Sudeshna Sarkar
Spring 2018

16 Jan 2018

BACKPROPAGATION:
INTRODUCTION

How do we learn weights?

- Perturn the weights and check

Backpropagation

Compare outputs with
Back-propagate correct answer to get

error signal to error signal

get derivatives
for learning 4 outputs
hidden
layers
A input vector

- Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output y

- During Training: Use ¥y to compute a scalar cost /(0)
- Backpropagation allows information to flow backwards from
cost to compute the gradient

Backpropagation

- From the training data we don’t know what the hidden units
should do

- But, we can compute how fast the error changes as we change
a hidden activity

» Use error derivatives w.r.t hidden activities

- Each hidden unit can affect many output units and have
separate effects on error — combine these effects

- Can compute error derivatives for hidden units efficiently (and
once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)

Computational Graph

= Wz|lLi =)_;,, max(0,s; — sy, +1)

s (scores) —
> (o — L

(R
O

®

N =

R(W)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolutional Network
(AlexNet)

input image

weights 4:

loss

z51
4 | E—

el gy

Guypo-sa

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

X -2
f(z,9,2) = (z+y)z F
e.g.x=-2,y=5,z=-4 v 5 a
Z -4

f-12

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

We can write
f(x,y,2) = g(h(x,y),2)
Where h(x,y) = x +y,and g(a,b) =ax*b

: df _ dgdh df _ dgdh
By the chain rule, — = ——and —= ——
Y "dx dhdx dy dhdy

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(way: Z) = (33 +y)z K38

3
eg.x=-2,y=5,z2=-4 +)
y 9

Want: af 3f 3f
Or’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(may:z):($+y)z X -2

tL
eg.x=-2,y=52z2=-4 i
y 9

Want: 9f 0f 0Of
Or’ Oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

fle,y,2) = (z +)2 =

eg.x=-2,y=5,z=-4 AL
¥ 0

want: 9L O O
0’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(maya Z) = (37 +y)z 3
eg.x=-2,y=52z=-4 5{:>®‘l

Want: Of O0f Of
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph
f(2,y,2) = (z+y)2 X 2

eg.x=-2,y=5,z2=-4 4)43
¥ 0

of of
f=¢ g o 1 of
02
Want: of of 9
0z’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph
f(l‘,y,Z) = (:c—l—y)z ol

e.g.x=-2,y=5,z=-4 ALE
Yy 9

want: 9L OF O
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

Ty
Or’ oy’ 02

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(:B,y,Z) = (CB +y)z
eg.x=-2,y=512=-4

q:ﬂ:-}-y %:1}%:1

want: 9L O O
Or’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(ﬂ},y,Z) — (:B +y)z X 2
e.g.x=-2,y=5,z=-4

ey
0r’ oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

f(ﬂ?,y,Z) = (37 -I-y)z
eg.x=-2,y=512=-4

of of
=z 3 =45 =4
Want: oL 9F O
0r’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Differentiating a Computation Graph

fle,y,2) = (z +y)z
eg.x=-2,y=512=-4

af af
f:qz g ZZ’E —4 Chain rule: ﬁ
o _ow
Want: of 9f o or Bq Oz
Or’ Oy’ 0z

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

L

“local gradient”

£
f >
<<
oL
Y 0z
gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

L
\ % “local gradient”
N
<
s 69\‘%’ 2
2 f o
-
oL
Y 0z
gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

O <2
N : % N
<<
oL
0z
gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

% Z
3, f R
oL
0z
gradients

/ Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another backprop example:

w0 2.00 1

flw,z) =

14 E—(wumu+wlml-|-w2)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

w0 2.00

|
14 E—(wumu-l—wlmrl—wz)

f(‘w,iﬂ) o

1.00 @ -1.00 @ 037 @ 137 @ 0.73

St L A/ /1m0

: df . 1 d
fizli=e iy %:E f(m)zi - é——l/m2
S

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

fw,z) =

1 _1_ e —(‘lm].’ﬂu -Hﬂ'l Iy -Hﬂg)

10 A3\ A0 2N 07 AN g 07
Not o/ N/ o/ 10

s = e flo) = & g
N T R

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

fw,z) =

1+ e~ (wozotwyz1 +uy)

(557)(1.00) = ~0.53

10 A3\ A0 2N 037 AN g o7
Not o/ N EE AN T

d
s = 2= | |- - & g
folz)=az E g:a f(z)=c+z — %:1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

f(w,z) =

1+e —(wozo+wi 1 +wy)

1.00 @ -1.00 @ 037 @ 137 @ 073
NG AN 7 BN A TN\ AT

w2 -3.00

s = e flo) = B g
e e =

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 200 1

f(’lﬂ,iﬂ) e

e o~ (wozotwi 21 +up)

(1)(-0.53) = —0.53

100 G\ 100 N1 087 N 137 @ 073
el w 053 _/ 0583\ 100

w2 -3.00

s = 2= | fo- . B g
folz)=az 3 g:a f(z)=c+a - %_1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

f(w,z) =

1+e —(wozo+wi 1 +wy)

1.00 @ -1.00 @ 037 @ 137 @ 073
oot b

X1 O/ 053 053 _/ 100
w2 -300
o - df . 1 df 2
flz)=e¢ - ol fla)=~ & =1z
d
R - O I I - A

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

f(w‘.l'm) =

JEE e~ (Wozgtwiz; +ws)

(e71)(~0.53) = —0.20

100 A0 2N 037 O 137 A\ 073
U/ 0.20 @ 053 T 053 @(/ 1.00

w2 -3.00

il ¥ i flo) = K g
TEE o

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 1

f(‘lﬂ,iﬂ) e

1+ g‘(‘lﬂufﬂﬁwl z1+wy)

w2 -3.00

il i i flo) = K g
VIR i | I

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 l

f(w‘.l'm) e

(-1) * (-0.20) = 0.20

1 e~ (Wozotwy 21 +1y)

100G\ 100 @
020 _/ -020 N/ 053

w2 -3.00

il i i flo) = K g
VIR i | I

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

1
14 E—(wumn+wlz1-|—w2)

f(w,z) =

4.00

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 _/ 020 @ 053 _/ 053 _/ 100

s = e flo) = K g
T T

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

1
w0 200 _
4 flw,z) = 1 4 ¢~ (wozotwyziuy)
x0 -1.00 [local gradient] x [its gradient]
400 [1] x [0.2] = 0.2
020 [1] x [0.2] = 0.2 (both inputs!)

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 _/ 020 @ 053 _/ 053 _/ 100

f(z)=¢* - % =¢’ f(z) = % & % = -1/2°
folz)=az E g:a f(z)=c+z — %:1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another example:

w0 2.00
1

_ ‘ - f (w,:r:) =

0.0 1 4 ¢~ (wozotwrzi+uy)

020

s = e flo) = K g
T T

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Another example:

w0 2.00 f(’u} m) . 1—
o 200 : 1 4 e~ (wozotwyz+uy)
10 -1.00 o

[local gradient] x [its gradient]
x0:[2] x[0.2] =0.4
wO: [-1] x [0.2] =-0.2

1.00 @1\ -1.00 @ 037 /H\ 137 @ 073
020 _/ 020 @ 053 _/ 053 _/ 100

d
s = 2= | fo- - K g
folz)=az 3 g:a f(z)=c+a - %_1

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

f('w,:r:) = e E—(wu:.ﬁ—wlzﬁwg) ﬂ'(m) — rle"’” sigmoid function
do(z) e’ l+e -1 1

sigmoid gate

1.00 @‘1\ -1.00 é}‘(\ 0.37 @ 1.37 /1;)(\ 0.73
020 | _/ -020 _9 053 _/ 053 _/| 100

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

f('w,:r:) = e E—(wu:.ﬁ—wlzﬁwg) ﬂ'(m) — rle"’” sigmoid function
do(z) e’ l+e -1 1

sigmoid gate

1.00 @‘1\ -1.00 é}‘(\ 0.37 @ 1.37 /1;)(\ 0.73
020 | _/ -020 _9 053 _/ 05 _J[Tmw

\

(0.73) * (1-0.73) =0.2

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient... “switcher”?

_10.00 /55 -20.00
2.00 1.00

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Gradients add at branches

+

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

class ComputationalGraph(object):
() ae ()P -

def forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

X class MultiplyGate(object):
def forward(x,y):

Z = X¥y

return z
def backward(dz):

dx = ... #todo

#dy = ... #todo oL

return [dx, dy] 02

A
oL
0

(x,y,z are scalars)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Implementation: forward/backward API

class MultiplyGate(object):
X def forward(x,y):
Z = X*y
self.x = x # must keep these around!
self.y =y
return z
def backward(dz):
dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

(x,y,z are scalars)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Q: Why is it back-propagation?

- » OUtpUtS \
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Why is it back-propagation? i.e. why go backwards?

- » outputsy
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

reverse-mode differentiation (if you want effect of many things on one thing)
<

@ for many different x
Or

>
forward-mode differentiation (if you want effect of one thing on many things)

@ for many different y
Oz

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Why is it back-propagation? i.e. why go backwards?

- » outputsy
—> / —>
—> complex graph —>
—> —>
—> ~__ —>

reverse-mode differentiation (if you want effect of many things on one thing)
<

@ for many different x
Or

More common simply because many nets have a scalar loss function as output.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Gradients for vector data

This is now the Jacobian matrix
T (x,y,z are now vectors) (derivative of each element of z w.r.t.
each element of x)

&
f .
<
oL
y @} “local gradient” Oz
gradients

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

—p R
4096-d e c a0y S 4096
input vector — (x) = max() X) I output vector
—_» (elementwise) | —»
—p >

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

4096-d —>
input vector — >

Q: what is the size
of the Jacobian
matrix?

oL _ |9f

f(x) = max(0,x)
(elementwise)

oz 045

oL
of

Jacobian matrix

—> 4096-d

L, output vector

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

4096-d —>
input vector — >

Q: what is the size
of the Jacobian
matrix?

[4096 x 4096!]

oL __|0f|oL

f(x) = max(0,x)
(elementwise)

Oz Oz | Of

Jacobian matrix

N 4096-d
L, output vector

Q2: what does it
look like?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Vectorized operations

in practice we process an
entire minibatch (e.g. 100) of
examples at one time:

100 4096-d —>
input vectors —»

f(x) = max(0,x)
(elementwise)

—> 100 4096-d
> output vectors

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

Why don’t we compute it that way?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Writing SVM/Softmax

E.g. for the SVM:

margins

f.

receive W (weights), X

forward pass (we hg#e 8A1nes)

scores = #...

margins = #...

data loss = #...

Li =)., max(0,s5 — sy, +1)

S
@ 9—6—

reg loss = #...

U

R(W)

loss = data loss + reg loss

backward pass (we have 5 lines)

dmargins = # ... (optionally, we go direct to dscores)
dscores = #. ..

dw = #...

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Summary so far

* neural nets will be very large: no hope of writing down gradient formula
by hand for all parameters

* backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

* implementations maintain a graph structure, where the nodes
implement the forward() / backward() API.

 forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

e backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Neural Network

2-layer Neural Network f p— W2 max((), W1il7)

3-layer Neural Network: f - WS max([), Wg ma,x(O, WléE))

3072 100 10

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Full implementation of training a 2-layer Neural Network

needs ~11 lines:

01.
02.
03.
04.
03.
06.
07.
08.
09.
10.
ks

X = np.array([| [0,0,1],[0,L,1],(%,0,1],[L,1,1]]) o8 e
y = np.array([[0,1,1,0]]).T
syn0 = Z*np.random.random((3,4)) - 1
synl = 2*np.random.random((4,1)) - 1
for] in xrange (60000):
11 = 1/(1l+np.exp(-(np.dot (X,syn0))))
12 = 1/ (1l+np.exp(-(np.dot (11,synl))))
12 delta = (y = 12)%(12x(1-12})
11 delta = 12 delta.dot(synl.T) * (11 * (1-11))
synl += 11.T.dot (12 delta)
synl0 += X.T.dot (1l delta)

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Assignment: Writing 2layer Net
Stage your forward/backward computation!

receive W1,W2,b1,b2 (weights/biases), X (data)

forward pass:

hl = #... function of X,W1,bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)

backward pass:

dscores = #...
dhl,dw2,db2 = #...
dWl,dbl = #...

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

o(z) =1/(1+e7)

tanh tanh(x)

RelU max(0,x)

0.
.2
-5

1o
08
06

10
05
5 10

10}

Leaky RelU d

max(0.1x, x)

Maxout max(w! z + by, wl T + by)
ELU z ifz >0

Jw) = {a (exp(z) 1) ifz<0

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson ‘

Neural Networks: Architectures

put layer

output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2
“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net”
“Fully-connected” layers

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example Feed-forward computation of a Neural Network

class Neuron:
£ ...
def neuron_tick(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number """
cell body sum = np.sum(inputs * self.weights) + self.bias
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function
return firing rate

We can efficiently evaluate an entire layer of neurons.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example Feed-forward computation of a Neural Network

INST
Oy
. tput layer

input layer
hidden layer 1 hidden layer 2

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3xl)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (IxI]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Setting the number of layers and their sizes

3 hidden neurons

6 hiden neurons 20 hidden neurons

|

more neurons = more capacity

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

 we arrange neurons into fully-connected layers

e the abstraction of a layer has the nice property that it allows
us to use efficient vectorized code (e.g. matrix multiplies)

 neural networks are not really neural

 neural networks: bigger = better (but might have to regularize
more strongly)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

	CS60010: Deep Learning
	Backpropagation: Introduction
	How do we learn weights?
	Backpropagation
	Backpropagation
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 68

