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BACKPROPAGATION:
INTRODUCTION




How do we learn weights?

- Perturn the weights and check



Backpropagation

Compare outputs with
Back-propagate correct answer to get

error signal to error signal

get derivatives
for learning 4 outputs
hidden
layers
A input vector

- Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output y

- During Training: Use ¥y to compute a scalar cost /(0)
- Backpropagation allows information to flow backwards from
cost to compute the gradient




Backpropagation

- From the training data we don’t know what the hidden units
should do

- But, we can compute how fast the error changes as we change
a hidden activity

» Use error derivatives w.r.t hidden activities

- Each hidden unit can affect many output units and have
separate effects on error — combine these effects

- Can compute error derivatives for hidden units efficiently (and
once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)



Computational Graph
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Convolutional Network
(AlexNet)

input image

weights 4:

loss
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

X -2
f(z,9,2) = (z+y)z F
e.g.x=-2,y=5,z=-4 v 5 a
Z -4

f-12

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




We can write
f(x,y,2) = g(h(x,y),2)
Where h(x,y) = x +y,and g(a,b) =ax*b

: df _ dgdh df _ dgdh
By the chain rule, — = ——and —= ——
Y "dx  dhdx dy  dhdy

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(way: Z) = (33 +y)z K38

3
eg.x=-2,y=5,z2=-4 + )
y 9

Want: af 3f 3f
Or’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(may:z):($+y)z X -2

tL
eg.x=-2,y=52z2=-4 i
y 9

Want: 9f 0f 0Of
Or’ Oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

fle,y,2) = (z + )2 =

eg.x=-2,y=5,z=-4 AL
¥ 0

want: 9L O O
0’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(maya Z) = (37 +y)z 3
eg.x=-2,y=52z=-4 5{:>®‘l

Want: Of O0f Of
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph
f(2,y,2) = (z+y)2 X 2

eg.x=-2,y=5,z2=-4 4 )43
¥ 0

of of
f=¢ g o 1 of
02
Want: of of 9
0z’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph
f(l‘,y,Z) = (:c—l—y)z ol

e.g.x=-2,y=5,z=-4 ALE
Yy 9

want: 9L OF O
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

Ty
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(:B,y,Z) = (CB +y)z
eg.x=-2,y=512=-4

q:ﬂ:-}-y %:1}%:1

want: 9L O O
Or’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(ﬂ},y,Z) — (:B +y)z X 2
e.g.x=-2,y=5,z=-4

ey
0r’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

f(ﬂ?,y,Z) = (37 -I-y)z
eg.x=-2,y=512=-4

of of
=z 3 =45 =4
Want: oL 9F O
0r’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Differentiating a Computation Graph

fle,y,2) = (z +y)z
eg.x=-2,y=512=-4

af af
f:qz g ZZ’E —4 Chain rule: ﬁ
o _ow
Want: of 9f o or Bq Oz
Or’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations

“local gradient”

f

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations

L

“local gradient”
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations

“local gradient”
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




activations

“local gradient”
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oL
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/ Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Another backprop example:

w0 2.00 1

flw,z) =

14 E—(wumu+wlml-|-w2)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Another example:

w0 2.00

|
14 E—(wumu-l—wlmrl—wz)

f(‘w,iﬂ) o

1.00 @ -1.00 @ 037 @ 137 @ 0.73

St L A/ /1m0

: df . 1 d
fizli=e iy %:E f(m)zi - é——l/m2
S

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

fw,z) =

1 _1_ e —(‘lm].’ﬂu -Hﬂ'l Iy -Hﬂg)

10 A3\ A0 2N 07 AN g 07
Not o/ N/ o/ 10

s = e flo) = & g
N T R

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

fw,z) =

1+ e~ (wozotwyz1 +uy)

(557)(1.00) = ~0.53

10 A3\ A0 2N 037 AN g o7
Not o/ N EE AN T

d
s = 2= | |- - & g
folz)=az E g:a f(z)=c+z — %:1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

f(w,z) =

1+e —(wozo+wi 1 +wy)

1.00 @ -1.00 @ 037 @ 137 @ 073
NG AN 7 BN A TN\ AT

w2 -3.00

s = e flo) = B g
e e =

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 200 1

f(’lﬂ,iﬂ) e

e o~ (wozotwi 21 +up)

(1)(-0.53) = —0.53

100 G\ 100 N1 087 N 137 @ 073
el w 053 \_/ 0583\ 100

w2 -3.00

s = 2= | fo- . B g
folz)=az 3 g:a f(z)=c+a - %_1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

f(w,z) =

1+e —(wozo+wi 1 +wy)

1.00 @ -1.00 @ 037 @ 137 @ 073
oot b

X1 O/ 053 053 \_/ 100
w2 -300
o - df . 1 df 2
flz)=e¢ - ol fla)=~ & =1z
d
R - O I I - A

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

f(w‘.l'm) =

JEE e~ (Wozgtwiz; +ws)

(e71)(~0.53) = —0.20

100 A0 2N 037 O 137 A\ 073
U/ 0.20 @ 053 T 053 @(/ 1.00

w2 -3.00

il ¥ i flo) = K g
TEE o

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 1

f(‘lﬂ,iﬂ) e

1+ g‘(‘lﬂufﬂﬁwl z1+wy)

w2 -3.00

il i i flo) = K g
VIR i | I

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 l

f(w‘.l'm) e

(-1) * (-0.20) = 0.20

1 e~ (Wozotwy 21 +1y)

100G\ 100 @
020 \_/ -020 N/ 053

w2 -3.00

il i i flo) = K g
VIR i | I

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

1
14 E—(wumn+wlz1-|—w2)

f(w,z) =

4.00

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 \_/ 020 @ 053 \_/ 053 \_/ 100

s = e flo) = K g
T T

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

1
w0 200 _
4 flw,z) = 1 4 ¢~ (wozotwyziuy)
x0 -1.00 [local gradient] x [its gradient]
400 [1] x [0.2] = 0.2
020 [1] x [0.2] = 0.2 (both inputs!)

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 \_/ 020 @ 053 \_/ 053 \_/ 100

f(z)=¢* - % =¢’ f(z) = % & % = -1/2°
folz)=az E g:a f(z)=c+z — %:1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Another example:

w0 2.00
1

_ ‘ - f (w,:r:) =

0.0 1 4 ¢~ (wozotwrzi+uy)

020

s = e flo) = K g
T T

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Another example:

w0 2.00 f(’u} m) . 1—
o 200 : 1 4 e~ (wozotwyz+uy)
10 -1.00 o

[local gradient] x [its gradient]
x0:[2] x[0.2] =0.4
wO: [-1] x [0.2] =-0.2

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 \_/ 020 @ 053 \_/ 053 \_/ 100

d
s = 2= | fo- - K g
folz)=az 3 g:a f(z)=c+a - %_1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




f('w,:r:) = e E—(wu:.ﬁ—wlzﬁwg) ﬂ'(m) — rle"’” sigmoid function
do(z) e’ l+e -1 1

sigmoid gate

1.00 @‘1\ -1.00 é}‘(\ 0.37 @ 1.37 /1;)(\ 0.73
020 | \_/ -020 \_9 053 \_/ 053 \_/| 100

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




f('w,:r:) = e E—(wu:.ﬁ—wlzﬁwg) ﬂ'(m) — rle"’” sigmoid function
do(z) e’ l+e -1 1

sigmoid gate

1.00 @‘1\ -1.00 é}‘(\ 0.37 @ 1.37 /1;)(\ 0.73
020 | \_/ -020 \_9 053 \_/ 05 \_J[Tmw

\

(0.73) * (1-0.73) =0.2

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient... “switcher”?

_10.00 /55 -20.00
2.00 1.00

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Gradients add at branches

+

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

class ComputationalGraph(object):
() ae ()P -

def forward(inputs):

# 1. [pass inputs to input gates...]

# 2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Implementation: forward/backward API

X class MultiplyGate(object):
def forward(x,y):

Z = X¥y

return z
def backward(dz):

# dx = ... #todo

#dy = ... #todo oL

return [dx, dy] 02

A
oL
0

(x,y,z are scalars)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Implementation: forward/backward API

class MultiplyGate(object):
X def forward(x,y):
Z = X*y
self.x = x # must keep these around!
self.y =y
return z
def backward(dz):
dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

(x,y,z are scalars)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Q: Why is it back-propagation?

- » OUtpUtS \
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Why is it back-propagation? i.e. why go backwards?

- » outputsy
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

reverse-mode differentiation (if you want effect of many things on one thing)
<

@ for many different x
Or

>
forward-mode differentiation (if you want effect of one thing on many things)

@ for many different y
Oz

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Why is it back-propagation? i.e. why go backwards?

- » outputsy
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

reverse-mode differentiation (if you want effect of many things on one thing)
<

@ for many different x
Or

More common simply because many nets have a scalar loss function as output.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Gradients for vector data

This is now the Jacobian matrix
T (x,y,z are now vectors) (derivative of each element of z w.r.t.
each element of x)

&
f .
<
oL
y @} “local gradient” Oz
gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Vectorized operations

—p R
4096-d e c a0y S 4096
input vector — (x) = max( ) X) I output vector
—_» (elementwise) | —»
—p >

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Vectorized operations

4096-d —>
input vector — >

Q: what is the size
of the Jacobian
matrix?

oL _ |9f

f(x) = max(0,x)
(elementwise)

oz 045

oL
of

Jacobian matrix

—> 4096-d

L, output vector

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Vectorized operations

4096-d —>
input vector — >

Q: what is the size
of the Jacobian
matrix?

[4096 x 4096!]

oL __|0f|oL

f(x) = max(0,x)
(elementwise)

Oz Oz | Of

Jacobian matrix

N 4096-d
L, output vector

Q2: what does it
look like?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Vectorized operations

in practice we process an
entire minibatch (e.g. 100) of
examples at one time:

100 4096-d —>
input vectors —»

f(x) = max(0,x)
(elementwise)

—> 100 4096-d
> output vectors

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

Why don’t we compute it that way?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Writing SVM/Softmax

E.g. for the SVM:

margins

f.

# receive W (weights), X

# forward pass (we hg#e 8A1nes)

scores = #...

margins = #...

data loss = #...

Li = )., max(0,s5 — sy, +1)

S
@ 9—6—

reg loss = #...

U

R(W)

loss = data loss + reg loss

# backward pass (we have 5 lines)

dmargins = # ... (optionally, we go direct to dscores)
dscores = #. ..

dw = #...

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Summary so far

* neural nets will be very large: no hope of writing down gradient formula
by hand for all parameters

* backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

* implementations maintain a graph structure, where the nodes
implement the forward() / backward() API.

 forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

e backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Neural Network

2-layer Neural Network f p— W2 max((), W1il7)

3-layer Neural Network: f - WS max([), Wg ma,x(O, WléE))

3072 100 10

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Full implementation of training a 2-layer Neural Network

needs ~11 lines:

01.
02.
03.
04.
03.
06.
07.
08.
09.
10.
ks

X = np.array([| [0,0,1],[0,L,1],(%,0,1],[L,1,1] ]) o8 e
y = np.array([[0,1,1,0]]).T
syn0 = Z*np.random.random((3,4)) - 1
synl = 2*np.random.random((4,1)) - 1
for ] in xrange (60000):
11 = 1/(1l+np.exp(-(np.dot (X,syn0))))
12 = 1/ (1l+np.exp(-(np.dot (11,synl))))
12 delta = (y = 12)%(12x(1-12})
11 delta = 12 delta.dot(synl.T) * (11 * (1-11))
synl += 11.T.dot (12 delta)
synl0 += X.T.dot (1l delta)

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Assignment: Writing 2layer Net
Stage your forward/backward computation!

# receive W1,W2,b1,b2 (weights/biases), X (data)

# forward pass:

hl = #... function of X,W1,bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)

# backward pass:

dscores = #...
dhl,dw2,db2 = #...
dWl,dbl = #...

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Activation Functions

Sigmoid

o(z) =1/(1+e7)

tanh tanh(x)

RelU max(0,x)

0.
.2
-5

1o
08
06

10
05
5 10

10}

Leaky RelU d

max(0.1x, x)

Maxout max(w! z + by, wl T + by)
ELU z ifz >0

Jw) = {a (exp(z) 1) ifz<0

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘




Neural Networks: Architectures

put layer

output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2
“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net”
“Fully-connected” layers

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Example Feed-forward computation of a Neural Network

class Neuron:
£ ...
def neuron_tick(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number """
cell body sum = np.sum(inputs * self.weights) + self.bias
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function
return firing rate

We can efficiently evaluate an entire layer of neurons.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Example Feed-forward computation of a Neural Network

INST
Oy
. tput layer

input layer
hidden layer 1 hidden layer 2

# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3xl)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (IxI]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Setting the number of layers and their sizes

3 hidden neurons

6 hiden neurons 20 hidden neurons

|

more neurons = more capacity

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




 we arrange neurons into fully-connected layers

e the abstraction of a layer has the nice property that it allows
us to use efficient vectorized code (e.g. matrix multiplies)

 neural networks are not really neural

 neural networks: bigger = better (but might have to regularize
more strongly)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
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