
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

22 Jan 2018

TODO

Look at:

• Parameter update schemes
• Learning rate schedules
• Gradient Checking
• Regularization (Dropout etc)
• Evaluation (Ensembles etc)

Batch Gradient Descent
Algorithm 1 Batch Gradient Descent at Iteration k
Require: Learning rate 𝜖𝑘

Require: Initial Parameter 𝜃
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:

𝑔� ← +
1
𝑁𝛻𝜃�𝐿 𝑓(𝑥(𝑖);𝜃),𝑦(𝑖)

𝑖

4: Apply Update: 𝜃 = 𝜃 − 𝜖�̂�
 5: end while

Positive: Gradient estimates are stable
Negative: Need to compute gradients over the entire training for
one update

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k
Require: Learning rate 𝜖𝑘
Require: Initial Parameter 𝜃
1. while stopping criteria not met do
2. Sample example (𝑥(𝑖),𝑦(𝑖)) from training set
3. Compute gradient estimate:
4. 𝑔� ← +𝛻𝜃 ∑ 𝐿 𝑓(𝑥(𝑖);𝜃),𝑦(𝑖)

𝑖
5. Apply Update: 𝜃 = 𝜃 − 𝜖�̂�
6. end while
𝜖𝑘 is learning rate at step k
Sufficient condition to guarantee convergence:

∑ 𝜖𝑘 = ∞∞
𝑘=1 and∑ 𝜖𝑘2 = ∞∞

𝑘=1

Learning Rate Schedule

• In practice the learning rate is decayed linearly till iteration τ

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏 with 𝛼 =
𝑘
𝜏

• τ is usually set to the number of iterations needed for a large
number of passes through the data

• 𝜖𝜏 should roughly be set to 1% of 𝜖0
• How to set 𝜖0 ?

Lecture 6 Optimization for Deep Neural NetworksCMSC 35246

Stochastic Gradient Descent

NN TRAINING

Overview

1. One time setup

activation functions, preprocessing, weight
initialization, regularization, gradient checking

2. Training dynamics
Training process, parameter updates, hyperparameter
optimization

3. Evaluation
model ensembles

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky ReLU
max(0.1x, x)

Data Preprocessing

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Step 1: Preprocess the data
 PCA and Whitening:

1. After centring the data compute the covariance matrix. 𝑐𝑐𝑐 = 𝑛𝑛.𝑑𝑑𝑑 𝑋.𝑇,𝑋
𝑋.𝑠𝑠𝑠𝑛𝑠[0]

2. Compute the SVD factorization of the data covariance matrix: 𝑈, 𝑆,𝑉 =
𝑛𝑛. 𝑙𝑙𝑛𝑙𝑙𝑔. 𝑠𝑐𝑠(𝑐𝑐𝑐)

3. De-correlate the data: project the original zero-centered data into the
eigenbasis: 𝑋𝑋𝑐𝑋 = 𝑛𝑛.𝑠𝑐𝑋(𝑋,𝑈)

(data has diagonal
covariance matrix)

(covariance matrix is
the identity matrix)

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

- Q: what happens when W=0 init is used?

Weight Initialization

if every neuron in the network computes the same output, they will also all compute
the same gradients during backpropagation and undergo the exact same parameter
updates. In other words, there is no source of asymmetry between neurons.

Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to non-
homogeneous distributions of activations across the
layers of a network.

“Xavier initialization” [Glorot et al., 2010]

Weight Initialization

𝑤𝑖𝑖 = 𝒩(𝜇,𝜎)

𝜎 = 1
𝑛in

Batch Normalization
[Ioffe and Szegedy, 2015]

• Explicitly forcing the
activations throughout a
network to take on a unit
gaussian distribution at the
beginning of the training.

• Consider a batch of
activations at some layer. To
make each dimension unit
gaussian, apply:

Batch Normalization [Ioffe and Szegedy, 2015]

X N

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected /
(or Convolutional) layers, and before
nonlinearity.

Batch Normalization [Ioffe and Szegedy, 2015]

• Improves gradient flow
through the network

• Allows higher learning rates
• Reduces the strong

dependence on initialization
• Acts as a form of

regularization in a funny
way, and slightly reduces the
need for dropout, maybe

Regularization

• To prevent overfitting or help the optimization

• “Regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but
not its training error.”

L2 parameter regularization

• also known as ridge regression or Tikhonov regularization

• For every 𝑤 add 1
2
𝜆𝑤2 to the objective function.

• Gradient of this term: 𝜆𝑤
• Weight decay: Encourages small weights

Weight Decay as Constrained Optimization

L1 regularization

• For every 𝑤 add 𝜆 𝑤 to the objective function.

• it leads the weight vectors to become sparse during
optimization

27

Regularization (dropout)

28

Regularization by Dropout

“randomly set some neurons to zero in the forward pass”

[Srivastava et al.,
2014]

29

Example forward
pass with a 3-layer
network using
dropout

30

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

How could this possibly be a good idea?

31

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

How could this possibly be a good idea?

32

At test time….

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions

33

At test time….

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the
whole ensemble)

34

At test time….

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test
time the output of this neuron is x.

What would its output be during training time,
in expectation? (e.g. if p = 0.5)

35

At test time….

Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).
 during test: a = w0*x + w1*y

during train:
E[a] = ¼ * (w0*0 + w1*0

 w0*0 + w1*y
 w0*x + w1*0

 w0*x + w1*y)
 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a

w0 w1

36

At test time….

Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).
 during test: a = w0*x + w1*y

during train:
E[a] = ¼ * (w0*0 + w1*0

 w0*0 + w1*y
 w0*x + w1*0

 w0*x + w1*y)
 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a
With p=0.5, using all
inputs in the forward
pass would inflate the
activations by 2x from
what the network was
“used to” during
training!
=> Have to compensate
by scaling the
activations back down
by ½

w0 w1

37

We can do something approximate analytically

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

38

Dropout Summary

drop in forward pass

scale at test time

39

More common: “Inverted dropout”

test time is unchanged!

Dataset Augmentation

• to make a machine learning model generalize better is to train
it on more data.

• create fake data
• We can generate new (x,y) pairs for classification just by

transforming the x inputs in our training set.
• Image (object classification,), speech

• Injecting noise in the input to a neural network can also be
seen as a form of data augmentation.

• One way to improve the robustness of neural networks is
simply to train them with random noise applied to their inputs.

• Dropout a process of constructing new inputs by multiplying by
noise

Learning Process

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Step 2: Choose the architecture:

say we start with one hidden layer of 50 neurons:

input
layer hidden layer

output layer

CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

50 hidden
neurons

Hyperparameter Optimization

Hyperparameters to play with:

• network architecture
• learning rate, its decay schedule, update type
• regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

Training

1. Check that loss is reasonable.
• Loss goes up as you increase regularization.
• Make sure that you can overfit very small portion of the

training data
• Start with small regularization and find learning rate that makes

the loss go down.
• loss not going down: means learning rate too low
• loss exploding: learning rate too high

Monitor and visualize the loss curve

Train/ Val accuracy

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

Cross-validation strategy

May do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

	CS60010: Deep Learning
	Slide Number 2
	Batch Gradient Descent
	Stochastic Gradient Descent
	Learning Rate Schedule
	Stochastic Gradient Descent
	NN Training
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 20
	Regularization
	L2 parameter regularization
	Weight Decay as Constrained Optimization
	L1 regularization
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Dataset Augmentation
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Training
	Slide Number 48
	Train/ Val accuracy
	Slide Number 50
	Slide Number 51

