CS60010: Deep Learning

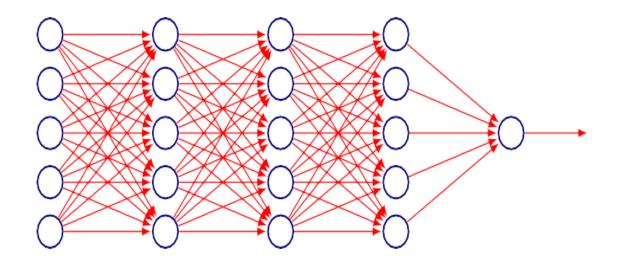
Sudeshna Sarkar

Spring 2018

16 Jan 2018

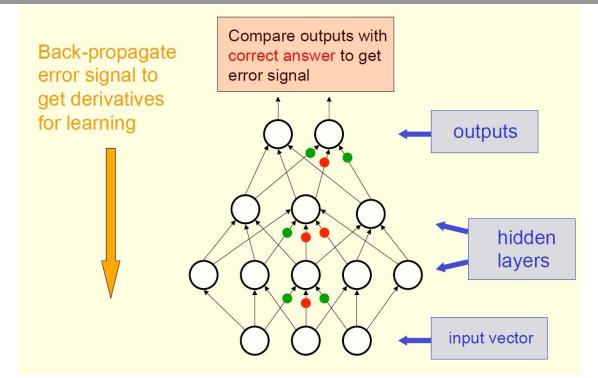
BACKPROPAGATION: INTRODUCTION

How do we learn weights?



• Perturn the weights and check

Backpropagation

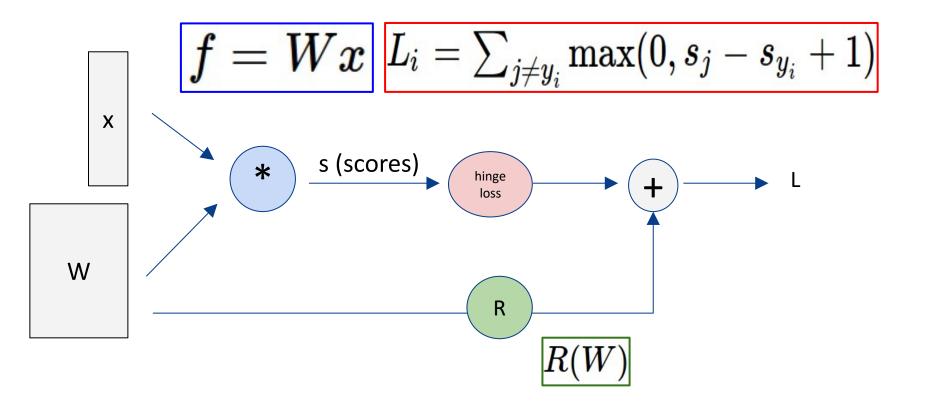


- Feedforward Propagation: Accept input x, pass through intermediate stages and obtain output \hat{y}
- **During Training**: Use \hat{y} to compute a scalar cost $J(\theta)$
- Backpropagation allows information to flow backwards from cost to compute the gradient

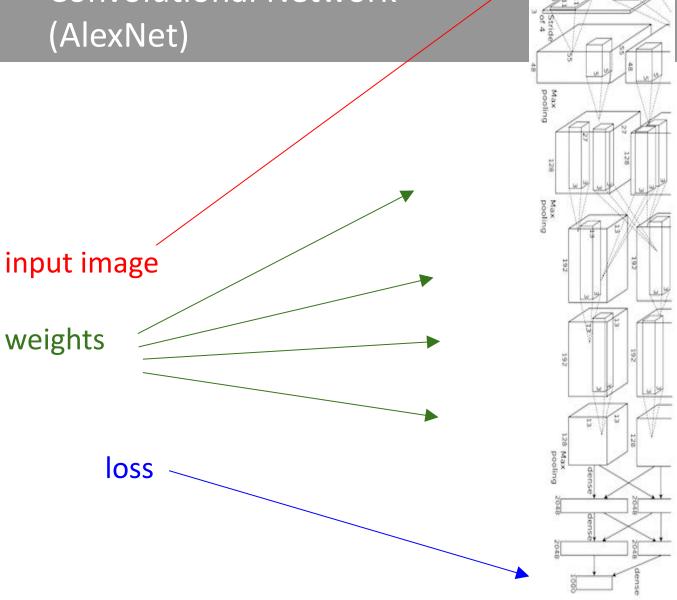
Backpropagation

- From the training data we don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity
- Use error derivatives w.r.t hidden activities
- Each hidden unit can affect many output units and have separate effects on error – combine these effects
- Can compute error derivatives for hidden units efficiently (and once we have error derivatives for hidden activities, easy to get error derivatives for weights going in)

Computational Graph

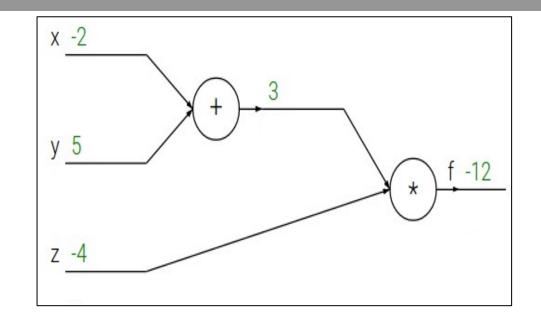


Convolutional Network (AlexNet)



$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4



Chain rule

We can write

$$f(x, y, z) = g(h(x, y), z)$$

Where h(x, y) = x + y, and g(a, b) = a * b

By the chain rule,
$$\frac{df}{dx} = \frac{dg}{dh}\frac{dh}{dx}$$
 and $\frac{df}{dy} = \frac{dg}{dh}\frac{dh}{dy}$

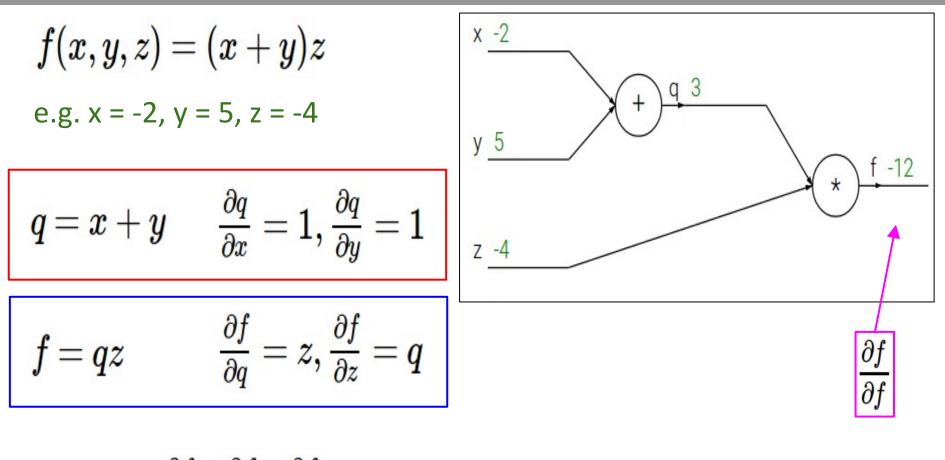
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



Want:

$$rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial z}$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$
e.g. x = -2, y = 5, z = -4
$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$Chain rule: \qquad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2, y = 5, z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

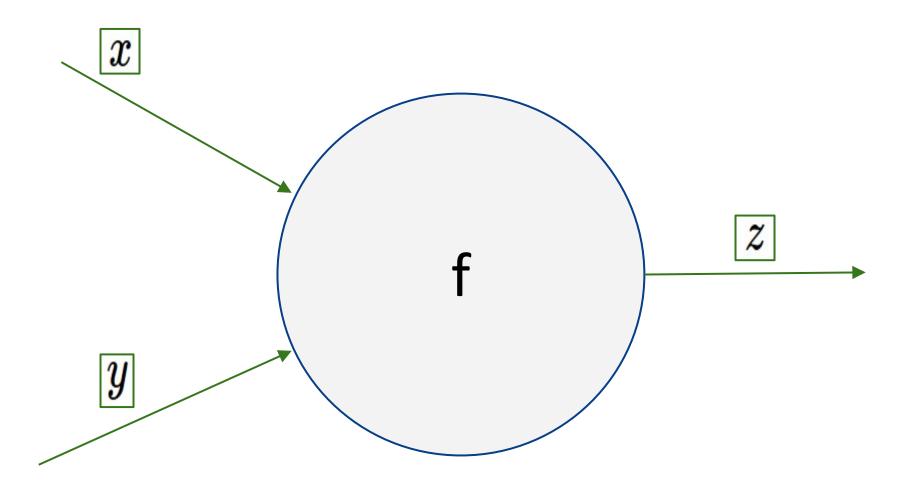
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

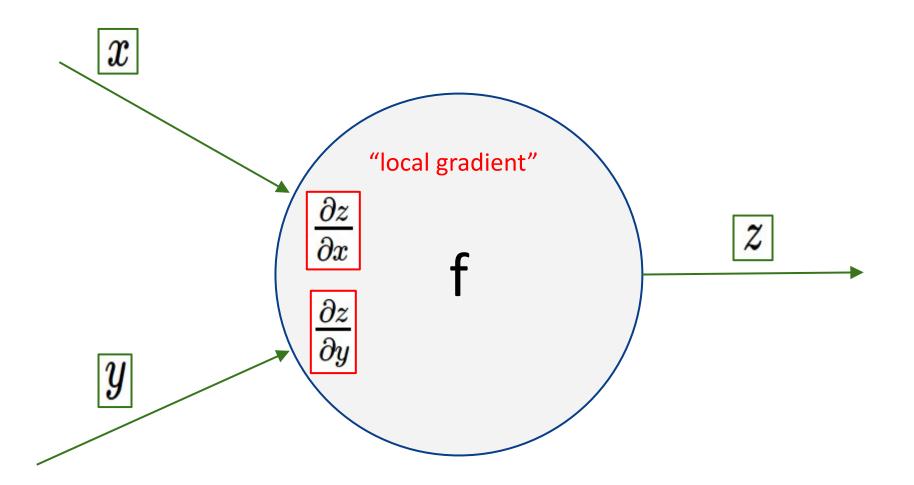
$$f(x, y, z) = (x + y)z$$
e.g. $x = -2, y = 5, z = -4$

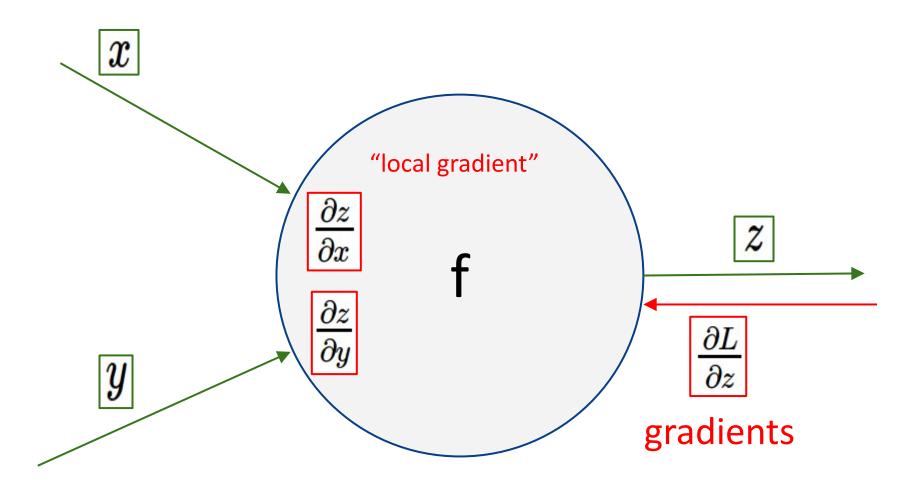
$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

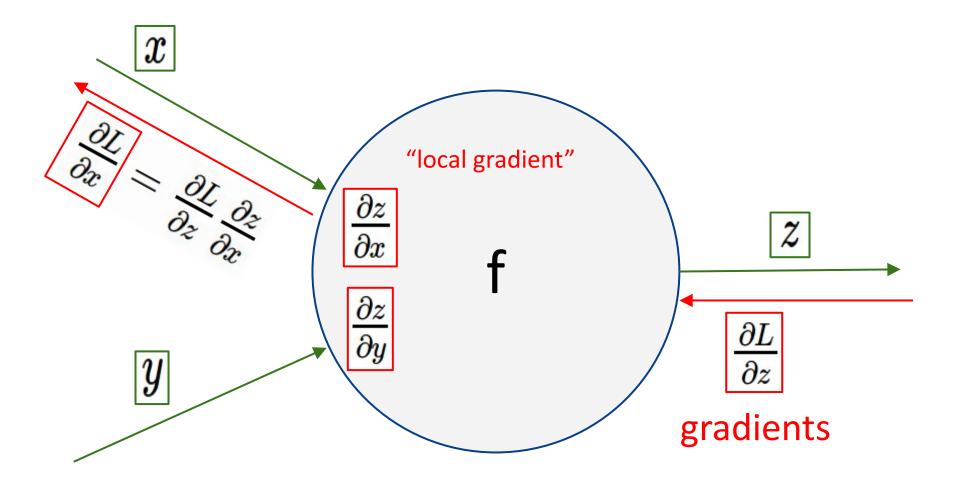
$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

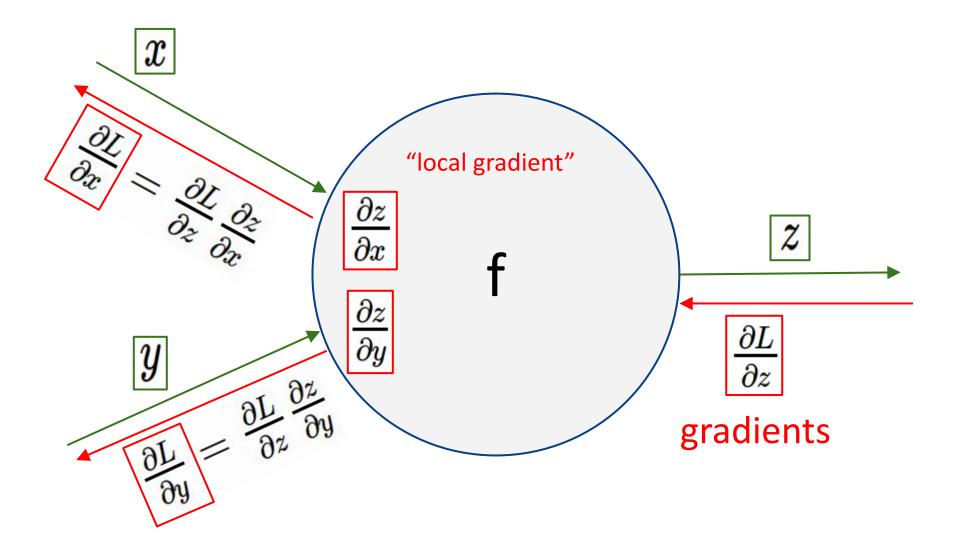
$$Chain rule: \qquad \frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

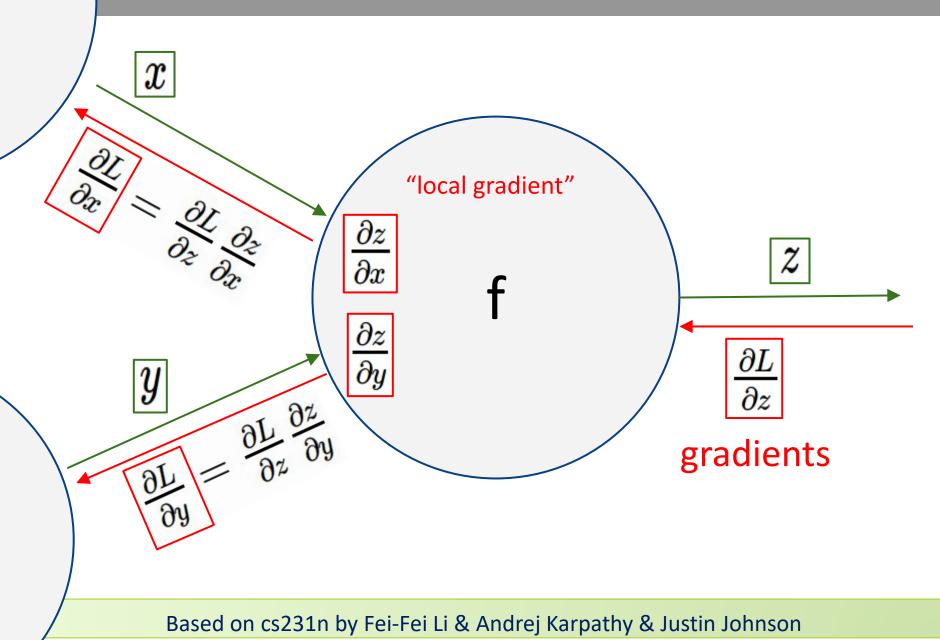




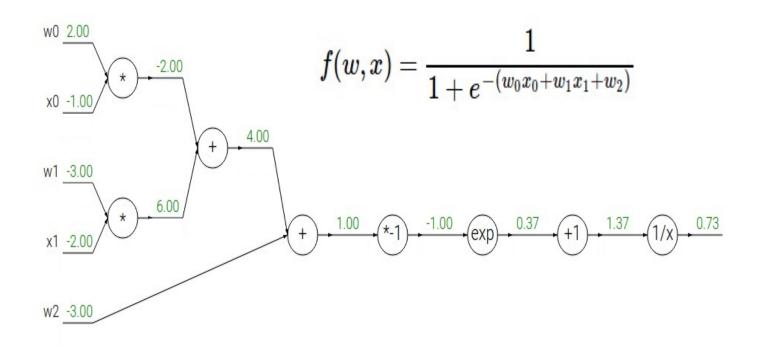


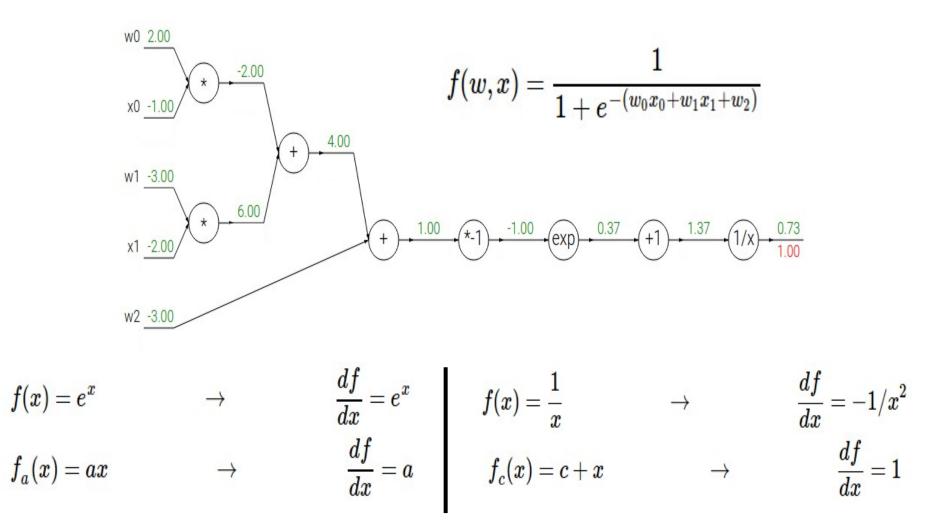


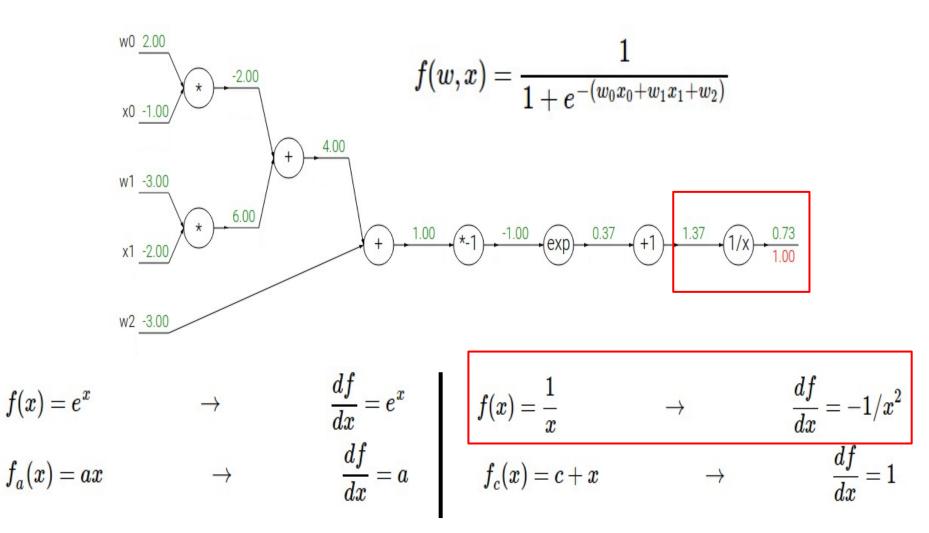


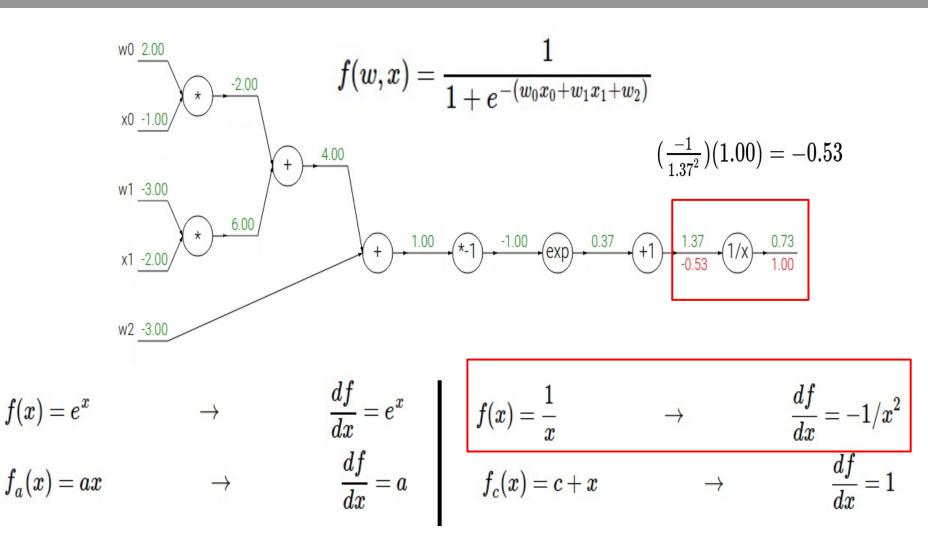


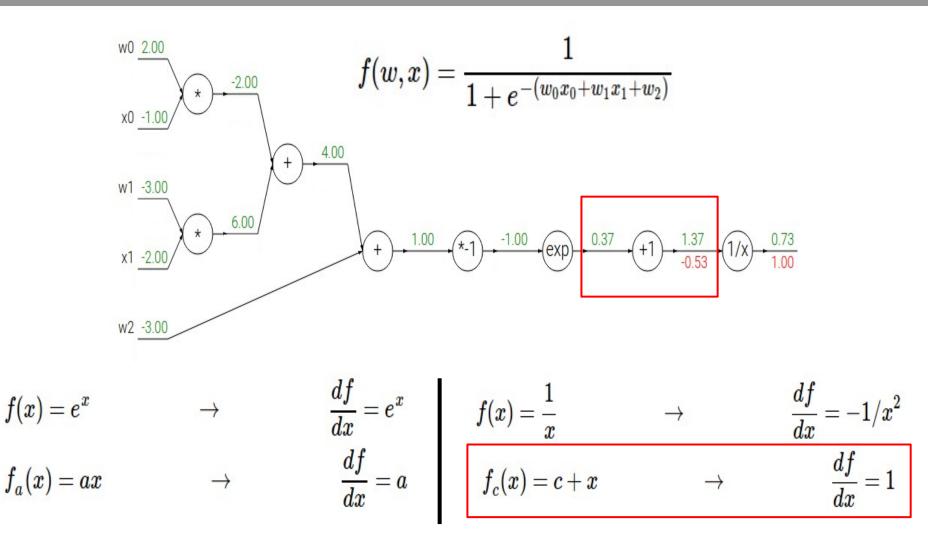
Another backprop example:

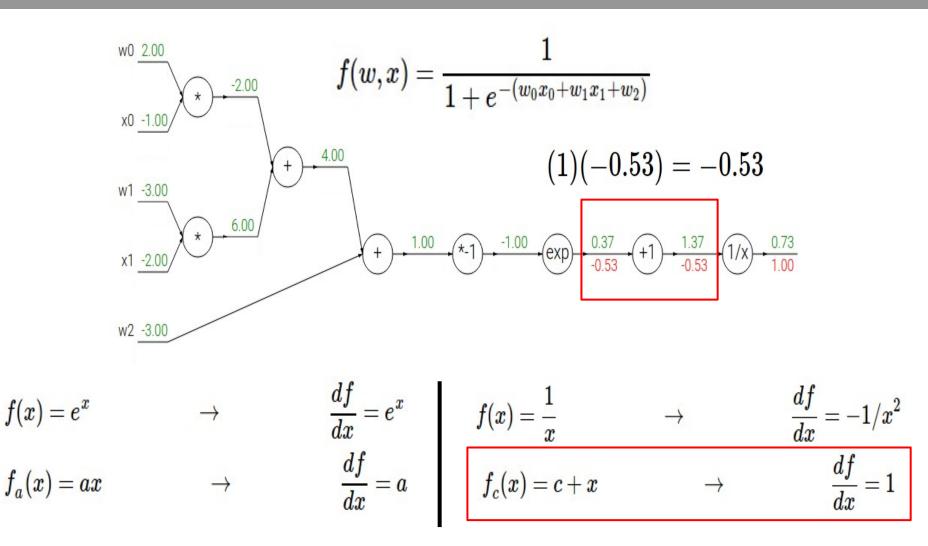


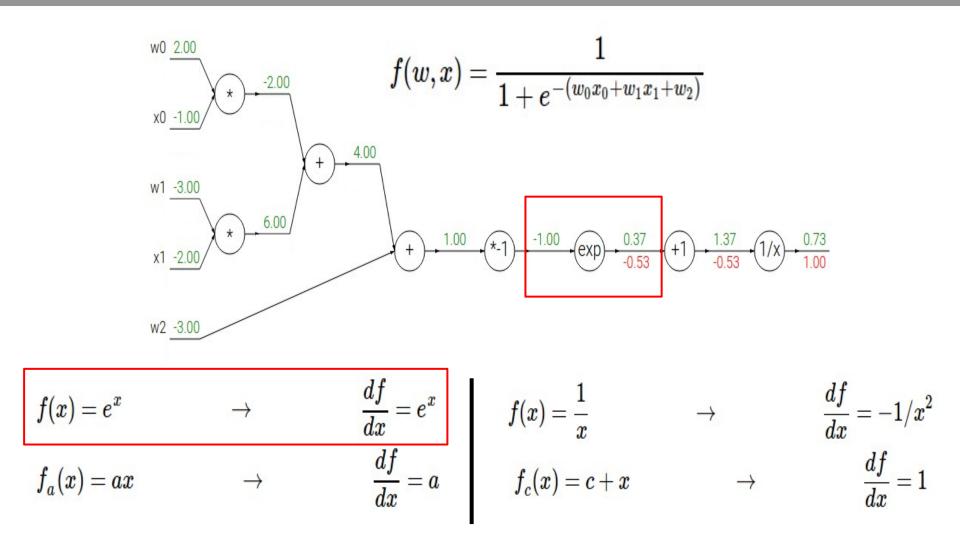


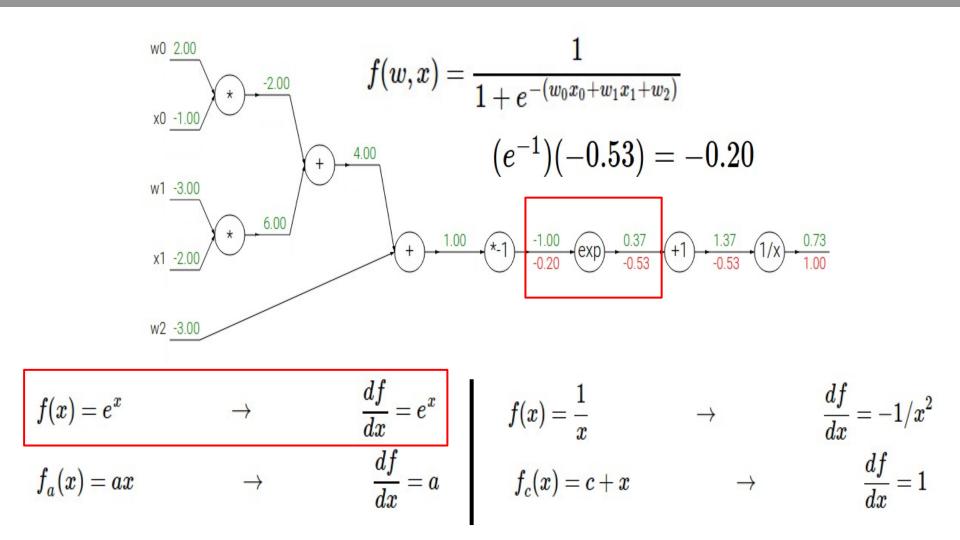


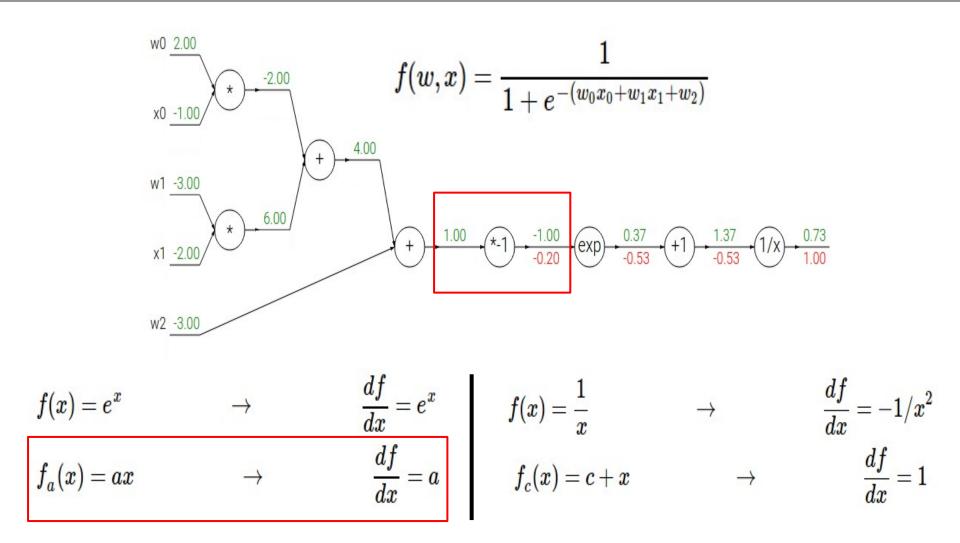


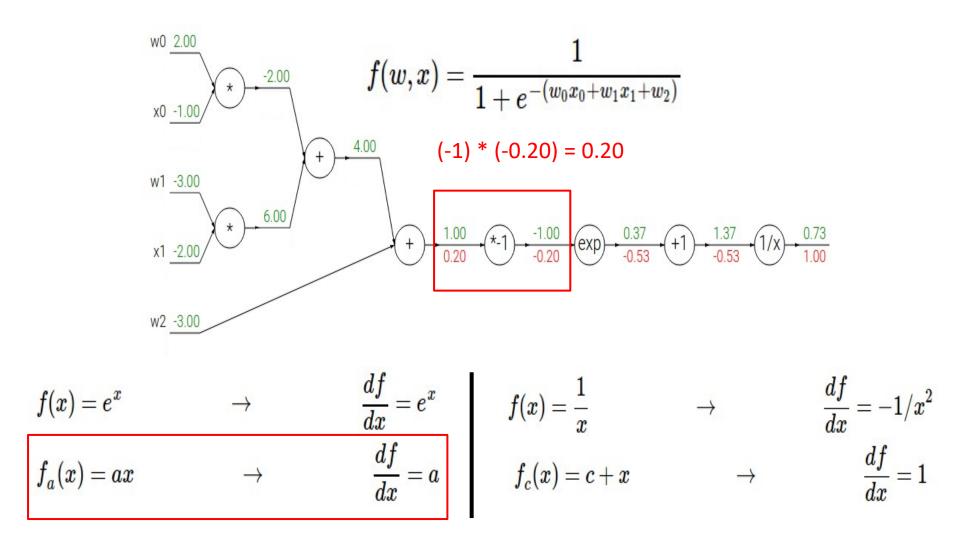


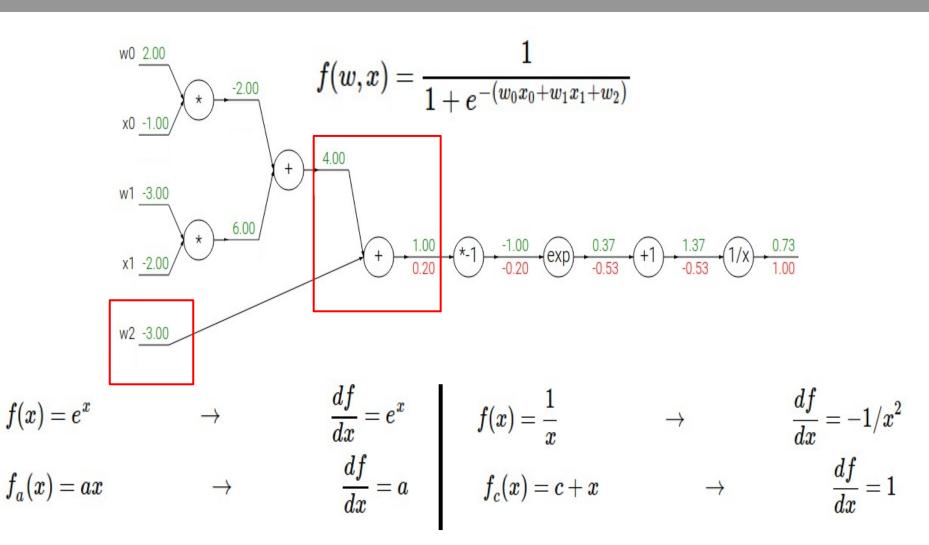


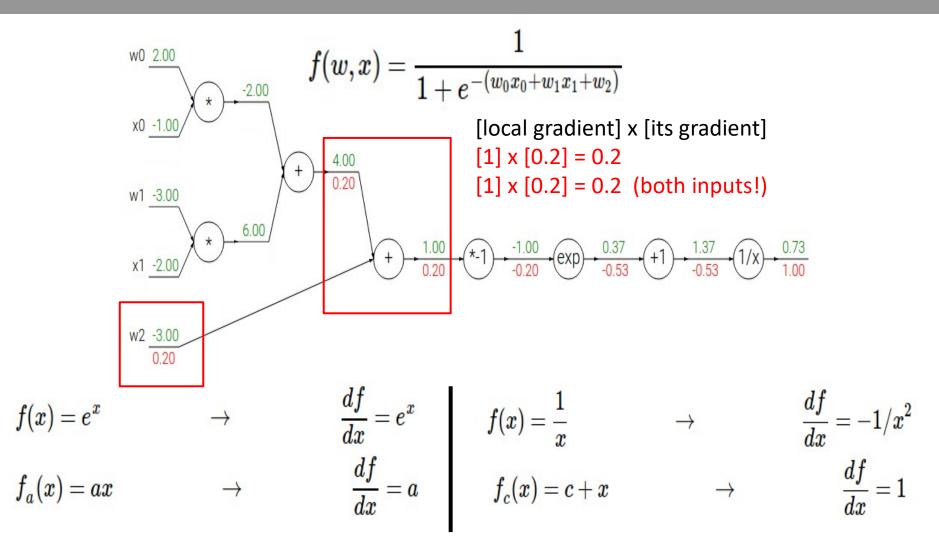


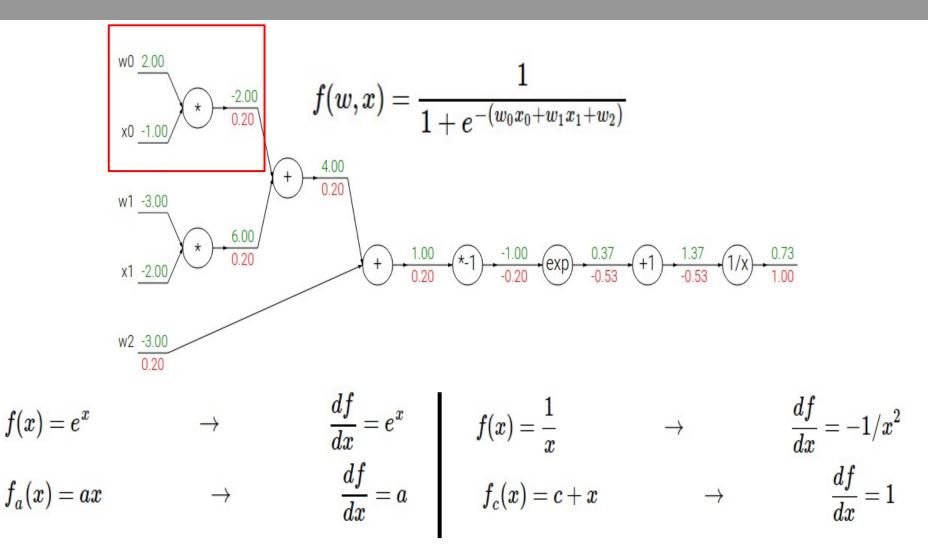


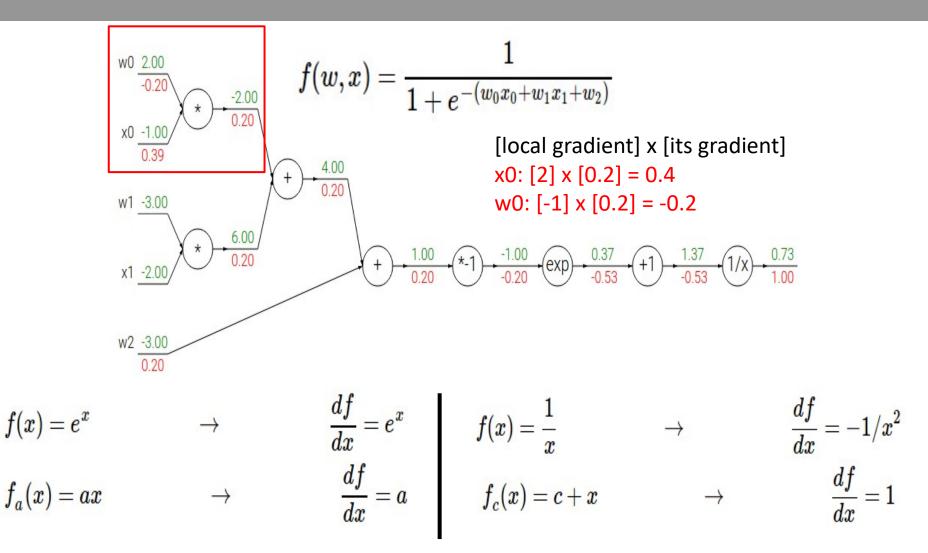




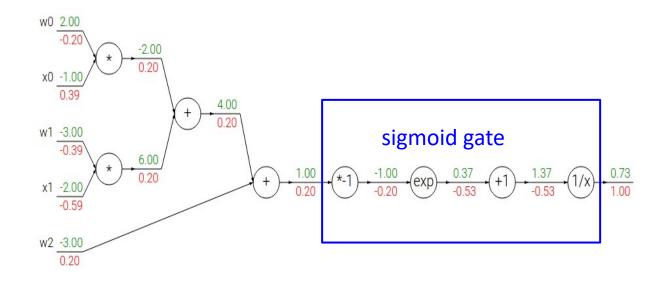




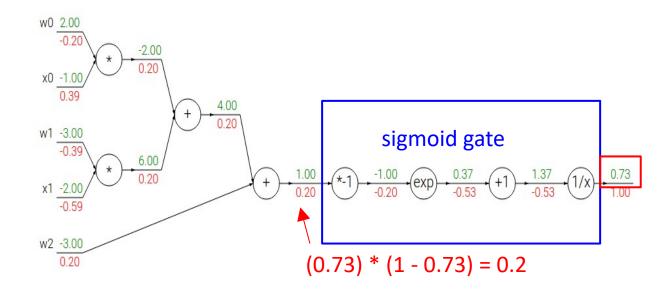




$$\begin{aligned} f(w,x) &= \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} & \sigma(x) &= \frac{1}{1 + e^{-x}} & \text{sigmoid function} \\ \frac{d\sigma(x)}{dx} &= \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x))\sigma(x) \end{aligned}$$

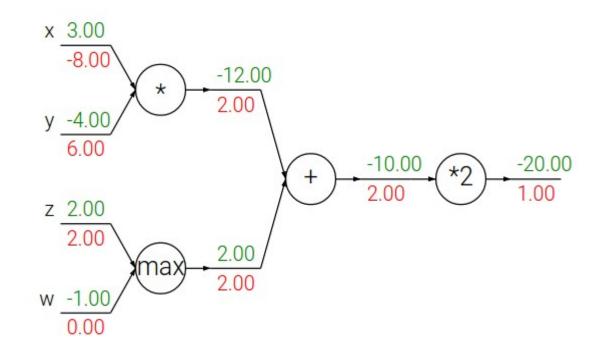


$$\begin{aligned} f(w,x) &= \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} & \sigma(x) &= \frac{1}{1 + e^{-x}} & \text{sigmoid function} \\ \frac{d\sigma(x)}{dx} &= \frac{e^{-x}}{(1 + e^{-x})^2} &= \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x))\sigma(x) \end{aligned}$$

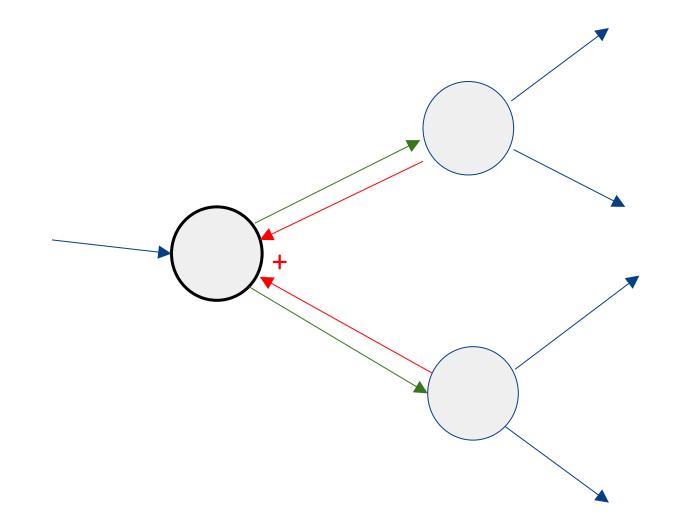


Patterns in backward flow

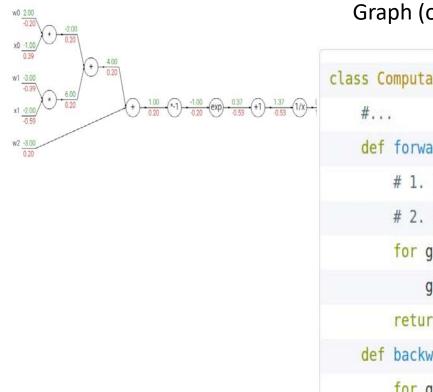
add gate: gradient distributor
max gate: gradient router
mul gate: gradient... "switcher"?



Gradients add at branches



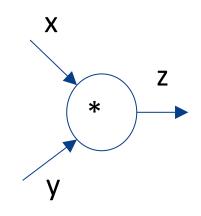
Implementation: forward/backward API



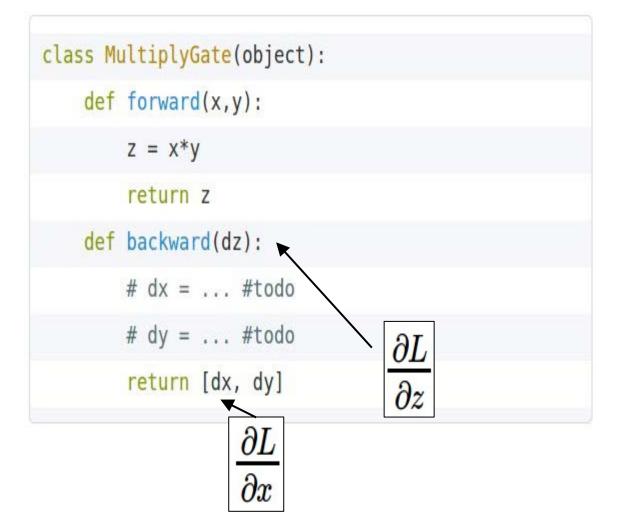
Graph (or Net) object. (Rough psuedo code)

lass ComputationalGraph(object):
#
<pre>def forward(inputs):</pre>
<pre># 1. [pass inputs to input gates]</pre>
<pre># 2. forward the computational graph:</pre>
<pre>for gate in self.graph.nodes_topologically_sorted():</pre>
gate.forward()
<pre>return loss # the final gate in the graph outputs the loss</pre>
<pre>def backward():</pre>
<pre>for gate in reversed(self.graph.nodes_topologically_sorted()):</pre>
<pre>gate.backward() # little piece of backprop (chain rule applied)</pre>
<pre>return inputs_gradients</pre>

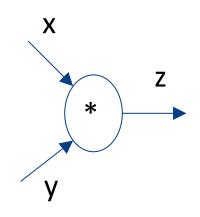
Implementation: forward/backward API



(x,y,z are scalars)



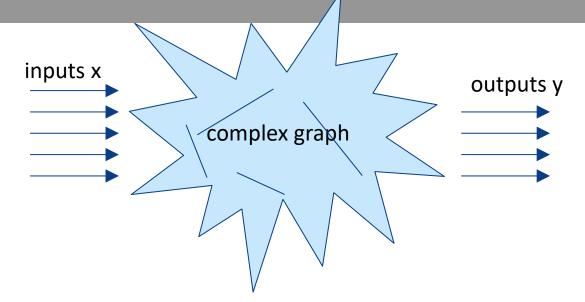
Implementation: forward/backward API



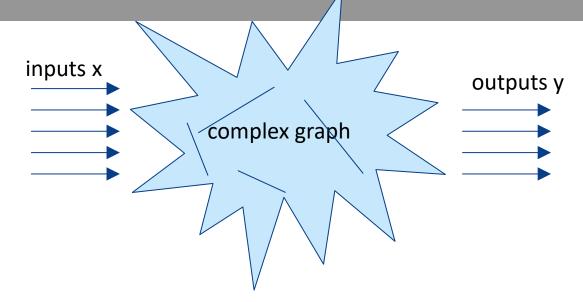
Lass m	<pre>ultiplyGate(object):</pre>
def	<pre>forward(x,y):</pre>
	$z = x^*y$
	<pre>self.x = x # must keep these around!</pre>
	self.y = y
	return z
def	<pre>backward(dz):</pre>
	dx = self.y * dz # [dz/dx * dL/dz]
	dy = self.x * dz # [dz/dy * dL/dz]
	return [dx, dy]

(x,y,z are scalars)

Q: Why is it back-propagation?



Why is it back-propagation? i.e. why go backwards?



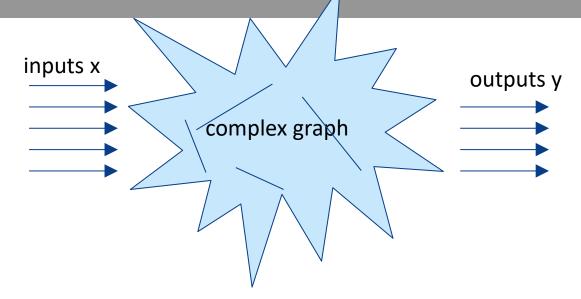
reverse-mode differentiation (if you want effect of many things on one thing)

 $\frac{\partial y}{\partial x}$ for many different x

forward-mode differentiation (if you want effect of one thing on many things)

$$\frac{\partial y}{\partial x}$$
 for many different y

Why is it back-propagation? i.e. why go backwards?

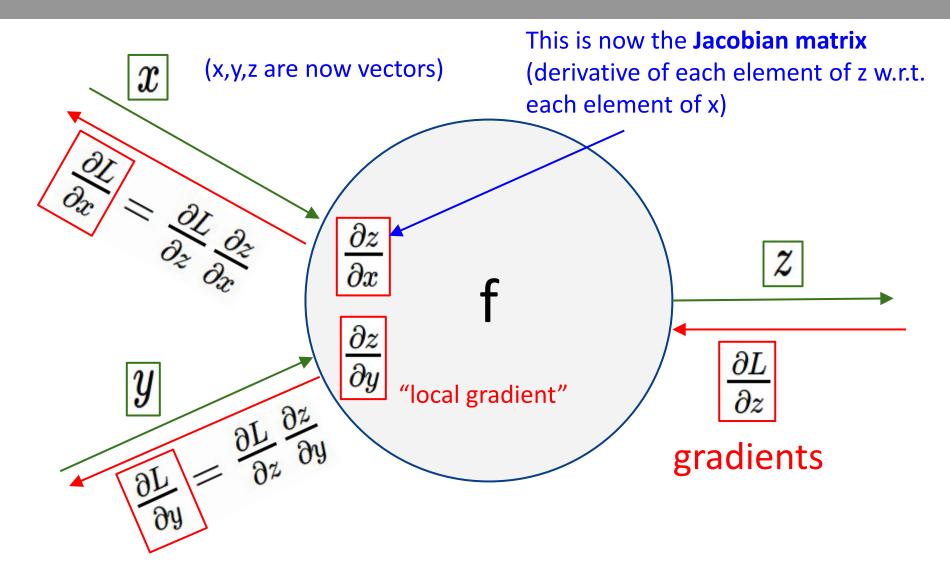


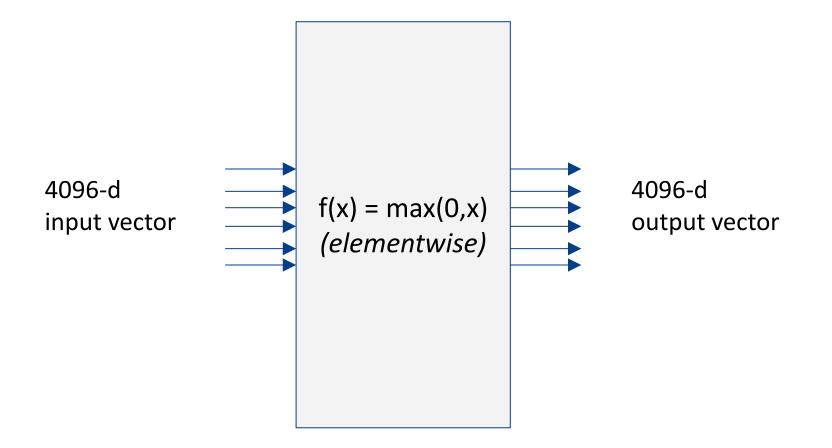
reverse-mode differentiation (if you want effect of many things on one thing)

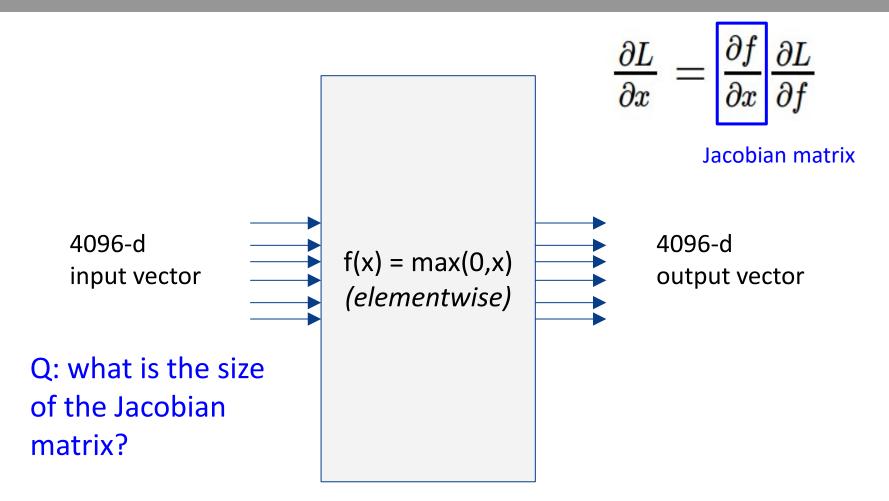
 $\frac{\partial y}{\partial x}$ for many different x

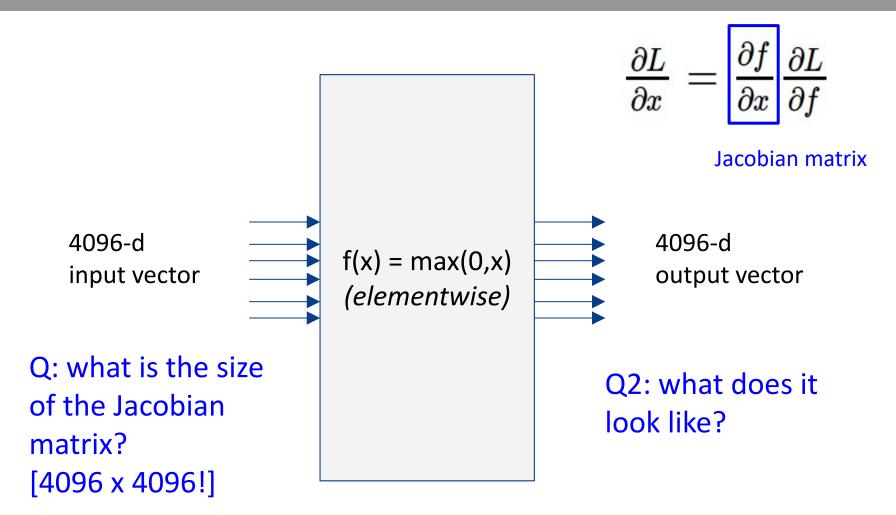
More common simply because many nets have a scalar loss function as output.

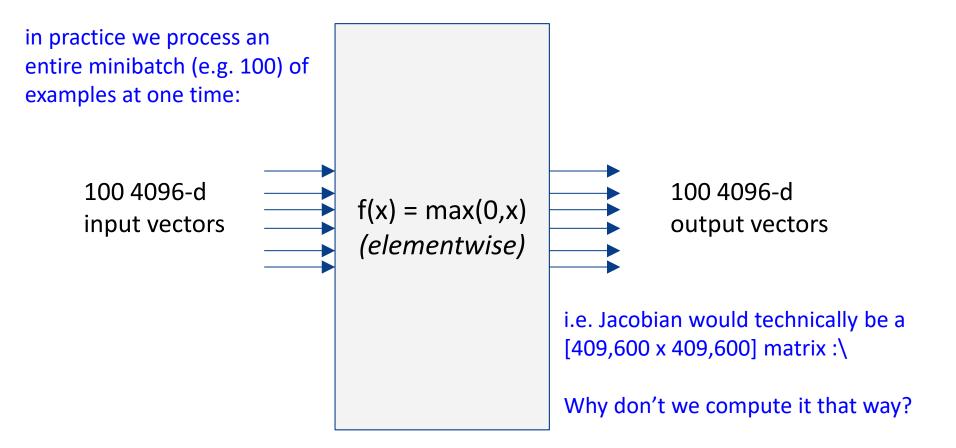
Gradients for vector data



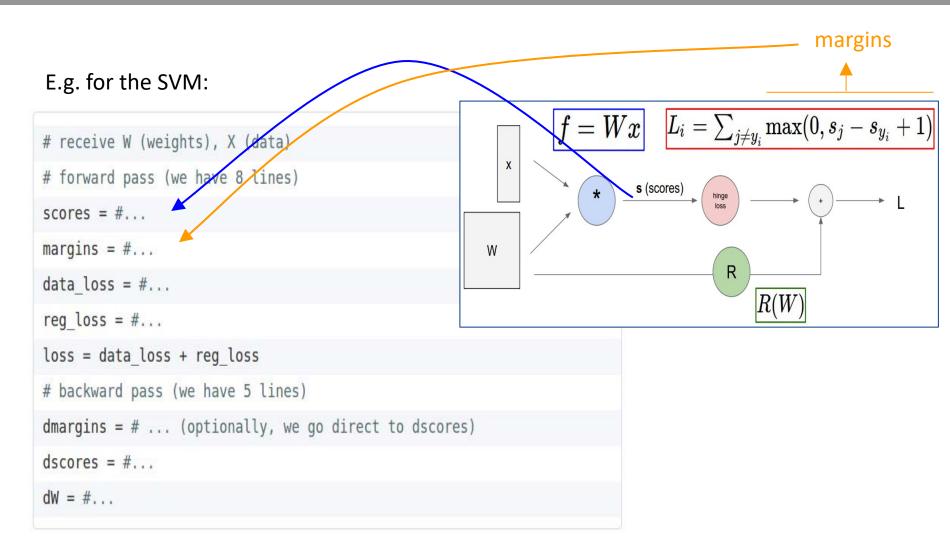








Writing SVM/Softmax Stage your forward/backward computation!

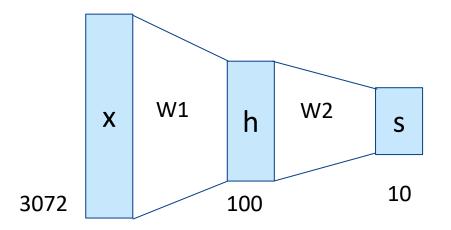


Summary so far

- neural nets will be very large: no hope of writing down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API.
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs.

Neural Network

2-layer Neural Network $f = W_2 \max(0, W_1 x)$ 3-layer Neural Network: $f = W_3 \max(0, W_2 \max(0, W_1 x))$



Full implementation of training a 2-layer Neural Network needs ~11 lines:

01.	X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])	0
02.	y = np.array([[0, 1, 1, 0]]).T	
03.	syn0 = 2*np.random.random((3,4)) - 1	
04.	syn1 = 2*np.random.random((4,1)) - 1	
05.	for j in xrange(60000):	
06.	l1 = 1/(1+np.exp(-(np.dot(X, syn0))))	
07.	12 = 1/(1+np.exp(-(np.dot(11,syn1))))	
08.	12 delta = (y - 12)*(12*(1-12))	
09.	11 delta = 12 delta.dot(syn1.T) * (l1 * (1-l1))	
10.	syn1 += 11.T.dot(12 delta)	
11.	syn0 += X.T.dot(l1 delta)	

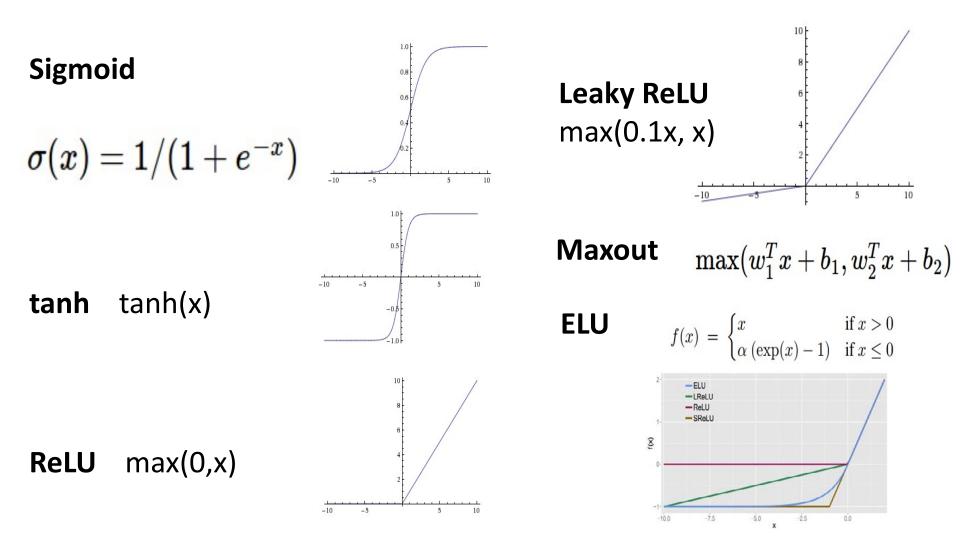
from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Assignment: Writing 2layer Net

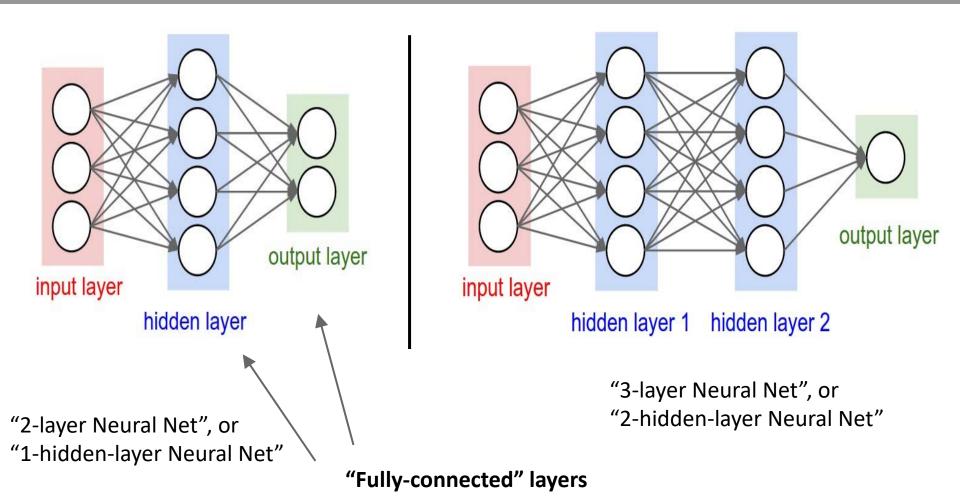
Stage your forward/backward computation!

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = \#...
dh1, dW2, db2 = #...
dW1,db1 = #...
```

Activation Functions



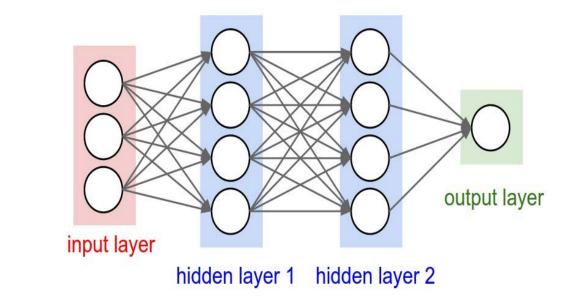
Neural Networks: Architectures



```
class Neuron:
    # ...
    def neuron_tick(inputs):
        """ assume inputs and weights are 1-D numpy arrays and bias is a number """
        cell_body_sum = np.sum(inputs * self.weights) + self.bias
        firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
        return firing_rate
```

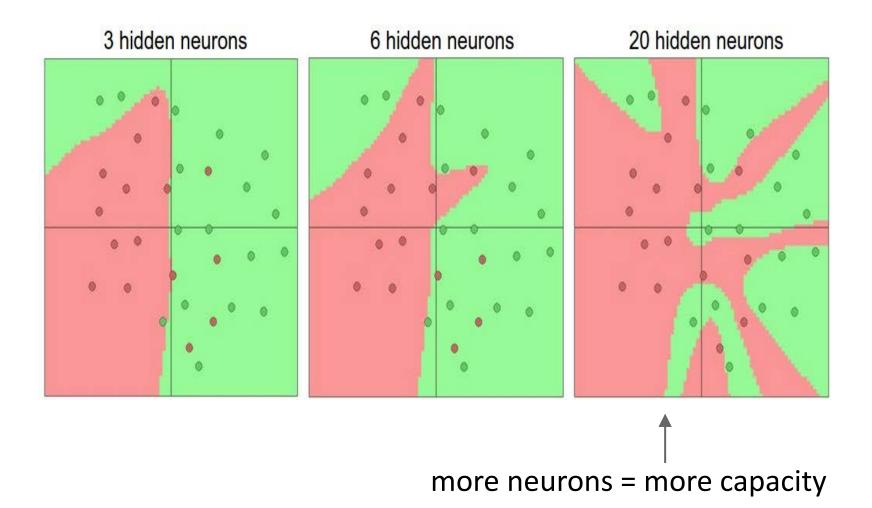
We can efficiently evaluate an entire layer of neurons.

Example Feed-forward computation of a Neural Network



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Setting the number of layers and their sizes



Summary

- we arrange neurons into fully-connected layers
- the abstraction of a **layer** has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- neural networks are not really *neural*
- neural networks: bigger = better (but might have to regularize more strongly)