
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

16 Jan 2018

BACKPROPAGATION:
INTRODUCTION

How do we learn weights?

• Perturn the weights and check

Backpropagation

• Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output 𝑦�

• During Training: Use 𝑦� to compute a scalar cost 𝐽(𝜃)
• Backpropagation allows information to flow backwards from

cost to compute the gradient

Backpropagation

• From the training data we don’t know what the hidden units
should do

• But, we can compute how fast the error changes as we change
a hidden activity

• Use error derivatives w.r.t hidden activities
• Each hidden unit can affect many output units and have

separate effects on error – combine these effects
• Can compute error derivatives for hidden units efficiently (and

once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Computational Graph

x

W

* hinge
loss

R

+ L s (scores)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolutional Network
(AlexNet)

input image

weights

loss

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Chain rule

We can write

Where ℎ 𝑥,𝑦 = 𝑥 + 𝑦, and 𝑔 𝑎, 𝑏 = 𝑎 ∗ 𝑏

By the chain rule, 𝑑𝑑

𝑑𝑑
= 𝑑𝑑

𝑑ℎ
𝑑𝑑
𝑑𝑑

 and 𝑑𝑑
𝑑𝑦

= 𝑑𝑔
𝑑ℎ

𝑑𝑑
𝑑𝑦

f 𝑥,𝑦, 𝑧 = 𝑔 ℎ 𝑥,𝑦 , 𝑧

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
17

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Differentiating a Computation Graph

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

“local gradient”

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

“local gradient”

gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

“local gradient”

gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

“local gradient”

gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

“local gradient”

gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another backprop example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
30

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

(-1) * (-0.20) = 0.20

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

sigmoid function

sigmoid gate

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient… “switcher”?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Gradients add at branches

+

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

complex graph

inputs x outputs y

Q: Why is it back-propagation?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

reverse-mode differentiation (if you want effect of many things on one thing)

forward-mode differentiation (if you want effect of one thing on many things)

for many different x

for many different y

complex graph

inputs x outputs y

Why is it back-propagation? i.e. why go backwards?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

reverse-mode differentiation (if you want effect of many things on one thing)

for many different x

complex graph

inputs x outputs y

Why is it back-propagation? i.e. why go backwards?

More common simply because many nets have a scalar loss function as output.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

Gradients for vector data

“local gradient”

gradients

This is now the Jacobian matrix
(derivative of each element of z w.r.t.
each element of x)

(x,y,z are now vectors)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the size
of the Jacobian
matrix?

Jacobian matrix

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the size
of the Jacobian
matrix?
[4096 x 4096!]

Q2: what does it
look like?

Vectorized operations

Jacobian matrix

f(x) = max(0,x)
(elementwise)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

max(0,x)
(elementwise)

100 4096-d
input vectors

100 4096-d
output vectors

Vectorized operations

in practice we process an
entire minibatch (e.g. 100) of
examples at one time:

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

Why don’t we compute it that way?

f(x) = max(0,x)
(elementwise)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Writing SVM/Softmax
Stage your forward/backward computation!

E.g. for the SVM:

margins

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Summary so far

• neural nets will be very large: no hope of writing down gradient formula

by hand for all parameters

• backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

• implementations maintain a graph structure, where the nodes
implement the forward() / backward() API.

• forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

• backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

2-layer Neural Network

3-layer Neural Network:

x h W1 s W2

3072 100 10

Neural Network

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Full implementation of training a 2-layer Neural Network
needs ~11 lines:

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Assignment: Writing 2layer Net
Stage your forward/backward computation!

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky ReLU
max(0.1x, x)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example Feed-forward computation of a Neural Network

We can efficiently evaluate an entire layer of neurons.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example Feed-forward computation of a Neural Network

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Setting the number of layers and their sizes

more neurons = more capacity

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
68

Summary

• we arrange neurons into fully-connected layers

• the abstraction of a layer has the nice property that it allows
us to use efficient vectorized code (e.g. matrix multiplies)

• neural networks are not really neural

• neural networks: bigger = better (but might have to regularize
more strongly)

	CS60010: Deep Learning
	Backpropagation: Introduction
	How do we learn weights?
	Backpropagation
	Backpropagation
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 68

