
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

15 Jan 2018

ML BASICS

Maximum Likelihood Estimation
• principle from which we can derive specific functions that are good

estimators for different models.
• 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑚)} drawn independently from 𝑝𝑑𝑑𝑑𝑑(𝑥)
• Let 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥; 𝜃) be a parametric family of probability distributions

over the same space indexed by 𝜃 - maps any configuration 𝑥 to a
real number estimating the true probability 𝑝𝑑𝑑𝑑𝑑(𝑥).

• MLE of 𝑥
𝜃𝑀𝑀 =

𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝑝𝑚𝑚𝑑𝑚𝑚(𝑋; 𝜃)

=
𝑎𝑟𝑟𝑟𝑎𝑥

𝜃 � 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑖=1

𝜃𝑀𝑀 =
𝑎𝑟𝑟𝑟𝑎𝑥

𝜃 � log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑖=1

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥; 𝜃)

MLE

• One way to interpret maximum likelihood estimation is to view
it as minimizing the dissimilarity between the empirical
distribution �̂�𝑑𝑑𝑑𝑑 defined by the training set and the model
distribution.

• Measured by KL-divergence
𝐷𝐾𝑀(�̂�𝑑𝑑𝑑𝑑| 𝑝𝑚𝑚𝑑𝑚𝑚 = 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑[log �̂�𝑑𝑑𝑑𝑑(𝑥) − log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)]

• The term on the left is a function only of the data-generating
process, not the model. So we only need to minimize

−𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 [log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)]
• Minimizing this KL divergence corresponds exactly to

minimizing the cross-entropy between the distributions.

Kullback-Leibler Divergence Explained
KL Divergence measures how much
information we lose when we choose an
approximation.

The empirical probability distribution of the data collected

Binomial distr: best estimate of p is 0.57
https://www.countbayesie.com/blog/2017/5/
9/kullback-leibler-divergence-explained

Comparing with the observed data,
which model is better?

• Which distribution preserves
the most information from
our original data source?

• Information theory quantifies
how much information is in
data.

• The most important metric in
information theory is
Entropy.

𝐻 = − � 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)
𝑛

𝑖=1

Measuring information lost using KL Divergence between probability distribution 𝑝 we and
approximating distribution 𝑞.

𝐷𝐾𝑀(𝑝||𝑞) = 𝑝 � 𝑝(𝑥𝑖)
𝑛

𝑖=1

log 𝑝 𝑥𝑖 − log 𝑞 𝑥𝑖

the expectation of the log difference between the probability of data in the original distribution
with the approximating distribution.

KL Divergence

𝐷𝐾𝑀(𝑝||𝑞) = 𝑝 � 𝑝(𝑥𝑖)
𝑛

𝑖=1

log 𝑝 𝑥𝑖 − log 𝑞 𝑥𝑖

the expectation of the log difference between the probability of
data in the original distribution with the approximating
distribution. May interpret this as "how many bits of
information we expect to lose".

𝐷𝐾𝑀(𝑝||𝑞) = E log 𝑝 𝑥 − log 𝑞(𝑥)
Can be also written as

𝐷𝐾𝑀(𝑝||𝑞) = 𝑝 � 𝑝 𝑥𝑖 . log
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

𝑛

𝑖=1

• KL Divergence is not symmetric. Thus it is not a distance metric.

Comparing our approximating distributions
• For the uniform distribution:
𝐷𝐾𝑀(Observed| Uniform = 0.338
• For our Binomial approximation:
𝐷𝐾𝑀(Observed| Binomial = 0.477

Conditional Log-Likelihood

• ML estimator can be generalized to estimate a conditional
probability 𝑃(𝑦|𝑥; 𝜃)

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝑃 𝑌 𝑋; 𝜃

For i.i.d. examples,

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 � log 𝑃(𝑦(𝑖)|𝑥(𝑖); 𝜃)

𝑚

𝑖=1

Stochastic Gradient Descent

• Nearly all of deep learning is powered by one very important
algorithm: stochastic gradient descent or SGD

• large training sets computationally expensive but necessary for
generalization

• The cost function used by a machine learning algorithm often
decomposes as a sum over training examples of some per-
example loss function.

• E,g, the negative conditional log-likelihood of the training data
can be written as

𝐽 𝜃 = 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑𝐿 𝑥, 𝑦, 𝜃 =
1
𝑟

� 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚

𝑖=1

where L is the per-example loss 𝐿 𝑥, 𝑦, 𝜃 = − log 𝑝(𝑦|𝑥; 𝜃)

SGD

• gradient descent requires computing

𝛻𝜃𝐽 𝜃 =
1
𝑟

� 𝛻𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚

𝑖=1

• The insight of stochastic gradient descent is that the gradient is
an expectation. The expectation may be approximately
estimated using a small set of samples.

• We can sample a minibatch of examples of size 𝑟𝑚
• The estimate of the gradient is formed as

𝑟 =
1

𝑟𝑚
� 𝛻𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚𝑚

𝑖=1

FEEDFORWARD NETWORKS

Background: Supervised ML

• Train Set = {(𝑥(𝑖), 𝑦(𝑖))}
• 𝑥(𝑖) ∈ 𝑋, 𝑦(𝑖) ∈ 𝑌

• Classification: Finite 𝑌
• Regression: Continuous 𝑌

Building a ML Algorithm

• Nearly all learning algorithms can be described by a
specification of
• A dataset
• A cost function
• An optimization procedure
• A model

• Choose a model class of functions
• Design a criteria to guide the selection of one function from the

selected class

Loss Functions

• 𝐿 maps decisions to costs.
• 𝐿(𝑦�, 𝑦) is the penalty for predicting 𝑦� when the correct answer

is 𝑦.
• Examples of loss function

• Classification: 0/1 loss
• Regression: 𝐿 𝑦�, 𝑦 = (𝑦� − 𝑦)2

• Empirical Loss of a function 𝑦 = 𝑓(𝑥; 𝜃) on set 𝑋

𝐿 𝜃. 𝑋, 𝑦 =
1
𝑟

� 𝐿(𝑓 𝑥𝑖; 𝜃 , 𝑦𝑖)
𝑚

𝑖=1

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Parametric approach: Linear classifier

[32x32x3]
array of numbers 0...1

10 numbers,
indicating class
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson 17

Going forward: Loss functions/optimization

 -3.45
-8.87
0.09
2.9

4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1

2.64
5.55
-4.34
-1.5

-4.79
6.14

1. The loss function quantifies
our unhappiness with the
scores across the training
data.

2. Come up with a way of
efficiently finding the
parameters that minimize the
loss function. (optimization)

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Loss functions

Multiclass Support Vector Machine loss

• SVM “wants” the correct class for each input to a have a score
higher than the incorrect classes by some fixed margin Delta.

• Given 𝑥𝑖 , 𝑦𝑖 , 𝑓(𝑥𝑖 , 𝑊) computes the class scores.
• The score of the 𝑗th class : 𝑠𝑗 = 𝑓 𝑥𝑖 , 𝑊 𝑗

𝐿𝑖 = � max(0, 𝑠𝑗 − 𝑠𝑦𝑖 + Δ)
𝑗≠𝑦𝑖

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Multiclass SVM loss:

Given an example 𝑥𝑖 , 𝑦𝑖
where 𝑥𝑖 is the image and
where 𝑦𝑖 is the (integer) label,
and using the shorthand for the
scores vector:

𝑠 = 𝑓 𝑥𝑖 , 𝑊

the SVM loss has the form:

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Multiclass SVM loss:
Given an example 𝑥𝑖 , 𝑦𝑖
where 𝑥𝑖 is the image and
where 𝑦𝑖 is the (integer) label,
and using the shorthand for the
scores vector:

𝑠 = 𝑓 𝑥𝑖 , 𝑊

the SVM loss has the form:

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

= max(0, 5.1 - 3.2 + 1)
 +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

Losses: 2.9

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Multiclass SVM loss:

Given an example 𝑥𝑖 , 𝑦𝑖
where 𝑥𝑖 is the image and
where 𝑦𝑖 is the (integer) label,
and using the shorthand for the
scores vector:

𝑠 = 𝑓 𝑥𝑖 , 𝑊

the SVM loss has the form:

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

= max(0, 1.3 - 4.9 + 1)
 +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

Losses: 2.9 0

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Multiclass SVM loss:

Given an example 𝑥𝑖 , 𝑦𝑖
where 𝑥𝑖 is the image and
where 𝑦𝑖 is the (integer) label,
and using the shorthand for the
scores vector:

𝑠 = 𝑓 𝑥𝑖 , 𝑊

the SVM loss has the form:

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

= max(0, 2.2 - (-3.1) + 1)
 +max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
= 5.3 + 5.6
= 10.9

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

Losses: 2.9 0 10.9

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Multiclass SVM loss:

Given an example 𝑥𝑖 , 𝑦𝑖
where 𝑥𝑖 is the image and
where 𝑦𝑖 is the (integer) label,
and using the shorthand for the
scores vector:

𝑠 = 𝑓 𝑥𝑖 , 𝑊
the SVM loss has the form:

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

and the full training loss is the mean
over all the examples:

𝐿 =
1
𝑁 � 𝐿𝑖

𝑁

𝑖=1

L = (2.9 + 0 + 10.9)/3 = 4.6

Suppose: 3 training examples, 3 classes.
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are:

Losses: 2.9 0 10.9

𝜆= regularization strength
(hyperparameter)

𝐿 =
1
𝑁

� � max 0, 𝑓 𝑥𝑖 , 𝑊 𝑗 − 𝑓 𝑥𝑖 , 𝑊 𝑦𝑖 + 1
𝑗≠𝑦𝑖

+λ𝑅 𝑊
𝑁

𝑖=1

In common use:

L2 regularization 𝑅 𝑊 = ∑ ∑ 𝑊𝑘,𝑚
2

𝑚𝑘

L1 regularization 𝑅 𝑊 = ∑ ∑ 𝑊𝑘,𝑚𝑚𝑘

Elastic net (L1 + L2) 𝑅 𝑊 = ∑ ∑ 𝛽𝑊𝑘,𝑚
2 + 𝑊𝑘,𝑚𝑚𝑘

Dropout (will see later)

Max norm regularization (might see later)

Weight Regularization

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2

5.1

-1.7

Scores = unnormalized log prob. of the classes

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

 where 𝑠 = 𝑓 𝑥, 𝑊

 Softmax function

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2

5.1

-1.7

Scores = unnormalized log prob. of the classes

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

 where 𝑠 = 𝑓 𝑥, 𝑊

Want to maximize the log likelihood, or (for a loss
function) to minimize the negative log likelihood of
the correct class:

𝐿𝑖 = − log 𝑃 𝑌 = 𝑦𝑖|𝑋 = 𝑥𝑖

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2

5.1

-1.7

Scores = unnormalized log prob. of the classes

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

 where 𝑠 = 𝑓 𝑥, 𝑊

Want to maximize the log likelihood, or (for a loss
function) to minimize the negative log likelihood of
the correct class:

𝐿𝑖 = − log 𝑃 𝑌 = 𝑦𝑖|𝑋 = 𝑥𝑖

In summary:

𝐿𝑖 = −log
𝑒𝑠𝑦𝑖

∑ 𝑒𝑠𝑗
𝑗

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2

5.1

-1.7

unnormalized log probabilities

24.5

164.0

0.18

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

𝐿𝑖 = −log 0.13
 = 0.89

𝐿𝑖 = −log
𝑒𝑠𝑦𝑖

∑ 𝑒𝑠𝑗
𝑗

XOR is not linearly separable

0 1

0

x 2

Original x space

1

x1

Hidden Input

• Hidden input with an activation function.
• Several features of the input
• Each feature defined using an activation function
• Linear function on the data – followed by a nonlinear activation

function

Multilayer Networks

• Deep feedforward networks
• Feedforward neural networks
• Multilayer perceptrons (MLPs)

• Defines a mapping 𝑦 = 𝑓(𝑥; 𝜃)
• Learns 𝜃 that result in the best function approximation
• FFNs are typically represented by composing together many different

functions.
• The model is associated with a directed acyclic graph describing how the

functions are composed together.

• For example, we might have three functions 𝑓(1), 𝑓 2 and
𝑓(3) connected in a chain, to form

𝑓 𝑥 = 𝑓 1 (𝑓 2 (𝑓(3)(𝑥)))

𝑓(1): first layer
𝑓(2): second layer
𝑓(3): third layer
• Depth = length of the chain
• During neural network training, we drive f(x) to match f*(x).
• The training data provides us with noisy, approximate examples of

f*(x) evaluated at different training points
• Because
• the training data does not show the desired output for each of these

layers, these layers are called hidden layers

Rectified Linear Activation

0
z

0

g(
z)

 =
 m

ax
{0

, z
}

Network Diagrams

y

h

x

W

y

h1

x1

h2

x2

Solving X-OR

• 𝑓 𝑥; 𝑊, 𝑐, 𝑤, 𝑏 = 𝑤𝑇 . 𝑟𝑎𝑥 0, 𝑊𝑇𝑥 + 𝑐 + 𝑏

• 𝑊 = 1 1
1 1

• 𝑐 = 0
−1

• 𝑤 = 1
−2

• 𝑏 = 0

0 1 x1

0

1

x 2

0 2 1
h1

0

1

h 2

Gradient-Based Learning

• Specify
• Model
• Cost (smooth)
• Minimize cost using gradient descent or related techniques

• The nonlinearity of a neural network causes most interesting loss functions
to become nonconvex.

• Stochastic gradient descent applied to nonconvex loss functions has no
convergence guarantee and is sensitive to the values of the initial
parameters.

• Initialize all weights to small random values. The biases may be initialized to
zero.

Gradient

• In 1-d, the derivative of a function:

• In multiple dimensions, the gradient is the vector of (partial
derivatives).

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Evaluating the
gradient numerically

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

The loss is just a function of W:

= ...

	CS60010: Deep Learning
	ML Basics
	Maximum Likelihood Estimation
	MLE
	Kullback-Leibler Divergence Explained
	Comparing with the observed data, �which model is better?
	KL Divergence
	Comparing our approximating distributions
	Conditional Log-Likelihood
	Stochastic Gradient Descent
	SGD
	Feedforward Networks
	Background: Supervised ML
	Building a ML Algorithm
	Loss Functions
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Multiclass Support Vector Machine loss
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Weight Regularization
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	XOR is not linearly separable
	Hidden Input
	Multilayer Networks
	Slide Number 33
	Rectified Linear Activation
	Network Diagrams
	Solving X-OR
	Gradient-Based Learning
	Gradient
	Slide Number 39
	Slide Number 40

