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FFN 

• Goal: Approximate some unknown ideal function f : X ! Y 
• Ideal classifier: y = f*(x) with x and category y 
• Feedforward Network: Define parametric mapping 
• y = f(x; theta) 
• Learn parameters theta to get a good approximation to f* from 

available sample 
 

• Function f is a composition of many different functions 
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The effects of step size (or “learning rate”) 
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Stochastic Gradient Descent 

Gradients are noisy but still make good progress on average 



Cost functions: 

• In most cases, our parametric model defines a distribution 
𝑝(𝑦|𝑥;𝜃) 

• Use the principle of maximum likelihood  
 

• The cost function is often the negative log-likelihood 
• equivalently described as the cross-entropy between the 

training data and the model distribution. 
𝐽 𝜃 = −𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥) 

 
• . 



Conditional Distributions and  Cross-Entropy 

𝐽 𝜃 = −𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥) 
• The specific form of the cost function changes from model to 

model, depending on the specific form of log𝑝𝑚𝑚𝑚𝑚𝑚 
• For example, if 𝑝𝑚𝑚𝑚𝑚𝑚(𝑦|𝑥) = 𝒩(y; f x,𝜃 , I) then we 

recover the mean squared error cost, 

𝐽 𝜃 =
1
2
𝐸𝑥,𝑦~𝑝�𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥; 𝜃) 2 + Const 

• For predicting median of Gaussian, the equivalence between 
maximum likelihood estimation with an output distribution and 
minimization of mean squared error holds 

• Specifying a model 𝑝(𝑦|𝑥) automatically determines a cost 
function log 𝑝(𝑦|𝑥) 



•  The gradient of the cost function must be large and predictable 
enough to serve as a good guide for the learning algorithm. 

• The negative log-likelihood helps to avoid this problem for 
many models. 



Learning Conditional Statistics 

• Sometimes we merely predict some statistic of 𝑦 conditioned on 𝑥.  
Use specialized loss functions 
• For example, we may have a predictor 𝑓(𝑥; 𝜃) that we wish to employ to predict 

the mean of 𝑦. 

• With a sufficiently powerful neural network, we can think of the NN as 
being able to represent any function 𝑓 from a wide class of functions. 
• view the cost function as being a functional rather than just a function. 
• A functional is a mapping from functions to real numbers. 

• We can thus think of learning as choosing a function rather than a set of 
parameters. 

• We can design our cost functional to have its minimum occur at some 
specific function we desire. For example, we can design the cost functional 
to have its minimum lie on the function that maps 𝑥 to the expected value 
of 𝑦 given 𝑥. 
 
 



Learning Conditional Statistics 

• Results derived using calculus of variations:  
1. Solving the optimization problem 

𝑓∗ =
𝑎𝑟𝑟𝑟𝑟𝑟

𝑓 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥) 2 

        yields 
𝑓∗(𝑥) = 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑(𝑦|𝑥) 𝑦  

2. Solving 

𝑓∗ =
𝑎𝑟𝑟𝑟𝑟𝑟

𝑓 𝔼𝑥,𝑦~𝑝𝑑𝑑𝑑𝑑 𝑦 − 𝑓(𝑥) 1 

         yields a function that predicts the median value of 𝑦 for each 𝑥. 
           Mean Absolute Error (MAE) 
• MSE and MAE often lead to poor results when used with gradient-based optimization. 

Some output units that saturate produce very small gradients when combined with these 
cost functions. 

• Thus use of cross-entropy is popular even when it is not necessary to estimate the 
distribution 𝑝(𝑦|𝑥) 
 

 
 

 



Output Units 

1. Linear units for Gaussian Output Distributions. Linear output layers 
are often used to produce the mean of a conditional Gaussian 
distribution 𝑝 𝑦 𝑥 = 𝒩(𝑦;𝑦�, 𝐼) 

• Maximizing the log-likelihood is then equivalent to minimizing the mean 
squared error 

• Because linear units do not saturate, they pose little difficulty for gradient-
based optimization algorithms 

2. Sigmoid Units for Bernoulli Output Distributions. 2-class 
classification problem. Needs to predict 𝑃(𝑦 = 1|𝑥). 

𝑦� = 𝜎 𝑤𝑇ℎ + 𝑏  
3. Softmax Units for Multinoulli Output Distributions. Any time we 

wish to represent a probability distribution over a discrete variable 
with n possible values, we may use the softmax function. Softmax 
functions are most often used as the output of a classifier, to 
represent the probability distribution over 𝑛 different classes. 



Softmax output 

• In case of a discrete variable with 𝑘 values, produce a vector 𝒚�  
with 𝑦�𝑖 = 𝑃(𝑦 = 𝑖|𝑥). 

• A linear layer predicts unnormalized log probabilities:  
𝒛 = 𝑾𝑻𝒉 + 𝒃 

• where 𝑧𝑖 = log𝑃�(𝑦 = 𝑖|𝑥) 

softmax(𝑧)𝑖 =
exp (𝑧𝑖)
∑ exp (𝑧𝑗)𝑗

 

• When training the softmax to output a target value 𝑦 using 
maximum log-likelihood 

• Maximize log𝑃 𝑦 = 𝑖; 𝑧 = log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧)𝑖  
• log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧)𝑖 = 𝑧𝑖 − log∑ exp (𝑧𝑗)𝑗  



Output Types 

Output Type Output 
Distribution 

Output Layer 
Cost Function 

Binary Bernoulli Sigmoid 
Binary cross-

entropy 

Discrete Multinoulli Softmax 
Discrete cross- 

entropy 

Continuous Gaussian Linear 
Gaussian cross- 
entropy (MSE) 

Continuous 
Mixture of 
Gaussian 

Mixture 
Density Cross-entropy 

Continuous Arbitrary GAN,  VAE, FVBN Various 



Sigmoid output with target of 1 
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𝝈(𝒛) 
Cross-entropy loss   
MSE loss 

 
 

Bad idea to use MSE loss with sigmoid unit.   







    Benefits 



Hidden Units 

• Rectified linear units are an excellent default choice of hidden 
unit. 

• Use ReLUs, 90% of the time 
• Many hidden units perform comparably to ReLUs. 

New hidden units that perform comparably are rarely 
interesting.  



Rectified Linear Activation 
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ReLU 

• Positives: 
• Gives large and consistent gradients (does not saturate) when active 
• Efficient to optimize, converges much faster than sigmoid or tanh 

• Negatives: 
• Non zero centered output 
• Units "die" i.e. when inactive they will never update 



Architecture Basics 

• Depth 
• Width 



Universal Approximator Theorem 

• One hidden layer is enough to represent (not learn) an 
approximation of any function to an arbitrary degree of 
accuracy  

• So why deeper? 
• Shallow net may need (exponentially) more width 
• Shallow net may overfit more 

 
• http://mcneela.github.io/machine_learning/2017/03/21/Universal-

Approximation-Theorem.html 
• https://blog.goodaudience.com/neural-networks-part-1-a-simple-proof-of-

the-universal-approximation-theorem-b7864964dbd3 
• http://neuralnetworksanddeeplearning.com/chap4.html 
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