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ML BASICS 



Maximum Likelihood Estimation 
• principle from which we can derive specific functions that are good 

estimators for different models. 
• 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑚)} drawn independently from 𝑝𝑑𝑑𝑑𝑑(𝑥) 
• Let 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥; 𝜃) be a parametric family of probability distributions 

over the same space indexed by 𝜃  - maps any configuration 𝑥 to a 
real number estimating the true probability 𝑝𝑑𝑑𝑑𝑑(𝑥). 

• MLE of 𝑥  
𝜃𝑀𝑀 =

𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝑝𝑚𝑚𝑑𝑚𝑚(𝑋; 𝜃) 

=
𝑎𝑟𝑟𝑟𝑎𝑥

𝜃 � 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑖=1

 

𝜃𝑀𝑀 =
𝑎𝑟𝑟𝑟𝑎𝑥

𝜃 � log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑖=1

 

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥; 𝜃) 



MLE 

• One way to interpret maximum likelihood estimation is to view 
it as minimizing the dissimilarity between the empirical 
distribution �̂�𝑑𝑑𝑑𝑑  defined by the training set and the model 
distribution. 

• Measured by KL-divergence  
𝐷𝐾𝑀(�̂�𝑑𝑑𝑑𝑑| 𝑝𝑚𝑚𝑑𝑚𝑚 = 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑[log �̂�𝑑𝑑𝑑𝑑(𝑥) − log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)] 

• The term on the left is a function only of the data-generating 
process, not the model. So we only need to minimize  

−𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 [log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)] 
• Minimizing this KL divergence corresponds exactly to 

minimizing the cross-entropy between the distributions. 



Kullback-Leibler  Divergence Explained 
KL Divergence measures how much 
information we lose when we choose an 
approximation. 

The empirical probability distribution of the data collected 

Binomial distr: best estimate of p is 0.57 
https://www.countbayesie.com/blog/2017/5/
9/kullback-leibler-divergence-explained 



Comparing with the observed data,  
which model is better? 

• Which distribution preserves 
the most information from 
our original data source? 

• Information theory quantifies 
how much information is in 
data. 

• The most important metric in 
information theory is 
Entropy. 

𝐻 = − � 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)
𝑛

𝑖=1

 

Measuring information lost using KL Divergence between probability distribution 𝑝 we and 
approximating distribution 𝑞. 

𝐷𝐾𝑀(𝑝||𝑞) = 𝑝 � 𝑝(𝑥𝑖)
𝑛

𝑖=1

log 𝑝 𝑥𝑖    − log 𝑞 𝑥𝑖  

the expectation of the log difference between the probability of data in the original distribution 
with the approximating distribution. 



KL Divergence 

𝐷𝐾𝑀(𝑝||𝑞) =  𝑝 � 𝑝(𝑥𝑖)
𝑛

𝑖=1

log 𝑝 𝑥𝑖    − log 𝑞 𝑥𝑖  

the expectation of the log difference between the probability of 
data in the original distribution with the approximating 
distribution.  May interpret this as "how many bits of 
information we expect to lose".  

𝐷𝐾𝑀(𝑝||𝑞) = E log 𝑝 𝑥 − log 𝑞(𝑥)  
Can be also written as 

𝐷𝐾𝑀(𝑝||𝑞) =  𝑝 � 𝑝 𝑥𝑖 . log
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

𝑛

𝑖=1

 

• KL Divergence is not symmetric. Thus it is not a distance metric. 



Comparing our approximating distributions 
• For the uniform distribution: 
𝐷𝐾𝑀(Observed| Uniform = 0.338 
• For our Binomial approximation: 
𝐷𝐾𝑀(Observed| Binomial = 0.477 



Conditional Log-Likelihood 

• ML estimator can be generalized to estimate a conditional 
probability 𝑃(𝑦|𝑥; 𝜃)  

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 𝑃 𝑌 𝑋; 𝜃  

For i.i.d. examples,  

𝜃𝑀𝑀 = 𝑎𝑟𝑟𝑟𝑎𝑥
𝜃 � log 𝑃(𝑦(𝑖)|𝑥(𝑖); 𝜃)

𝑚

𝑖=1

 



Stochastic Gradient Descent 

• Nearly all of deep learning is powered by one very important 
algorithm: stochastic gradient descent or SGD 

• large training sets computationally expensive but necessary for 
generalization 

• The cost function used by a machine learning algorithm often 
decomposes as a sum over training examples of some per-
example loss function. 

• E,g, the negative conditional log-likelihood of the training data 
can be written as 

𝐽 𝜃 = 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑𝐿 𝑥, 𝑦, 𝜃 =
1
𝑟

� 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚

𝑖=1

 

where L is the per-example loss  𝐿 𝑥, 𝑦, 𝜃 = − log 𝑝(𝑦|𝑥; 𝜃) 
 



SGD 

• gradient descent requires computing 

𝛻𝜃𝐽 𝜃 =
1
𝑟

� 𝛻𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚

𝑖=1

 

• The insight of stochastic gradient descent is that the gradient is 
an expectation. The expectation may be approximately 
estimated using a small set of samples. 

• We can sample a minibatch of examples of size 𝑟𝑚 
• The estimate of the gradient is formed as  

𝑟 =
1

𝑟𝑚
� 𝛻𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)
𝑚𝑚

𝑖=1

 

 



FEEDFORWARD NETWORKS 



Background: Supervised ML 

• Train Set = {(𝑥(𝑖), 𝑦(𝑖))} 
• 𝑥(𝑖) ∈ 𝑋,  𝑦(𝑖) ∈ 𝑌 

• Classification: Finite 𝑌 
• Regression: Continuous 𝑌 



Building a ML Algorithm 

• Nearly all learning algorithms can be described by a 
specification of  
• A dataset 
• A cost function 
• An optimization procedure 
• A model 

 
• Choose a model class of functions 
• Design a criteria to guide the selection of one function from the 

selected class 



Loss Functions 

• 𝐿 maps decisions to costs. 
• 𝐿(𝑦�, 𝑦) is the penalty for predicting 𝑦�  when the correct answer 

is 𝑦. 
• Examples of loss function 

• Classification: 0/1 loss 
• Regression: 𝐿 𝑦�, 𝑦 = (𝑦� − 𝑦)2  

 

• Empirical Loss of a function 𝑦 = 𝑓(𝑥; 𝜃) on set 𝑋 

𝐿 𝜃. 𝑋, 𝑦 =
1
𝑟

� 𝐿(𝑓 𝑥𝑖; 𝜃 , 𝑦𝑖)
𝑚

𝑖=1
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Parametric approach: Linear classifier 

[32x32x3] 
array of numbers 0...1 

10 numbers, 
indicating class 
scores 

3072x1 

10x1 10x3072 

parameters, or “weights” 

(+b) 10x1 
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Going forward: Loss functions/optimization 

 -3.45 
-8.87 
0.09 
2.9 

4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

 

3.42 
4.64 
2.65 
5.1 

2.64 
5.55 
-4.34 
-1.5 

-4.79 
6.14 

 

1. The loss function quantifies 
our unhappiness with the 
scores across the training 
data. 
 

2. Come up with a way of 
efficiently finding the 
parameters that minimize the 
loss function. (optimization) 
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Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 

cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Loss functions 



Multiclass Support Vector Machine loss 

• SVM “wants” the correct class for each input to a have a score 
higher than the incorrect classes by some fixed margin Delta. 

• Given 𝑥𝑖 , 𝑦𝑖 ,  𝑓(𝑥𝑖 , 𝑊) computes the class scores.  
• The score of the 𝑗th class : 𝑠𝑗 = 𝑓 𝑥𝑖 , 𝑊 𝑗 

𝐿𝑖 = � max(0, 𝑠𝑗 − 𝑠𝑦𝑖 + Δ)
𝑗≠𝑦𝑖
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cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Multiclass SVM loss: 

Given an example 𝑥𝑖 , 𝑦𝑖  
where 𝑥𝑖 is the image and 
where 𝑦𝑖  is the (integer) label, 
and using the shorthand for the 
scores vector: 

𝑠 = 𝑓 𝑥𝑖 , 𝑊  
 
the SVM loss has the form: 

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

 

 
 
 

Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 
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cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Multiclass SVM loss: 
Given an example 𝑥𝑖 , 𝑦𝑖  
where 𝑥𝑖 is the image and 
where 𝑦𝑖  is the (integer) label, 
and using the shorthand for the 
scores vector: 

𝑠 = 𝑓 𝑥𝑖 , 𝑊  
 
the SVM loss has the form: 

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

 

 
= max(0, 5.1 - 3.2 + 1)  
   +max(0, -1.7 - 3.2 + 1) 
= max(0, 2.9) + max(0, -3.9) 
= 2.9 + 0 
= 2.9 
 
 
 

Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 

Losses: 2.9 
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cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Multiclass SVM loss: 

Given an example 𝑥𝑖 , 𝑦𝑖  
where 𝑥𝑖 is the image and 
where 𝑦𝑖  is the (integer) label, 
and using the shorthand for the 
scores vector: 

𝑠 = 𝑓 𝑥𝑖 , 𝑊  
 
the SVM loss has the form: 

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

 

 
= max(0, 1.3 - 4.9 + 1)  
   +max(0, 2.0 - 4.9 + 1) 
= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 0 
 
 
 

Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 

Losses: 2.9  0  
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cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Multiclass SVM loss: 

Given an example 𝑥𝑖 , 𝑦𝑖  
where 𝑥𝑖 is the image and 
where 𝑦𝑖  is the (integer) label, 
and using the shorthand for the 
scores vector: 

𝑠 = 𝑓 𝑥𝑖 , 𝑊  
 
the SVM loss has the form: 

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

 

 
= max(0, 2.2 - (-3.1) + 1)  
   +max(0, 2.5 - (-3.1) + 1) 
= max(0, 5.3) + max(0, 5.6) 
= 5.3 + 5.6 
= 10.9 
 
 
 

Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 

Losses: 2.9  0   10.9  
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cat 

frog 

car 

3.2 

5.1 

-1.7 

4.9 

1.3 

2.0 -3.1 

2.5 

2.2 

Multiclass SVM loss: 

Given an example 𝑥𝑖 , 𝑦𝑖  
where 𝑥𝑖 is the image and 
where 𝑦𝑖  is the (integer) label, 
and using the shorthand for the 
scores vector: 

𝑠 = 𝑓 𝑥𝑖 , 𝑊  
the SVM loss has the form: 

𝐿𝑖 = � max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1
𝑗≠𝑦𝑖

 

 
and the full training loss is the mean 
over all the examples: 

𝐿 =
1
𝑁 � 𝐿𝑖

𝑁

𝑖=1
 

 
L = (2.9 + 0 + 10.9)/3  = 4.6 
 
 

Suppose: 3 training examples, 3 classes. 
For some W the scores 𝑓 𝑥, 𝑊 = 𝑊𝑥 are: 

Losses: 2.9  0   10.9  



𝜆= regularization strength 
(hyperparameter) 

𝐿 =
1
𝑁

� � max 0, 𝑓 𝑥𝑖 , 𝑊 𝑗 − 𝑓 𝑥𝑖 , 𝑊 𝑦𝑖 + 1
𝑗≠𝑦𝑖

+λ𝑅 𝑊  
𝑁

𝑖=1

 

In common use:  

L2 regularization                  𝑅 𝑊 = ∑ ∑ 𝑊𝑘,𝑚
2

𝑚𝑘      

L1 regularization                    𝑅 𝑊 = ∑ ∑ 𝑊𝑘,𝑚𝑚𝑘  

Elastic net (L1 + L2)               𝑅 𝑊 = ∑ ∑ 𝛽𝑊𝑘,𝑚
2 + 𝑊𝑘,𝑚𝑚𝑘  

Dropout (will see later) 

Max norm regularization (might see later) 

Weight Regularization 
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Softmax Classifier (Multinomial Logistic Regression) 

cat 

frog 

car 

3.2 

5.1 

-1.7 

Scores = unnormalized log prob. of the classes 
 

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

   where   𝑠 = 𝑓 𝑥, 𝑊  

 
 Softmax function 
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Softmax Classifier (Multinomial Logistic Regression) 

cat 

frog 

car 

3.2 

5.1 

-1.7 

Scores = unnormalized log prob. of the classes 

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

   where   𝑠 = 𝑓 𝑥, 𝑊  

Want to maximize the log likelihood, or (for a loss 
function) to minimize the negative log likelihood of 
the correct class: 
 

𝐿𝑖 = − log 𝑃 𝑌 = 𝑦𝑖|𝑋 = 𝑥𝑖  
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Softmax Classifier (Multinomial Logistic Regression) 

cat 

frog 

car 

3.2 

5.1 

-1.7 

Scores = unnormalized log prob. of the classes 

𝑃 𝑌 = 𝑘|𝑋 = 𝑥𝑖 = 𝑚𝑠𝑦𝑖

∑ 𝑚𝑠𝑗
𝑗

   where   𝑠 = 𝑓 𝑥, 𝑊  

Want to maximize the log likelihood, or (for a loss 
function) to minimize the negative log likelihood of 
the correct class: 
 

𝐿𝑖 = − log 𝑃 𝑌 = 𝑦𝑖|𝑋 = 𝑥𝑖  
 
In summary: 

𝐿𝑖 = −log
𝑒𝑠𝑦𝑖

∑ 𝑒𝑠𝑗
𝑗
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Softmax Classifier (Multinomial Logistic Regression) 

cat 

frog 

car 

3.2 

5.1 

-1.7 

unnormalized log probabilities 

24.5 

164.0 

0.18 

exp normalize 

unnormalized probabilities 

0.13 

0.87 

0.00 

probabilities 

𝐿𝑖 = −log 0.13  
      = 0.89 

𝐿𝑖 = −log
𝑒𝑠𝑦𝑖

∑ 𝑒𝑠𝑗
𝑗

 



XOR is not linearly separable 

0 1 

0 

x 2
 
Original x space 

 
1 

x1 



Hidden Input 

 
• Hidden input with an activation function. 
• Several features of the input 
• Each feature defined using an activation function 
• Linear function on the data – followed by a nonlinear activation 

function 



Multilayer Networks 

• Deep feedforward networks 
• Feedforward neural networks 
• Multilayer perceptrons (MLPs) 

 

• Defines a mapping 𝑦 = 𝑓(𝑥; 𝜃) 
• Learns 𝜃 that result in the best function approximation 
• FFNs are typically represented by composing together many different 

functions.  
• The model is associated with a directed acyclic graph describing how the 

functions are composed together. 

 



•  For example, we might have three functions 𝑓(1), 𝑓 2  and 
𝑓(3) connected in a chain, to form  

𝑓 𝑥 = 𝑓 1 (𝑓 2 (𝑓(3)(𝑥))) 

𝑓(1):  first layer 
𝑓(2):  second layer 
𝑓(3): third layer 
• Depth = length of the chain 
• During neural network training, we drive f(x) to match f*(x). 
• The training data provides us with noisy, approximate examples of 

f*(x) evaluated at different training points 
• Because 
• the training data does not show the desired output for each of these 

layers, these layers are called hidden layers 
 
 



Rectified Linear Activation 

0 
z 

0 

g(
z)

 =
 m

ax
{0

, z
} 



Network Diagrams 

y 

h 

 

x 

W  

y 

h1 

x1 

h2 

x2 



Solving X-OR 

• 𝑓 𝑥; 𝑊, 𝑐, 𝑤, 𝑏 = 𝑤𝑇 . 𝑟𝑎𝑥 0, 𝑊𝑇𝑥 + 𝑐 + 𝑏 

• 𝑊 = 1 1
1 1  

• 𝑐 = 0
−1  

• 𝑤 = 1
−2  

• 𝑏 = 0 

0 1 x1 

0 

1 

x 2
 

0 2 1 
h1 

0 

1 

h 2
 



Gradient-Based Learning 

• Specify 
• Model 
• Cost (smooth) 
• Minimize cost using gradient descent or related  techniques 

 
 

• The nonlinearity of a neural network causes most interesting loss functions 
to become nonconvex. 

• Stochastic gradient descent applied to nonconvex loss functions has no 
convergence guarantee and is sensitive to the values of the initial 
parameters. 

• Initialize all weights to small random values. The biases may be initialized to 
zero. 

 



Gradient 

• In 1-d, the derivative of a function: 
 
 
 

• In multiple dimensions, the gradient is the vector of (partial 
derivatives). 
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Evaluating the  
gradient numerically 
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The loss is just a function of W: 

= ... 
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