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LeNet-5 (LeCun, 1998) 

The original Convolutional Neural Network model goes back  
to 1989 (LeCun) 
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Example:  200x200 image 
                  40K hidden units 
           ~2B parameters!!! 

-    Spatial correlation is local 
- Waste of resources + we have not enough 
          training samples anyway.. 

Fully Connected Layer 

Ranzato 
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Locally Connected Layer 

Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 
        4M parameters 

Ranzato 

Note: This parameterization is good when  
input image is registered (e.g., face recognition). 
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STATIONARITY? Statistics is similar at  
different locations 

Ranzato 

Locally Connected Layer 

Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 
        4M parameters 
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Convolutional Layer 

Share the same parameters across different  
locations (assuming input is stationary): 
Convolutions with learned kernels 

Ranzato 



Convolution 
Kernel 

w7 w8 w9 

w4 w5 w6 

w1 w2 w3 

Feature Map 

Grayscale Image 
 

Convolve image with kernel having weights w (learned by  
backpropagation) 
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Convolution 

wT x 
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Convolution 
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Convolution 

wT x 
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Convolution 

wT x 
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Convolution 
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Convolution 

wT x 

What is the number of parameters? 
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Output Size 

We used stride of 1, kernel with receptive field of size 3 by 3   

 

Output size: 
N  − K  +  1 

S  
 
In previous example: N = 6, K = 3, S = 1, Output size = 4 
For N = 8, K = 3, S = 1, output size is 6 
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The replicated feature approach 

• Use many different copies of the 
same feature detector with 
different positions. 
• reduces the number of free 

parameters to be learned. 

• Use several different feature 
types, each with its own map of 
replicated detectors. 
• Allows each patch of image to be 

represented in several ways. 

The red connections all 
have the same weight. 

 



Learn Multiple Filters 
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Backpropagation with weight constraints 

• It’s easy to modify the 
backpropagation algorithm to 
incorporate linear constraints 
between the weights. 

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy 
the constraints. 
• So if the weights started off 

satisfying the constraints, they 
will continue to satisfy them. 

 



What does replicating the feature detectors achieve? 

• Equivariant activities: Replicated features do not make the 
neural activities invariant to translation. The activities are 
equivariant.  
 
 
 
 
 
 
 

• Invariant knowledge: If a feature is useful in some locations 
during training, detectors for that feature will be available in all 
locations during testing. 

representation 
by active 
neurons 

image 

   translated 
representation 

translated      
image 
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Fully connected 

Convolutional
: 

input 
layer hidden layer 

output layer 
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32 

32 

3 

Convolution Layer 

32x32x3 image 

width 

height 

depth 
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32 

32 

3 

Convolution Layer 

5x5x3 filter 

32x32x3 image 

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products” 
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32 

32 

3 

Convolution Layer 

5x5x3 filter 

32x32x3 image 

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products” 

Filters always extend the full 
depth of the input volume 
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32 

32 

3 

Convolution Layer 

32x32x3 image 
 
5x5x3 filter 𝑤 

1 number:  
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image 
(i.e. 5*5*3 = 75-dimensional dot product + 
bias) 𝑤𝑇𝑥 + 𝑏 
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32 

32 

3 

Convolution Layer 

32x32x3 image 
 
5x5x3 filter 

convolve (slide) over all 
spatial locations 

activation map 

1 

28 

28 
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32 

32 

3 

Convolution Layer 

32x32x3 image 
5x5x3 filter 

convolve (slide) over all spatial 
locations 

activation maps 

1 

28 

28 

consider a second, green filter 
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32 

32 

3 

Convolution Layer 

activation maps 

6 

28 

28 

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps: 

We stack these up to get a “new image” of size 28x28x6! 
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ConvNet is a sequence of 
Convolution Layers, 
interspersed with activation 
functions 

32 

32 

3 

28 

28 

6 

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters 
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ConvNet is a sequence of Convolutional Layers, interspersed with activation 
functions 

32 

32 

3 

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters 

28 

28 

6 

CONV, 
ReLU 
e.g. 10 
5x5x6 
filters 

CONV, 
ReLU 

…. 

10 

24 

24 
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[From recent Yann 
LeCun slides] 
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convolving the first filter in the input gives 
the first slice of depth in output volume 
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A closer look at spatial dimensions: 

32 

32 

3 

32x32x3 image 
5x5x3 filter 

convolve (slide) over all 
spatial locations 

activation map 

1 

28 

28 
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7x7 input (spatially) 
assume 3x3 filter 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 
 
=> 5x5 output 

7 

7 

A closer look at spatial dimensions: 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2 
=> 3x3 output! 
 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 3? 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 3? 

7 

7 

A closer look at spatial dimensions: 

doesn’t fit!  
cannot apply 3x3 filter on 
7x7 input with stride 3. 
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N 
 

N 
 F 

 

F 
 

Output size: 
(N - F) / stride + 1 
 
e.g. N = 7, F = 3: 
stride 1 => (7 - 3)/1 + 1 = 5 
stride 2 => (7 - 3)/2 + 1 = 3 
stride 3 => (7 - 3)/3 + 1 = 2.33 :\ 
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In practice: Common to zero pad the 
border 

0 0 0 0 0 0 

0 

0 

0 

0 

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the 
output? 
 
 

(recall:) 
(N - F) / stride + 1 
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In practice: Common to zero pad the border 

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 
 
7x7 output! 
 
 
 

0 0 0 0 0 0 

0 

0 

0 

0 
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In practice: Common to zero pad the border 

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 
 
7x7 output! 
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially) 
e.g. F = 3 => zero pad with 1 
       F = 5 => zero pad with 2 
       F = 7 => zero pad with 3 
 
 

0 0 0 0 0 0 

0 

0 

0 

0 
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Remember back to…  
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! 
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well. 

32 

32 

3 

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters 

28 

28 

6 

CONV, 
ReLU 
e.g. 10 
5x5x6 
filters 

CONV, 
ReLU 

…. 

10 

24 

24 
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Example: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Output volume size: ? 
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Example: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Output volume size:  
(32+2*2-5)/1+1 = 32 spatially, so 
32x32x10 
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Example: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Number of parameters in this layer? 
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Example: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Number of parameters in this layer? 
each filter has 5*5*3 + 1 = 76 params      (+1 for bias) 

=> 76*10 = 760 
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Common settings: 
 
K = (powers of 2, e.g. 32, 64, 128, 512) 
- F = 3, S = 1, P = 1 
- F = 5, S = 1, P = 2 
- F = 5, S = 2, P = ? (whatever fits) 
- F = 1, S = 1, P = 0 



Convnets 

• every layer of a ConvNet transforms 
one volume of activations to 
another through a differentiable 
function.  

Layers used to build ConvNets:  
• a stacked sequence of 

layers. 3 main types 
• Convolutional Layer, 

Pooling Layer, and Fully-
Connected Layer 
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Let us assume filter is an “eye” detector. 
 
Q.: how can we make the detection robust to the  
exact location of the eye? 

Pooling Layer 

Ranzato 
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By “pooling” (e.g., taking max) filter 
responses at different locations we gain 
robustness to the exact spatial location 
of features. 

Ranzato 

Pooling Layer 



- makes the representations smaller and more manageable  
- operates over each activation map independently: 

Pooling layer 



1 1 2 4 

5 6 7 8 

3 2 1 0 

1 2 3 4 

Single depth slice 

x 

y 

max pool with 2x2 
filters and stride 2 6 8 

3 4 

MAX POOLING 
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1 1 2 4 

5 6 7 8 

3 2 1 0 

1 2 3 4 

Single depth slice 

x 

y 

max pool with 2x2 filters 
and stride 2 6 8 

3 4 

MAX POOLING 
 



General pooling 

• Other pooling functions: Average pooling, L2-norm pooling 

• Backpropagation. the backward pass for a max(x, y) operation 
routes the gradient to the input that had the highest value in the 
forward pass. 

• Hence, during the forward pass of a pooling layer you may keep 
track of the index of the max activation (sometimes also called the 
switches) so that gradient routing is efficient during 
backpropagation.  



Getting rid of pooling 

1.  Striving for Simplicity: The All Convolutional Net proposes to 
discard the pooling layer and have an architecture that only 
consists of repeated CONV layers.  

• To reduce the size of the representation they suggest using larger 
stride in CONV layer once in a while. 

• Argument:  
• The purpose of pooling layers is to perform dimensionality reduction to 

widen subsequent convolutional layers' receptive fields. 
• The same effect can be achieved by using a convolutional layer: using a stride 

of 2 also reduces the dimensionality of the output and widens the receptive 
field of higher layers. 

• The resulting operation differs from a max-pooling layer in that  
• it cannot perform a true max operation 
• it allows pooling across input channels.  



2. The second is Very Deep Convolutional Networks for Large-
Scale Image Recognition.  

• The core idea here is that hand-tuning layer kernel sizes to 
achieve optimal receptive fields (say, 5×5 or 7×7) can be 
replaced by simply stacking homogenous 3×3 layers.  

• The same effect of widening the receptive field is then 
achieved by layer composition rather than increasing the kernel 
size 
• three stacked 3×3 have a 7×7 receptive field.  
• At the same time, the number of parameters is reduced:  
• a 7×7 layer has 81% more parameters than three stacked 3×3 layers.  
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html 

[ConvNetJS demo: training on CIFAR-10] 

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Case Studies 
• LeNet. The first successful applications of Convolutional Networks were 

developed by Yann LeCun in 1990’s. was used to read zip codes, digits, etc. 

• AlexNet. popularized Convolutional Networks in Computer Vision, 
developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.  

• The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and 
significantly outperformed the second runner-up (top 5 error of 16% 
compared to runner-up with 26% error). The Network had a very similar 
architecture to LeNet, but was deeper, bigger, and featured Convolutional 
Layers stacked on top of each other  

• ZF Net. The ILSVRC 2013 winner was a Convolutional Network from 
Matthew Zeiler and Rob Fergus. It was an improvement on AlexNet by 
tweaking the architecture hyperparameters, in particular by expanding the 
size of the middle convolutional layers and making the stride and filter size 
on the first layer smaller. 

http://www.image-net.org/challenges/LSVRC/2014/


LeNet 
• Yann LeCun and his collaborators developed a really good 

recognizer for handwritten digits by using backpropagation in a 
feedforward net with: 
• Many hidden layers 
• Many maps of replicated units in each layer. 
• Pooling of the outputs of nearby replicated units. 
• A wide net that can cope with several characters at once 

even if they overlap. 
• A clever way of training a complete system, not just a 

recognizer.  
• This net was used for reading ~10% of the checks in North 

America. 
• demos of LENET at http://yann.lecun.com 
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Case Study: LeNet-5 
[LeCun et al., 1998] 

Conv filters were 5x5, applied at stride 1 
Subsampling (Pooling) layers were 2x2 applied at stride 2 
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC] 



The 82 errors made by 
LeNet5 

Notice that most of the 
errors are cases that 
people find quite easy. 

The human error rate is 
probably 20 to 30 errors 
but nobody has had the 
patience to measure it. 



The ILSVRC-2012 competition on ImageNet 

• The dataset has 1.2 million 
high-resolution training 
images. 

• The classification task: 
• Get the “correct” class in 

your top 5 bets. There are 
1000 classes. 

• The localization task: 
• For each bet, put a box 

around the object. Your box 
must have at least 50% 
overlap with the correct 
box. 

• Some of the best existing 
computer vision methods 
were  tried on this dataset by 
leading computer vision 
groups from Oxford, INRIA, 
XRCE, … 
• Computer vision systems 

use complicated multi-
stage systems. 

• The early stages are 
typically hand-tuned by 
optimizing a few 
parameters. 

 



Examples from the test set  
(with the network’s guesses) 



Error rates on the ILSVRC-2012 competition 

• University of Tokyo              
• Oxford University Computer Vision 

Group 
• INRIA (French national research 

institute in CS) + XRCE (Xerox 
Research Center Europe)   

• University of Amsterdam 
 

• 26.1%            
53.6% 

• 26.9%            
50.0% 

• 27.0% 
 

• 29.5%      
 

• University of Toronto (Alex Krizhevsky) • 16.4%         34.1% 
•   

classification 
classification 
&localization 

    



A neural network for ImageNet 

• Alex Krizhevsky (NIPS 2012) 
developed a very deep 
convolutional neural net of 
the type pioneered by  Yann 
Le Cun. Its architecture was: 
– 7 hidden layers not counting 

some max pooling layers. 
– The early layers were 

convolutional. 
– The last two layers were 

globally connected. 
 

 
• The activation functions 

were: 
– Rectified linear units in every 

hidden layer. These train much 
faster and are more expressive 
than logistic units. 

– Competitive normalization to 
suppress hidden activities 
when nearby units have 
stronger activities. This helps 
with variations in intensity.  



Tricks that significantly improve generalization 

• Train on random 224x224 
patches from the 256x256 
images to get more data. Also 
use left-right reflections of the 
images. 
• At test time, combine the 

opinions from ten different 
patches: The four 224x224 
corner patches plus the 
central 224x224 patch plus 
the reflections of those five 
patches.  

• Use “dropout” to 
regularize the weights in 
the globally connected 
layers (which contain 
most of the parameters).  
• Dropout means that half of 

the hidden units in a layer 
are randomly removed  for 
each training example.  

• This stops hidden units from 
relying too much on other 
hidden units. 



The hardware required for Alex’s net 

• He uses a very efficient implementation of convolutional nets 
on two Nvidia GTX 580 Graphics Processor Units (over 1000 
fast little cores) 
– GPUs are very good for matrix-matrix multiplies. 
– GPUs have very high bandwidth to memory. 
– This allows him to train the network in a week. 
– It also makes it quick to combine results from 10 patches at test time. 

• We can spread a network over many cores if we can 
communicate the states fast enough. 

• As cores get cheaper and datasets get bigger, big neural nets 
will improve faster than old-fashioned (i.e. pre Oct 2012) 
computer vision systems. 

 



Alexnet [Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters applied at stride 4 
 
Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K 
 

(227-11)/4+1 = 55 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
 
Q: what is the output volume size? Hint: (55-3)/2+1 = 27 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 
 
Q: what is the number of parameters in this layer? 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 
Parameters: 0! 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
After POOL1: 27x27x96 
... 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
 
 
 
 
 
 
 
 

Details/Retrospectives:  
- first use of ReLU 
- used Norm layers (not common anymore) 
- heavy data augmentation 
- dropout 0.5 
- batch size 128 
- SGD Momentum 0.9 
- Learning rate 1e-2, reduced by 10 
manually when val accuracy plateaus 
- L2 weight decay 5e-4 
- 7 CNN ensemble: 18.2% -> 15.4% 



Case Studies 
• GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network 

from Szegedy et al. from Google.  
• Its main contribution was the development of an Inception Module that 

dramatically reduced the number of parameters in the network (4M, 
compared to AlexNet with 60M).  

• Uses Average Pooling instead of Fully Connected layers at the top of the 
ConvNet 

• There are also several followup versions to the GoogLeNet, most 
recently Inception-v4. 

• VGGNet. The runner-up in ILSVRC 2014 was the network from Karen 
Simonyan and Andrew Zisserman.  

• Showed that the depth of the network is a critical component for good 
performance. Their final best network contains 16 CONV/FC layers  

• and, apfeatures an extremely homogeneous architecture that only performs 
3x3 convolutions and 2x2 pooling from the beginning to the end. 
Their pretrained model is available for plug and play use in Caffe. A 
downside of the VGGNet is that it is more expensive to evaluate and uses a 
lot more memory and parameters (140M). Most of these parameters are in 
the first fully connected layer, and it was since found that these FC layers 
can be removed with no performance downgrade, significantly reducing the 
number of necessary parameters. 
 

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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“You need a lot of a data if you want to 
train/use CNNs” 
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Transfer Learning 
 
 

“You need a lot of a data if you want to 
train/use CNNs” 



 
The Unreasonable Effectiveness of Deep Features 

Classes separate in the deep representations and transfer to many tasks. 
[DeCAF] [Zeiler-Fergus] 
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Can be used as a generic feature  
(“CNN code” = 4096-D vector before classifier) 

query image nearest neighbors in the “code” space 
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Transfer Learning with CNNs 

1. Train on  
Imagenet 
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Transfer Learning with CNNs 

1. Train on  
Imagenet 

2. If small dataset: fix 
all weights (treat CNN 
as fixed feature 
extractor), retrain only 
the classifier 
 
i.e. swap the Softmax 
layer at the end 
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Transfer Learning with CNNs 

1. Train on  
Imagenet 

2. If small dataset: fix 
all weights (treat CNN 
as fixed feature 
extractor), retrain only 
the classifier 
 
i.e. swap the Softmax 
layer at the end 

3. If you have medium sized 
dataset, “finetune” 
instead: use the old weights 
as initialization, train the full 
network or only some of the 
higher layers 
 
retrain bigger portion of the 
network, or even all of it. 
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Transfer Learning with CNNs 

1. Train on  
Imagenet 

2. If small dataset: fix 
all weights (treat CNN 
as fixed feature 
extractor), retrain only 
the classifier 
 
i.e. swap the Softmax 
layer at the end 

3. If you have medium sized 
dataset, “finetune” 
instead: use the old weights 
as initialization, train the full 
network or only some of the 
higher layers 
 
retrain bigger portion of the 
network, or even all of it. 

tip: use only ~1/10th of 
the original learning rate 
in finetuning to player, 
and ~1/100th on 
intermediate layers 
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Case Study: VGGNet 
[Simonyan and Zisserman, 2014] 

best model 

Only 3x3 CONV stride 1, pad 1 
and  2x2 MAX POOL stride 2 

11.2% top 5 error in ILSVRC 2013 
-> 
7.3% top 5 error 
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 
 

(not counting biases) 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

 
INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 
 

(not counting biases) 

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) 
TOTAL params: 138M parameters 
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 
 

(not counting biases) 

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) 
TOTAL params: 138M parameters 

Note: 
 
Most memory is in 
early CONV 
 
 
 
 
 
 
 
Most params are 
in late FC 
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Case Study: GoogLeNet [Szegedy et al., 2014] 

Inception module 

ILSVRC 2014 winner (6.7% top 5 error) 
 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

Case Study: GoogLeNet 

Fun features: 
 
- Only 5 million params! 
(Removes FC layers 
completely) 
 
Compared to AlexNet: 
- 12X less params 
- 2x more compute 
- 6.67% (vs. 16.4%) 
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Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w  

Case Study: ResNet [He et al., 2015] 

ILSVRC 2015 winner (3.6% top 5 error) 
 

https://www.youtube.com/watch?v=1PGLj-uKT1w
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(slide from Kaiming He’s recent presentation) 
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Case Study: ResNet [He et al., 2015] 

ILSVRC 2015 winner (3.6% top 5 error) 
 

(slide from Kaiming He’s recent presentation) 

2-3 weeks of training 
on 8 GPU machine 
 
 
at runtime: faster 
than a VGGNet! 
(even though it has 
8x more layers) 
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Case Study:  
ResNet 

[He et al., 2015] 

224x224x3 

spatial dimension 
only 56x56! 
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Case Study: ResNet [He et al., 2015] 
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Case Study: ResNet [He et al., 2015] 

- Batch Normalization after every CONV layer 
- Xavier/2 initialization from He et al. 
- SGD + Momentum (0.9)  
- Learning rate: 0.1, divided by 10 when validation error plateaus 
- Mini-batch size 256 
- Weight decay of 1e-5 
- No dropout used 
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Case Study: ResNet [He et al., 2015] 
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Case Study: ResNet [He et al., 2015] 

(this trick is also used in GoogLeNet) 
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Case Study: ResNet [He et al., 2015] 
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Case Study Bonus: DeepMind’s AlphaGo 
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policy network: 
[19x19x48] Input 
CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192] 
CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192] 
CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves) 
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Summary 
 
- ConvNets stack CONV,POOL,FC layers 
- Trend towards smaller filters and deeper architectures 
- Trend towards getting rid of POOL/FC layers (just CONV) 
- Typical architectures look like  

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX 
      where N is usually up to ~5, M is large, 0 <= K <= 2. 

- but recent advances such as ResNet/GoogLeNet 
challenge this paradigm 



GoogLeNet 

Convolution 
Pooling 
Softmax 
Other 



GoogLeNet vs State of the art 

GoogLeNe
t  

Zeiler-Fergus Architecture (1 tower) 

Convolution 
Pooling 
Softmax 
Other 



• ResNet. Residual Network developed by Kaiming He et al. was 
the winner of ILSVRC 2015. It features special skip 
connections and a heavy use of batch normalization. The 
architecture is also missing fully connected layers at the end of 
the network. The reader is also referred to Kaiming’s 
presentation (video, slides), and some recent experiments that 
reproduce these networks in Torch. ResNets are currently by far 
state of the art Convolutional Neural Network models and are 
the default choice for using ConvNets in practice (as of May 10, 
2016). In particular, also see more recent developments that 
tweak the original architecture from Kaiming He et al. Identity 
Mappings in Deep Residual Networks (published March 2016). 

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
https://www.youtube.com/watch?v=1PGLj-uKT1w
http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
https://github.com/gcr/torch-residual-networks
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
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