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Training 

1. Check that loss is reasonable. 
• Loss goes up as you increase regularization. 

2. Make sure that you can overfit very small portion of the 
training data 

3. Start with small regularization and find learning rate that 
makes the loss go down. 

• loss not going down: means learning rate too low 
• loss exploding: learning rate too high 

 
 
 
 
 
 



Monitor and visualize the accuracy: 

big gap = overfitting 
=> increase regularization strength? 
 
 
no gap 
=> increase model capacity? 



Cross-validation strategy 
 
May  do coarse -> fine cross-validation in stages 
 
First stage: only a few epochs to get rough idea of what params work 
Second stage: longer running time, finer search 
… (repeat as necessary) 



Track the ratio of weight updates / weight magnitudes 

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay) 
want this to be somewhere around 0.001 or so 



Activation / Gradient distributions per layer 

• An incorrect initialization can slow down or even completely 
stall the learning process 

• Plot activation/gradient histograms for all layers of the 
network.  



Standard gradient – easy to compute 

W_1 

W_2 

Back to gradients 

Natural gradient – hard to compute 

Natural gradient : Rather than treating a change in every parameter equally, 
we need to scale each parameter's change according to how much it affects 
our network's entire output distribution. 



Gradients too big  divergence 
Gradients too small  slow convergence 
 

Gradient Magnitudes: 



Gradients too big  divergence 
Gradients too small  slow convergence 
 
Divergence is much worse! 
 
 

Gradient Magnitudes: 



What’s the simplest way to ensure gradients stay bounded? 
 

Gradient Magnitudes 



Simply limit the magnitude of each gradient: 
𝑔𝑖� =  min 𝑔max , max −𝑔max ,𝑔𝑖  

 
so 𝑔𝑖�  ≤  𝑔max . Then use a decreasing learning rate to converge 
to an optimum.   

Gradient clipping 



Gradient clipping limits the largest gradient dimensions, while 
others may be very small.  
ADAGRAD and RMSprop scale gradient dimensions by the 
inverse std deviation, so all dimension have unit sdev. 
 
What if we scale gradients up before clipping, so all dimensions 
are clipped?   

Extreme Gradient clipping 

Standard gradient Clipped gradient 



If we clip all gradient dimensions, we are left only with their 
sign:  𝑔𝑖� =  𝑔max −1,1,1,−1,1, …  
 
This actually works on some problems with little or no loss of 
accuracy: (see “1-Bit Stochastic Gradient Descent and Application to Data-
Parallel Distributed Training of Speech DNNs” by Seide et al. 2014) 
 

One-bit gradients 

Standard gradient One-bit gradient 

https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/


original W 

True gradients in blue 
minibatch gradients in red 
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Stochastic Gradient Descent 

Gradients are noisy but still make good progress on average 



Gradient Noise 

If a little noise is good, what about adding noise to gradients? 
 
A: Works Great for many models! 
 
Is especially valuable for complex models that would overfit 
otherwise.  
 
“Adding Gradient Noise Improves Learning for Very Deep Networks” Arvind 
Neelakantan et al., 2016 
 

https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807


Gradient Noise 

Schedule: 
 
 
where the noise variance is: 
 
 
 
 



Gradient Noise 

Results on MNIST with a 20-layer ReLU network:  
 



Gradient Noise + Momentum 

Model parameters 

Model Likelihood 

Increase Noise (Higher 
temperature) 

Model parameters 

Model Likelihood 
Increase 
Momentum 



Momentum 

• The Momentum method is a method to accelerate learning  
using SGD 

• In particular SGD suffers in the following scenarios: 
• Error surface has high curvature 
• We get small but consistent gradients 
• The gradients are very noisy 

 



Momentum 
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Gradient Descent would move quickly down the walls, but  very slowly through 
the valley floor 

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246 



Momentum 
• Introduce a new variable 𝑣, the 

velocity 
• We think of 𝑣 as the direction and 

speed by which the  parameters move 
as the learning dynamics progresses 

• The velocity is an exponentially 
decaying moving average of  the 
negative gradients 

𝑣 ← 𝛼𝛼 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦(𝑖)   
• Update rule: 𝜃 ← 𝜃 + 𝑣 

 

Gradient 
Step 

Momentum 
Step Actual 

Step 

• With Momentum update, the parameter vector will build up 
velocity in any direction that has consistent gradient. 

• The velocity accumulates the previous gradients. 
 



Momentum 

Illustration of how momentum traverses such an error surface  
better compared to Gradient Descent 

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246 



Nesterov Momentum 
First take a step in the direction of the  accumulated gradient 
Then calculate the gradient and make a correction 

Correction 

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246 

Momentum: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦 𝑖   

Nesterov: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 + 𝛼𝑣𝑡−1 ,𝑦 𝑖   

𝜃 ← 𝜃 + 𝑣 



Next Step 

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246 

Nesterov Momentum 

Momentum: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 ,𝑦 𝑖   

Nesterov: 𝑣𝑡 ← 𝛼𝑣𝑡−1 − 𝜖𝛻𝜃 𝐿 𝑓 𝑥 𝑖 ;𝜃 + 𝛼𝑣𝑡−1 ,𝑦 𝑖   

𝜃 ← 𝜃 + 𝑣 



Adaptive Learning Rate Methods 

• Till now we assign the same learning rate to all features 
• If the features vary in importance and frequency, this may not 

be a  good idea 

Nice (all features are equally 
important) 

Harder! 



AdaGrad 

• Many features are irrelevant, rare features are often 
informative. 

• Adagrad provides a feature-specific adaptive learning rate by 
 

• Idea: Downscale a model parameter by square-root of sum of  
squares of all its historical values 

• Parameters that have large partial derivative of the loss –  
learning rates for them are rapidly declined 



RMSProp 

• AdaGrad is good when the objective is convex. 
• AdaGrad might shrink the learning rate too aggressively, we  

want to keep the history in mind 
• We can adapt it to perform better in non-convex settings by  

accumulating an exponentially decaying average of the  
gradient 



Adam 
Adam is like RMSProp with 
Momentum but with bias  correction 
terms for the first and second 
moments 

 

 



Visualization: SGD optimization on loss surface contours 



Visualization: SGD optimization on saddle point 



Visualizing and Animating Optimization 
Algorithms with Matplotlib 

 
• http://louistiao.me/notes/visualizing-and-animating-

optimization-algorithms-with-matplotlib/ 
 

http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
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