x224
corner patches plus the
central 224x224 patch plus
the reflections of those five
patches.

• Use “dropout” to
regularize the weights in
the globally connected
layers (which contain
most of the parameters).
• Dropout means that half of

the hidden units in a layer
are randomly removed for
each training example.

• This stops hidden units from
relying too much on other
hidden units.

The hardware required for Alex’s net

• He uses a very efficient implementation of convolutional nets
on two Nvidia GTX 580 Graphics Processor Units (over 1000
fast little cores)
– GPUs are very good for matrix-matrix multiplies.
– GPUs have very high bandwidth to memory.
– This allows him to train the network in a week.
– It also makes it quick to combine results from 10 patches at test time.

• We can spread a network over many cores if we can
communicate the states fast enough.

• As cores get cheaper and datasets get bigger, big neural nets
will improve faster than old-fashioned (i.e. pre Oct 2012)
computer vision systems.

Alexnet [Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

(227-11)/4+1 = 55

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 76

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Case Studies
• GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network

from Szegedy et al. from Google.
• Its main contribution was the development of an Inception Module that

dramatically reduced the number of parameters in the network (4M,
compared to AlexNet with 60M).

• Uses Average Pooling instead of Fully Connected layers at the top of the
ConvNet

• There are also several followup versions to the GoogLeNet, most
recently Inception-v4.

• VGGNet. The runner-up in ILSVRC 2014 was the network from Karen
Simonyan and Andrew Zisserman.

• Showed that the depth of the network is a critical component for good
performance. Their final best network contains 16 CONV/FC layers

• and, apfeatures an extremely homogeneous architecture that only performs
3x3 convolutions and 2x2 pooling from the beginning to the end.
Their pretrained model is available for plug and play use in Caffe. A
downside of the VGGNet is that it is more expensive to evaluate and uses a
lot more memory and parameters (140M). Most of these parameters are in
the first fully connected layer, and it was since found that these FC layers
can be removed with no performance downgrade, significantly reducing the
number of necessary parameters.

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

“You need a lot of a data if you want to
train/use CNNs”

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Transfer Learning

“You need a lot of a data if you want to
train/use CNNs”

The Unreasonable Effectiveness of Deep Features

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Can be used as a generic feature
(“CNN code” = 4096-D vector before classifier)

query image nearest neighbors in the “code” space

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Transfer Learning with CNNs

1. Train on
Imagenet

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Transfer Learning with CNNs

1. Train on
Imagenet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Transfer Learning with CNNs

1. Train on
Imagenet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

3. If you have medium sized
dataset, “finetune”
instead: use the old weights
as initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Transfer Learning with CNNs

1. Train on
Imagenet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

3. If you have medium sized
dataset, “finetune”
instead: use the old weights
as initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

tip: use only ~1/10th of
the original learning rate
in finetuning to player,
and ~1/100th on
intermediate layers

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: GoogLeNet

Fun features:

- Only 5 million params!
(Removes FC layers
completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

https://www.youtube.com/watch?v=1PGLj-uKT1w

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

(slide from Kaiming He’s recent presentation)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training
on 8 GPU machine

at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study:
ResNet

[He et al., 2015]

224x224x3

spatial dimension
only 56x56!

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

(this trick is also used in GoogLeNet)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: ResNet [He et al., 2015]

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study Bonus: DeepMind’s AlphaGo

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

policy network:
[19x19x48] Input
CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192]
CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]
CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
challenge this paradigm

GoogLeNet

Convolution
Pooling
Softmax
Other

GoogLeNet vs State of the art

GoogLeNe
t

Zeiler-Fergus Architecture (1 tower)

Convolution
Pooling
Softmax
Other

• ResNet. Residual Network developed by Kaiming He et al. was
the winner of ILSVRC 2015. It features special skip
connections and a heavy use of batch normalization. The
architecture is also missing fully connected layers at the end of
the network. The reader is also referred to Kaiming’s
presentation (video, slides), and some recent experiments that
reproduce these networks in Torch. ResNets are currently by far
state of the art Convolutional Neural Network models and are
the default choice for using ConvNets in practice (as of May 10,
2016). In particular, also see more recent developments that
tweak the original architecture from Kaiming He et al. Identity
Mappings in Deep Residual Networks (published March 2016).

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
https://www.youtube.com/watch?v=1PGLj-uKT1w
http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
https://github.com/gcr/torch-residual-networks
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027

	CS60010: Deep Learning
	LeNet-5 (LeCun, 1998)
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Convolution
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Output Size
	The replicated feature approach
	Slide Number 16
	Backpropagation with weight constraints
	What does replicating the feature detectors achieve?
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Convnets
	Slide Number 55
	Slide Number 56
	Pooling layer
	MAX POOLING
	Slide Number 59
	General pooling
	Getting rid of pooling
	Slide Number 62
	Slide Number 63
	Case Studies
	LeNet
	Slide Number 66
	The 82 errors made by LeNet5
	The ILSVRC-2012 competition on ImageNet
	Examples from the test set �(with the network’s guesses)
	Error rates on the ILSVRC-2012 competition
	A neural network for ImageNet
	Tricks that significantly improve generalization
	The hardware required for Alex’s net
	Alexnet
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Case Studies
	Slide Number 82
	Slide Number 83
	�The Unreasonable Effectiveness of Deep Features
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111

