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BACKPROPAGATION: 
INTRODUCTION 



How do we learn weights? 

• Perturn the weights and check 



Backpropagation 

• Feedforward Propagation: Accept input x, pass through  
intermediate stages and obtain output 𝑦�  

• During Training: Use  𝑦�  to compute a scalar cost 𝐽(𝜃)  
• Backpropagation allows information to flow backwards from  

cost to compute the gradient 
 



Backpropagation 

• From the training data we don’t know what the hidden units  
should do 

• But, we can compute how fast the error changes as we change  
a hidden activity 

• Use error derivatives w.r.t hidden activities 
• Each hidden unit can affect many output units and have  

separate effects on error – combine these effects 
• Can compute error derivatives for hidden units efficiently (and  

once we have error derivatives for hidden activities, easy to  
get error derivatives for weights going in) 
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Computational Graph 
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Convolutional Network 
(AlexNet) 

input image 
 
weights 

loss 
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e.g. x = -2, y = 5, z = -4 

Differentiating a Computation Graph 
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Chain rule 

We can write 
 
 
Where ℎ 𝑥,𝑦 = 𝑥 + 𝑦, and 𝑔 𝑎, 𝑏 = 𝑎 ∗ 𝑏 
 
By the chain rule, 𝑑𝑑

𝑑𝑑
=  𝑑𝑑

𝑑ℎ
𝑑ℎ
𝑑𝑑

 and 𝑑𝑑
𝑑𝑦

=  𝑑𝑑
𝑑ℎ

𝑑ℎ
𝑑𝑦

 

f 𝑥,𝑦, 𝑧 = 𝑔 ℎ 𝑥,𝑦 , 𝑧  
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f 

activations 
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f 

activations 

“local gradient” 
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Another backprop example: 
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Another example: 
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Another example: 
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Another example: 

(-1) * (-0.20) = 0.20 



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson 

Another example: 
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Another example: 

[local gradient] x [its gradient] 
[1] x [0.2] = 0.2 
[1] x [0.2] = 0.2  (both inputs!) 
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Another example: 
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Another example: 

[local gradient] x [its gradient] 
x0: [2] x [0.2] = 0.4 
w0: [-1] x [0.2] = -0.2 
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sigmoid function 

sigmoid gate 
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sigmoid function 

sigmoid gate 

(0.73) * (1 - 0.73) = 0.2 
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Patterns in backward flow 

add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient… “switcher”? 
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Gradients add at branches 

+ 
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Implementation:   forward/backward API 

Graph (or Net) object. (Rough psuedo code) 



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson 

Implementation:   forward/backward API 

(x,y,z are scalars) 

* 

x 

y 

z 
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Implementation:   forward/backward API 
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y 
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complex graph 

inputs x outputs y 

Q: Why is it back-propagation?  
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reverse-mode differentiation (if you want effect of many things on one thing) 

forward-mode differentiation (if you want effect of one thing on many things) 

for many different x 

for many different y 

complex graph 

inputs x outputs y 

Why is it back-propagation? i.e. why go backwards?  
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reverse-mode differentiation (if you want effect of many things on one thing) 

for many different x 

complex graph 

inputs x outputs y 

Why is it back-propagation? i.e. why go backwards?  
 

More common simply because many nets have a scalar loss function as output. 
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f 

Gradients for vector data 

“local gradient” 

gradients 

This is now the Jacobian matrix 
(derivative of each element of z w.r.t. 
each element of x) 

(x,y,z are now vectors) 
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Vectorized operations 

f(x) = max(0,x) 
(elementwise) 

4096-d  
input vector 

4096-d  
output vector 
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Vectorized operations 

f(x) = max(0,x) 
(elementwise) 

4096-d  
input vector 

4096-d  
output vector 

Q: what is the size 
of the Jacobian 
matrix? 

Jacobian matrix 
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max(0,x) 
(elementwise) 

4096-d  
input vector 

4096-d  
output vector 

Q: what is the size 
of the Jacobian 
matrix? 
[4096 x 4096!] 

Q2: what does it 
look like? 

Vectorized operations 

Jacobian matrix 

f(x) = max(0,x) 
(elementwise) 
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max(0,x) 
(elementwise) 

100 4096-d  
input vectors 

100 4096-d  
output vectors 

Vectorized operations 

in practice we process an 
entire minibatch (e.g. 100) of 
examples at one time: 

i.e. Jacobian would technically be a 
[409,600 x 409,600] matrix :\ 
 
Why don’t we compute it that way? 

f(x) = max(0,x) 
(elementwise) 
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Writing SVM/Softmax 
Stage your forward/backward computation! 

E.g. for the SVM: 

margins 
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Summary so far 
 
• neural nets will be very large: no hope of writing down gradient formula 

by hand for all parameters 

• backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all 
inputs/parameters/intermediates 

• implementations maintain a graph structure, where the nodes 
implement the forward() / backward() API. 

• forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory 

• backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs. 
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2-layer Neural Network 
 
3-layer Neural Network: 
       

x h W1 s W2 

3072 100 10 

Neural Network 
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Full implementation of training a 2-layer Neural Network 
needs ~11 lines: 

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/ 
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Assignment: Writing 2layer Net 
Stage your forward/backward computation! 
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Activation Functions 

Sigmoid 

tanh    tanh(x) 

ReLU    max(0,x) 

Maxout 

ELU 

Leaky ReLU 
max(0.1x, x) 
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Neural Networks: Architectures 

“Fully-connected” layers 

“2-layer Neural Net”, or 
“1-hidden-layer Neural Net” 

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net” 
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Example Feed-forward computation of a Neural Network 

We can efficiently evaluate an entire layer of neurons. 
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Example Feed-forward computation of a Neural Network 
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Setting the number of layers and their sizes 

more neurons = more capacity 
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Summary 
 
• we arrange neurons into fully-connected layers 

• the abstraction of a layer has the nice property that it allows 
us to use efficient vectorized code (e.g. matrix multiplies) 

• neural networks are not really neural 

• neural networks: bigger = better (but might have to regularize 
more strongly) 
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