
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

16 Jan 2018

FFN

• Goal: Approximate some unknown ideal function f : X ! Y
• Ideal classifier: y = f*(x) with x and category y
• Feedforward Network: Define parametric mapping
• y = f(x; theta)
• Learn parameters theta to get a good approximation to f* from

available sample

• Function f is a composition of many different functions

original W

negative gradient direction
W_1

W_2

Gradient Descent

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

The effects of step size (or “learning rate”)

original W

True gradients in blue
minibatch gradients in red

W_1

W_2

Stochastic Gradient Descent

Gradients are noisy but still make good progress on average

Cost functions:

• In most cases, our parametric model defines a distribution
𝑝(𝑦|𝑥;𝜃)

• Use the principle of maximum likelihood

• The cost function is often the negative log-likelihood
• equivalently described as the cross-entropy between the

training data and the model distribution.
𝐽 𝜃 = −𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥)

• .

Conditional Distributions and Cross-Entropy

𝐽 𝜃 = −𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥)
• The specific form of the cost function changes from model to

model, depending on the specific form of log𝑝𝑚𝑚𝑚𝑚𝑚
• For example, if 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥) = 𝒩(y; f x,𝜃 , I) then we

recover the mean squared error cost,

𝐽 𝜃 =
1
2
𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥; 𝜃) 2 + Const

• For predicting median of Gaussian, the equivalence between
maximum likelihood estimation with an output distribution and
minimization of mean squared error holds

• Specifying a model 𝑝(𝑦|𝑥) automatically determines a cost
function log 𝑝(𝑦|𝑥)

• The gradient of the cost function must be large and predictable
enough to serve as a good guide for the learning algorithm.

• The negative log-likelihood helps to avoid this problem for
many models.

Learning Conditional Statistics

• Sometimes we merely predict some statistic of 𝑦 conditioned on 𝑥.
Use specialized loss functions
• For example, we may have a predictor 𝑓(𝑥; 𝜃) that we wish to employ to predict

the mean of 𝑦.

• With a sufficiently powerful neural network, we can think of the NN as
being able to represent any function 𝑓 from a wide class of functions.
• view the cost function as being a functional rather than just a function.
• A functional is a mapping from functions to real numbers.

• We can thus think of learning as choosing a function rather than a set of
parameters.

• We can design our cost functional to have its minimum occur at some
specific function we desire. For example, we can design the cost functional
to have its minimum lie on the function that maps 𝑥 to the expected value
of 𝑦 given 𝑥.

Learning Conditional Statistics

• Results derived using calculus of variations:
1. Solving the optimization problem

𝑓∗ =
𝑎𝑟𝑟𝑟𝑟𝑟

𝑓 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥) 2

 yields
𝑓∗(𝑥) = 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑(𝑦|𝑥) 𝑦

2. Solving

𝑓∗ =
𝑎𝑟𝑟𝑟𝑟𝑟

𝑓 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥) 1

 yields a function that predicts the median value of 𝑦 for each 𝑥.
 Mean Absolute Error (MAE)
• MSE and MAE often lead to poor results when used with gradient-based optimization.

Some output units that saturate produce very small gradients when combined with these
cost functions.

• Thus use of cross-entropy is popular even when it is not necessary to estimate the
distribution 𝑝(𝑦|𝑥)

Output Units

1. Linear units for Gaussian Output Distributions. Linear output layers
are often used to produce the mean of a conditional Gaussian
distribution 𝑝 𝑦 𝑥 = 𝒩(𝑦;𝑦�, 𝐼)

• Maximizing the log-likelihood is then equivalent to minimizing the mean
squared error

• Because linear units do not saturate, they pose little difficulty for gradient-
based optimization algorithms

2. Sigmoid Units for Bernoulli Output Distributions. 2-class
classification problem. Needs to predict 𝑃(𝑦 = 1|𝑥).

𝑦� = 𝜎 𝑤𝑇ℎ + 𝑏
3. Softmax Units for Multinoulli Output Distributions. Any time we

wish to represent a probability distribution over a discrete variable
with n possible values, we may use the softmax function. Softmax
functions are most often used as the output of a classifier, to
represent the probability distribution over 𝑛 different classes.

Softmax output

• In case of a discrete variable with 𝑘 values, produce a vector 𝒚�
with 𝑦�𝑖 = 𝑃(𝑦 = 𝑖|𝑥).

• A linear layer predicts unnormalized log probabilities:
𝒛 = 𝑾𝑻𝒉 + 𝒃

• where 𝑧𝑖 = log𝑃�(𝑦 = 𝑖|𝑥)

softmax(𝑧)𝑖 =
exp (𝑧𝑖)
∑ exp (𝑧𝑗)𝑗

• When training the softmax to output a target value 𝑦 using
maximum log-likelihood

• Maximize log𝑃 𝑦 = 𝑖; 𝑧 = log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧)𝑖
• log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧)𝑖 = 𝑧𝑖 − log∑ exp (𝑧𝑗)𝑗

Output Types

Output Type Output
Distribution

Output Layer
Cost Function

Binary Bernoulli Sigmoid
Binary cross-

entropy

Discrete Multinoulli Softmax
Discrete cross-

entropy

Continuous Gaussian Linear
Gaussian cross-
entropy (MSE)

Continuous
Mixture of
Gaussian

Mixture
Density Cross-entropy

Continuous Arbitrary GAN, VAE, FVBN Various

Sigmoid output with target of 1

—3 —2 —1 0 1 2 3

z

0.0

0.5

1.0

𝝈(𝒛)
Cross-entropy loss
MSE loss

Bad idea to use MSE loss with sigmoid unit.

 Benefits

Hidden Units

• Rectified linear units are an excellent default choice of hidden
unit.

• Use ReLUs, 90% of the time
• Many hidden units perform comparably to ReLUs.

New hidden units that perform comparably are rarely
interesting.

Rectified Linear Activation

0
z

0

g(
z)

 =
 m

ax
{0

, z
}

ReLU

• Positives:
• Gives large and consistent gradients (does not saturate) when active
• Efficient to optimize, converges much faster than sigmoid or tanh

• Negatives:
• Non zero centered output
• Units "die" i.e. when inactive they will never update

Architecture Basics

• Depth
• Width

Universal Approximator Theorem

• One hidden layer is enough to represent (not learn) an
approximation of any function to an arbitrary degree of
accuracy

• So why deeper?
• Shallow net may need (exponentially) more width
• Shallow net may overfit more

• http://mcneela.github.io/machine_learning/2017/03/21/Universal-

Approximation-Theorem.html
• https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-

the-universal-approximation-theorem-b7864964dbd3
• http://neuralnetworksanddeeplearning.com/chap4.html

https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-the-universal-approximation-theorem-b7864964dbd3
https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-the-universal-approximation-theorem-b7864964dbd3
https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-the-universal-approximation-theorem-b7864964dbd3
https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-the-universal-approximation-theorem-b7864964dbd3
http://neuralnetworksanddeeplearning.com/chap4.html

	CS60010: Deep Learning
	FFN
	Gradient Descent
	Slide Number 4
	Slide Number 5
	Cost functions:
	Conditional Distributions and Cross-Entropy
	Slide Number 8
	Learning Conditional Statistics
	Learning Conditional Statistics
	Output Units
	Softmax output
	Output Types
	Sigmoid output with target of 1
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Hidden Units
	Rectified Linear Activation
	ReLU
	Architecture Basics
	Universal Approximator Theorem

