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TODO 
 
Look at: 
 

• Parameter update schemes 
• Learning rate schedules 
• Gradient Checking 
• Regularization (Dropout etc) 
• Evaluation (Ensembles etc) 



Batch Gradient Descent 
Algorithm 1 Batch Gradient Descent at Iteration k 
Require: Learning rate 𝜖𝑘 

Require: Initial Parameter 𝜃  
1: while stopping criteria not met do 
2: Compute gradient estimate over N  examples: 

𝑔� ← +
1
𝑁𝛻𝜃�𝐿 𝑓(𝑥(𝑖);𝜃),𝑦(𝑖)

𝑖

 

4: Apply Update: 𝜃 = 𝜃 − 𝜖�̂� 
   5: end while  
 

Positive: Gradient estimates are stable 
Negative: Need to compute gradients over the entire training  for 
one update 
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Stochastic Gradient Descent 

Algorithm 2 Stochastic Gradient Descent at Iteration k 
Require: Learning rate 𝜖𝑘 
Require: Initial Parameter 𝜃 
1. while stopping criteria not met do 
2.     Sample example (𝑥(𝑖),𝑦(𝑖)) from training set 
3.     Compute gradient estimate: 
4.    𝑔� ← +𝛻𝜃 ∑ 𝐿 𝑓(𝑥(𝑖);𝜃),𝑦(𝑖)

𝑖  
5.    Apply Update: 𝜃 = 𝜃 − 𝜖�̂� 
6. end while 
𝜖𝑘 is learning rate at step k 
Sufficient condition to guarantee convergence: 

∑ 𝜖𝑘 = ∞∞
𝑘=1   and∑ 𝜖𝑘2 = ∞∞

𝑘=1  
 



Learning Rate Schedule 

• In practice the learning rate is decayed linearly till iteration τ 

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏 with 𝛼 =
𝑘
𝜏

 

• τ is usually set to the number of iterations needed for a large  
number of passes through the data 

• 𝜖𝜏 should roughly be set to 1% of 𝜖0 
• How to set 𝜖0 ? 

 



Lecture 6 Optimization for Deep Neural NetworksCMSC 35246 

Stochastic Gradient Descent 



NN TRAINING 



Overview 
 
1. One time setup 

activation functions, preprocessing, weight 
initialization, regularization, gradient checking 
 

2. Training dynamics 
Training process, parameter updates, hyperparameter 
optimization 
 

3. Evaluation 
model ensembles 



Activation Functions 

Sigmoid 

tanh    tanh(x) 

ReLU    max(0,x) 

Maxout 

ELU 

Leaky ReLU 
max(0.1x, x) 



 

 
Data Preprocessing 



Step 1: Preprocess the data 
 

(Assume X [NxD] is data matrix, 
each example in a row) 



Step 1: Preprocess the data 
 PCA and Whitening:  

1. After centring the data compute the covariance matrix. 𝑐𝑐𝑐 = 𝑛𝑛.𝑑𝑑𝑑 𝑋.𝑇,𝑋
𝑋.𝑠𝑠𝑠𝑛𝑠[0]

 

2. Compute the SVD factorization of the data covariance matrix: 𝑈, 𝑆,𝑉 =
𝑛𝑛. 𝑙𝑙𝑛𝑙𝑙𝑔. 𝑠𝑐𝑠(𝑐𝑐𝑐) 

3. De-correlate the data: project the original zero-centered data into the 
eigenbasis: 𝑋𝑋𝑐𝑋 = 𝑛𝑛.𝑠𝑐𝑋(𝑋,𝑈) 

(data has diagonal 
covariance matrix) 

(covariance matrix is 
the identity matrix) 



TLDR: In practice for Images: center only 

- Subtract the mean image (e.g. AlexNet) 
 (mean image = [32,32,3] array) 
- Subtract per-channel mean (e.g. VGGNet) 
 (mean along each channel = 3 numbers) 

e.g. consider CIFAR-10 example with [32,32,3] images 

Not common to normalize 
variance, to do PCA or 
whitening 



- Q: what happens when W=0 init is used? 

Weight Initialization 

if every neuron in the network computes the same output, they will also all compute 
the same gradients during backpropagation and undergo the exact same parameter 
updates. In other words, there is no source of asymmetry between neurons. 



Small random numbers  
(gaussian with zero mean and 1e-2 standard deviation) 

Works ~okay for small networks, but can lead to non-
homogeneous distributions of activations across the 
layers of a network. 
 
“Xavier initialization”                   [Glorot et al., 2010] 
 

Weight Initialization 

𝑤𝑖𝑖 = 𝒩(𝜇,𝜎) 

𝜎 =  1
𝑛in

  



Batch Normalization 
[Ioffe and Szegedy, 2015] 

• Explicitly forcing the 
activations throughout a 
network to take on a unit 
gaussian distribution at the 
beginning of the training. 
 

• Consider a batch of 
activations at some layer. To 
make each dimension unit 
gaussian, apply: 
 

 



Batch Normalization [Ioffe and Szegedy, 2015] 

X N 

D 

1. compute the empirical mean and 
variance independently for each 
dimension. 

2. Normalize 



Batch Normalization [Ioffe and Szegedy, 2015] 

FC 

BN 

tanh 

FC 

BN 

tanh 

... 

Usually inserted after Fully Connected / 
(or Convolutional) layers, and before 
nonlinearity. 



Batch Normalization [Ioffe and Szegedy, 2015] 

• Improves gradient flow 
through the network 

• Allows higher learning rates 
• Reduces the strong 

dependence on initialization 
• Acts as a form of 

regularization in a funny 
way, and slightly reduces the 
need for dropout, maybe 



Regularization 

• To prevent overfitting or help the optimization 
 

• “Regularization is any modification we make to a learning 
algorithm that is intended to reduce its generalization error but 
not its training error.” 



L2 parameter regularization 

• also known as ridge regression or Tikhonov regularization 

• For every 𝑤 add 1
2
𝜆𝑤2 to the objective function. 

• Gradient of this term: 𝜆𝑤 
• Weight decay: Encourages small weights 

 



Weight Decay as Constrained Optimization 



L1 regularization 

• For every 𝑤 add 𝜆 𝑤  to the objective function. 
 

• it leads the weight vectors to become sparse during 
optimization 
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Regularization (dropout) 
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Regularization by Dropout 
 
“randomly set some neurons to zero in the forward pass” 

[Srivastava et al., 
2014] 
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Example forward 
pass with a 3-layer 
network using 
dropout 
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Forces the network to have a redundant representation. 

has an ear 

has a tail 

is furry 

has claws 

mischievous  
look 

cat  
score 

X 

X 

X 

How could this possibly be a good idea? 
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Another interpretation: 
 
Dropout is training a large ensemble of 
models (that share parameters). 
 
Each binary mask is one model, gets 
trained on only ~one datapoint. 
 
 

How could this possibly be a good idea? 



32 

At test time…. 

Ideally:  
want to integrate out all the noise 
 
Monte Carlo approximation: 
do many forward passes with different 
dropout masks, average all predictions 
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At test time…. 

Can in fact do this with a single forward pass! (approximately) 
Leave all input neurons turned on (no dropout). 
 

(this can be shown to be an 
approximation to evaluating the 
whole ensemble) 
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At test time…. 

Can in fact do this with a single forward pass! (approximately) 
Leave all input neurons turned on (no dropout). 
 

Q: Suppose that with all inputs present at test 
time the output of this neuron is x. 
 
What would its output be during training time, 
in expectation? (e.g. if p = 0.5) 
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At test time…. 

Can in fact do this with a single forward pass! (approximately) 

x y 

Leave all input neurons turned on (no dropout). 
 during test: a = w0*x + w1*y 

during train: 
E[a] = ¼ * (w0*0 + w1*0 

  w0*0 + w1*y 
     w0*x + w1*0 

  w0*x + w1*y) 
       = ¼ * (2 w0*x + 2 w1*y) 
   = ½ * (w0*x + w1*y) 
 

a 

w0 w1 
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At test time…. 

Can in fact do this with a single forward pass! (approximately) 

x y 

Leave all input neurons turned on (no dropout). 
 during test: a = w0*x + w1*y 

during train: 
E[a] = ¼ * (w0*0 + w1*0 

  w0*0 + w1*y 
     w0*x + w1*0 

  w0*x + w1*y) 
       = ¼ * (2 w0*x + 2 w1*y) 
   = ½ * (w0*x + w1*y) 
 

a 
With p=0.5, using all 
inputs in the forward 
pass would inflate the 
activations by 2x from 
what the network was 
“used to” during 
training! 
=> Have to compensate 
by scaling the 
activations back down 
by ½  

w0 w1 
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We can do something approximate analytically 

At test time all neurons are active always 
=> We must scale the activations so that for each neuron: 
output at test time = expected output at training time 
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Dropout Summary 

drop in forward pass 

scale at test time 
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More common: “Inverted dropout” 

test time is unchanged! 



Dataset Augmentation 

•  to make a machine learning model generalize better is to train 
it on more data. 

• create fake data 
• We can generate new (x,y) pairs for classification just by 

transforming the x inputs in our training set. 
• Image (object classification,), speech 

• Injecting noise in the input to a neural network can also be 
seen as a form of data augmentation. 

• One way to improve the robustness of neural networks is 
simply to train them with random noise applied to their inputs. 

• Dropout a process of constructing new inputs by multiplying by 
noise 





 

 
Learning Process 



Step 1: Preprocess the data 
 

(Assume X [NxD] is data matrix, 
each example in a row) 



Step 2: Choose the architecture: 
 
say we start with one hidden layer of 50 neurons: 

input 
layer hidden layer 

output layer 

CIFAR-10 
images, 3072 
numbers 

10 output 
neurons, one 
per class 

50 hidden 
neurons 



 

 
Hyperparameter Optimization 



Hyperparameters to play with: 
 

• network architecture 
• learning rate, its decay schedule, update type 
• regularization (L2/Dropout strength) 

neural networks practitioner 
music = loss function 



Training 

1. Check that loss is reasonable. 
• Loss goes up as you increase regularization. 
• Make sure that you can overfit very small portion of the 

training data 
• Start with small regularization and find learning rate that makes 

the loss go down. 
• loss not going down: means learning rate too low 
• loss exploding: learning rate too high 

 
 
 
 
 
 



Monitor and visualize the loss curve 



Train/ Val accuracy 



Monitor and visualize the accuracy: 

big gap = overfitting 
=> increase regularization strength? 
 
 
no gap 
=> increase model capacity? 



Cross-validation strategy 
 
May  do coarse -> fine cross-validation in stages 
 
First stage: only a few epochs to get rough idea of what params work 
Second stage: longer running time, finer search 
… (repeat as necessary) 
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