Sudeshna Sarkar
Spring 2018

22 Jan 2018



TODO

Look at:

 Parameter update schemes
e Learning rate schedules

e Gradient Checking

e Regularization (Dropout etc)
e Evaluation (Ensembles etc)



Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at Iterationk
Require: Learning rate g,
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Compute gradient estimate over N examples:

1 . .
g +3:7 ) L(Fx®;6),y®)

i
4: Apply Update: 0 = 6 — €g
5: end while

Positive: Gradient estimates are stable

Negative: Needto compute gradients over the entire training for
one update

CMSC 35246



Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate €,

Require: Initial Parameter 6

1. while stopping criteria not met do

2 Sample example (x®, y()) from training set

3 Compute gradient estimate:

4. g4V Y L(f(x®;0),y®)

5 Apply Update: 8 = 0 — €g

6. end while

€, is learning rate at step k

Sufficient condition to guarantee convergence:
V=1 €k = © andX;; % = oo



Learning Rate Schedule

- In practice the learning rate is decayed linearly till iteration t

k
€, = (1 —a)ey + ae, witha = =

- Tis usually set to the number of iterations needed for a large
number of passes through the data

- €; should roughly be set to 1% of ¢,
- How to set ¢ ?



Stochastic Gradient Descent

CMSC 35246




NN TRAINING




Overview

1. One time setup
activation functions, preprocessing, weight
initialization, regularization, gradient checking

2. Training dynamics
Training process, parameter updates, hyperparameter
optimization

3. Evaluation
model ensembles



Activation Functions

Sigmoid

o(z)=1/(14+¢77)

tanh tanh(x)

RelU max(0,x)

0.
.2
-5

1o
08
06

10
05
5 10

Leaky RelU
max(0.1x, x)

i e 5 10
Maxout max(w! T + by, w; z + by)
T Li>0
ELU f(ib‘) - {a (exp(w) - 1) ifz<0




Data Preprocessing



Step 1: Preprocess the data

original data zero-centered data normalized data

A

-10 : - -10 : -
13 -0 = 0 5 13 -10 =5 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)



Step 1: Preprocess the data
PCA and Whitening:

1.
2.

np.dot(X.T,X)
X.shape|0]

Compute the SVD factorization of the data covariance matrix: U, S,V =

np. linalg. svd(cov)

De-correlate the data: project the original zero-centered data into the

eigenbasis: Xrot = np.dot(X,U)

After centring the data compute the covariance matrix. cov =

original data decorrelated data whitened data

-10 : ; =10 - :
1 -10 -5 0 5 13 -10 i 0 5 10

(data has diagonal (covariance matrix is
covariance matrix) the identity matrix)




TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening



Weight Initialization

- Q: what happens when W=0 init is used?

input layer

hidden layer

if every neuron in the network computes the same output, they will also all compute
the same gradients during backpropagation and undergo the exact same parameter
updates. In other words, there is no source of asymmetry between neurons.



Weight Initialization

Small random numbers
(gaussian with zero mean and le-2 standard deviation)

W = 0.01* np.random.randn(D,H)  w;; = N(u,0)

Works ~okay for small networks, but can lead to non-
homogeneous distributions of activations across the
layers of a network.

“Xavier initialization” [Glorot et al., 2010]

W = np.randon. randn(fan in, fan out) / np.Sqrt(fan in) # Layer initialization




Batch Normalization

- Explicitly forcing the
activations throughout a
network to take on a unit
gaussian distribution at the
beginning of the training.

- Consider a batch of
activations at some layer. To
make each dimension unit
gaussian, apply:

(k) _ E[,(F)
Eﬁ(k) - L E[IL’ ]
v/ Var[z(#)]




Batch Normalization

1. compute the empirical mean and
variance independently for each
dimension.

A A A

X [

2. Normalize

1N ) _ 2(k) _ E[m(k)]
D \/Var[a‘:("’)]




Batch Normalization

i

FC Usually inserted after Fully Connected /
v (or Convolutional) layers, and before
BN <«— honlinearity.

v

tanh

v

FC

v

BN
v

tanh

\




Batch Normalization

Input: Values of x over a mini-batch: B = {z1_,,}; e Improves gradient flow
Parameters to be learned: v, ( through the network
Output: {y; = BN, p(a:)} e Allows higher learning rates
[ e Reduces the strong
pB & — ) /I mimi-batch mean dependence on initialization
- * Acts as a form of
0% + s Z(‘Tﬂ' — ug)’ LCL T S — regularization in a funny
I g way, and slightly reduces the
e Ti — JiB I/ normalize need for dropout, maybe
y; + 7; + f = BN, g(x;) I/ scale and shift




Regularization

- To prevent overfitting or help the optimization

- “Regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but
not its training error.”



L2 parameter regularization

- also known as ridge regression or Tikhonov regularization

1 N :
- For every w add E/'lwz to the objective function.

- Gradient of this term: Aw
- Weight decay: Encourages small weights



Weight Decay as Constrained Optimization

- -—\_/,
< N

S B ™
/ -r\ \

; 'd \\\
f -
\\_, ’l'
X, “. b g
~ s~ [/
un

Figure 7.1: An illustration of the effect of L? (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L? regularizer. At
the point w, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of .J is small. The objective function does not increase much
when moving horizontally away from w*. Because the objective function does not express
a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w, close to zero. In the second dimension, the objective function
is very sensitive to movements away from w*. The corresponding eigenvalue is large,
indicating high curvature. As a result, weight decay affects the position of ws relatively
little.



L1 regularization

- For every w add A|w| to the objective function.

- it leads the weight vectors to become sparse during
optimization



Regularization (dropout)



i)
>
O
Q.
O
-

)
>

O
C

I

i)
qe]
N

o

e
>
o]0
Q

o

il
S\ YL A\ XA
“ﬂ, 0 SN
Y BRI~ BAK r.

CE—CR s
S KX
R PR
NN A
OO WA
//

A.
/AN N\
NP

“randomly set some neurons to zero in the forward pass”

[Srivastava et al.,

2014]

(b) After applying dropout.

(a) Standard Neural Net



p=0.5# probability of keeping a unit active. higher = less

def train_step(X):

""" X contains the data """

# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

dropout

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
Hl1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

Example forward
pass with a 3-layer
network using
dropout




How could this possibly be a good idea?

Forces the network to have a redundant representation.

has an ear

has a tail Ax—j\:

is furry —X———p cat
~___—¥ score

has claws +/V
mischievous

look

T



How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.




At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions




At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the
whole ensemble)



At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test
time the output of this neuron is x.

What would its output be during training time,
in expectation? (e.g. if p=0.5)



At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: a = wO*x + wl*y

d during train:
E[a] = % * (WO*0 + w1*0
w0*0 + wl*y
w0 wil wO*x + wl*0

wO*x + wl*y)
=% * (2 wO*x + 2 wl*y)
=% * (WO*x + wl'*y)



At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: a = wO*x + wl*y  With p=0.5, using all
a during train: inputs in the forward

pass would inflate the
— 1/ % * *
E[a] =7 (WO 0+wl®0 activations by 2x from

wO0*0 + wl*y what the network was
wO wl WO*x + W’iused to” during
training!

wO*x + wl*y) _
=% * (2 wO*x + 2 wl'*y)
=% * (WwO0*x + wl'*y)

ave to compensate
y scaling the
activations back down
by %



We can do something approximate analytically

def predict(X):
# ensembled forward pass
Hl1 = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(®, np.dot(W2, H1l) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time




Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
"ot X contains the data """

# forward pass for example 3-layer neural network

Hl = np.maximum(®, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # Tirst dropout mask
Hl #*= Ul # drop! .
7= Tip-maXTmUATT, -Gt WZ, A1 ¥ 52) drop in forward pass
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

def predict(X):
# ensembled forward pass

Hl = np.maximum(®, np.dot{Wl, X) + bl)|* p # NOTE: scale the activations Scale at test tlme
H2 = np.maximum(@, np.dot{W2, H1) + b2} * p # NOTE: scale the activations

out = np.dot(W3, H2) + b3




More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

# forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)

# perform parameter update... (not shown)

/ test time is unchanged!
def predict(X):
# ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3



Dataset Augmentation

- to make a machine learning model generalize better is to train
it on more data.

- create fake data

- We can generate new (x,y) pairs for classification just by
transforming the x inputs in our training set.
- Image (object classification,), speech
» Injecting noise in the input to a neural network can also be
seen as a form of data augmentation.

- One way to improve the robustness of neural networks is
simply to train them with random noise applied to their inputs.

- Dropout a process of constructing new inputs by multiplying by
noise



~

Dataset Augmentation

Affine Elastic

, . Noise .
Distortion Deformation

» Horizontal Random

Hue Shift

flip Translation

{Goodfallow 2016)



Learning Process



Step 1: Preprocess the data

original data zero-centered data normalized data

A

-10 : - -10 : -
13 -0 = 0 5 13 -10 =5 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)



Step 2: Choose the architecture:

say we start with one hidden layer of 50 neurons:

50 hidden
neurons \
10 output
output layer neurons, one
CIFAR-10 input per class
images, 3072 layer hidden layer

numbers



Hyperparameter Optimization



Hyperparameters to play with:

e network architecture

* J|earning rate, its decay schedule, update type
e regularization (L2/Dropout strength)

neural networks practitioner
music = loss function




Training

1. Check that loss is reasonable.

- Loss goes up as you increase regularization.

- Make sure that you can overfit very small portion of the
training data

- Start with small regularization and find learning rate that makes

the loss go down.
- loss not going down: means learning rate too low
- loss exploding: learning rate too high



Monitor and visualize the loss curve

loss

201

very high learning rate

low learning rate

high learning rate

good learning rate

0.0 . ' - '
0 0 40 &0 a0 100 EpDGh

Epoch 4



Train/ Val accuracy

A _
accuracy trEII"III"Ig accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
N

epoch



Monitor and visualize the accuracy:

(.80

075+

070+

065

Clasification accuracy
=
=

=

(¥, ]

(=l
T

050+

0451

040

— Training accuracy
— Validation accuracy

nnnnn

0

100

big gap = overfitting

=> increase regularization strength?

NO gap
=> increase model capacity?



Cross-validation strategy

May do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)



	CS60010: Deep Learning
	Slide Number 2
	Batch Gradient Descent
	Stochastic Gradient Descent
	Learning Rate Schedule
	Stochastic Gradient Descent
	NN Training
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 20
	Regularization
	L2 parameter regularization
	Weight Decay as Constrained Optimization
	L1 regularization
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Dataset Augmentation
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Training
	Slide Number 48
	Train/ Val accuracy
	Slide Number 50
	Slide Number 51

