
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

23 Jan 2018

Training

1. Check that loss is reasonable.
• Loss goes up as you increase regularization.

2. Make sure that you can overfit very small portion of the
training data

3. Start with small regularization and find learning rate that
makes the loss go down.

• loss not going down: means learning rate too low
• loss exploding: learning rate too high

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

Cross-validation strategy

May do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Track the ratio of weight updates / weight magnitudes

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

Activation / Gradient distributions per layer

• An incorrect initialization can slow down or even completely
stall the learning process

• Plot activation/gradient histograms for all layers of the
network.

Standard gradient – easy to compute

W_1

W_2

Back to gradients

Natural gradient – hard to compute

Natural gradient : Rather than treating a change in every parameter equally,
we need to scale each parameter's change according to how much it affects
our network's entire output distribution.

Gradients too big  divergence
Gradients too small  slow convergence

Gradient Magnitudes:

Gradients too big  divergence
Gradients too small  slow convergence

Divergence is much worse!

Gradient Magnitudes:

What’s the simplest way to ensure gradients stay bounded?

Gradient Magnitudes

Simply limit the magnitude of each gradient:
𝑔𝑖� = min 𝑔max , max −𝑔max ,𝑔𝑖

so 𝑔𝑖� ≤ 𝑔max . Then use a decreasing learning rate to converge
to an optimum.

Gradient clipping

Gradient clipping limits the largest gradient dimensions, while
others may be very small.
ADAGRAD and RMSprop scale gradient dimensions by the
inverse std deviation, so all dimension have unit sdev.

What if we scale gradients up before clipping, so all dimensions
are clipped?

Extreme Gradient clipping

Standard gradient Clipped gradient

If we clip all gradient dimensions, we are left only with their
sign: 𝑔𝑖� = 𝑔max −1,1,1,−1,1, …

This actually works on some problems with little or no loss of
accuracy: (see “1-Bit Stochastic Gradient Descent and Application to Data-
Parallel Distributed Training of Speech DNNs” by Seide et al. 2014)

One-bit gradients

Standard gradient One-bit gradient

https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/

original W

True gradients in blue
minibatch gradients in red

W_1

W_2

Stochastic Gradient Descent

Gradients are noisy but still make good progress on average

Gradient Noise

If a little noise is good, what about adding noise to gradients?

A: Works Great for many models!

Is especially valuable for complex models that would overfit
otherwise.

“Adding Gradient Noise Improves Learning for Very Deep Networks” Arvind
Neelakantan et al., 2016

https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807

Gradient Noise

Schedule:

where the noise variance is:

Gradient Noise

Results on MNIST with a 20-layer ReLU network:

Gradient Noise + Momentum

Model parameters

Model Likelihood

Increase Noise (Higher
temperature)

Model parameters

Model Likelihood
Increase
Momentum

Momentum

• The Momentum method is a method to accelerate learning
using SGD

• In particular SGD suffers in the following scenarios:
• Error surface has high curvature
• We get small but consistent gradients
• The gradients are very noisy

Momentum

−4 −2 0 2 4 −5

0

5
0

500

1.000

Gradient Descent would move quickly down the walls, but very slowly through
the valley floor

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Momentum
• Introduce a new variable 𝑣, the

velocity
• We think of 𝑣 as the direction and

speed by which the parameters move
as the learning dynamics progresses

• The velocity is an exponentially
decaying moving average of the
negative gradients

𝑣 ← 𝛼𝛼 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦(𝑖)
• Update rule: 𝜃 ← 𝜃 + 𝑣

Gradient
Step

Momentum
Step Actual

Step

• With Momentum update, the parameter vector will build up
velocity in any direction that has consistent gradient.

• The velocity accumulates the previous gradients.

Momentum

Illustration of how momentum traverses such an error surface
better compared to Gradient Descent

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Nesterov Momentum
First take a step in the direction of the accumulated gradient
Then calculate the gradient and make a correction

Correction

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Momentum: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦 𝑖

Nesterov: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 + 𝛼𝑣𝑡−1 ,𝑦 𝑖

𝜃 ← 𝜃 + 𝑣

Next Step

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Nesterov Momentum

Momentum: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦 𝑖

Nesterov: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 + 𝛼𝑣𝑡−1 ,𝑦 𝑖

𝜃 ← 𝜃 + 𝑣

Adaptive Learning Rate Methods

• Till now we assign the same learning rate to all features
• If the features vary in importance and frequency, this may not

be a good idea

Nice (all features are equally
important)

Harder!

AdaGrad

• Many features are irrelevant, rare features are often
informative.

• Adagrad provides a feature-specific adaptive learning rate by

• Idea: Downscale a model parameter by square-root of sum of
squares of all its historical values

• Parameters that have large partial derivative of the loss –
learning rates for them are rapidly declined

RMSProp

• AdaGrad is good when the objective is convex.
• AdaGrad might shrink the learning rate too aggressively, we

want to keep the history in mind
• We can adapt it to perform better in non-convex settings by

accumulating an exponentially decaying average of the
gradient

Adam
Adam is like RMSProp with
Momentum but with bias correction
terms for the first and second
moments

Visualization: SGD optimization on loss surface contours

Visualization: SGD optimization on saddle point

Visualizing and Animating Optimization
Algorithms with Matplotlib

• http://louistiao.me/notes/visualizing-and-animating-

optimization-algorithms-with-matplotlib/

http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

	CS60010: Deep Learning
	Training
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Activation / Gradient distributions per layer
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Momentum
	Momentum
	Momentum
	Momentum
	Nesterov Momentum
	Nesterov Momentum
	Adaptive Learning Rate Methods
	AdaGrad
	RMSProp
	Adam
	Visualization: SGD optimization on loss surface contours
	Visualization: SGD optimization on saddle point
	Visualizing and Animating Optimization Algorithms with Matplotlib

