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ML BASICS 



Bayes Error 

• The ideal model is an oracle that simply knows the true 
probability distribution that generates the data.  

• Even an ideal model will incur error 
• The mapping may be inherently stochastic, or y may be a deterministic 

function that involves other variables besides those included in x.  
 

• The error incurred by an oracle making predictions from the 
true distribution 𝑝(𝑥,𝑦) is called the Bayes error. 



Generalization error 

• Expected generalization error does not increase as the number 
of training examples increases. 
 

• Non-parametric models 
• more data yields better generalization until the best possible error is 

achieved.  

 
• Any fixed parametric model with less than optimal capacity will 

asymptote to an error value that exceeds the Bayes error. 



The No Free Lunch Theorem 

• Inductive reasoning, or inferring general rules from a limited set of 
examples, is not logically valid.  

• To logically infer a rule describing every member of a set, one must 
have information about every member of that set 

• ML avoids this problem by offering only probabilistic rules, rather 
than the entirely certain rules used in purely logical reasoning.  

• The no free lunch theorem (Wolpert, 1996) states that, averaged 
over all possible data generating distributions, every classification 
algorithm has the same error rate when classifying previously 
unobserved points. 
• understand what kinds of distributions are relevant to the “real world”  
• what kinds of ML algorithms perform well on data drawn from distributions 

we care about 





The effect of the training dataset size on the train and test error, as well as on 
the optimal model capacity.  
A synthetic regression problem based on adding noise to a degree-5 polynomial,  
For each size, generated 40 different training sets to plot error bars showing 95 
percent confidence intervals. 
(Top) The MSE on the training and test set for: a quadratic model, and a model 
with degree chosen to minimize the test error.  
For the quadratic model, the training error increases as the size of the training 
set increases because larger datasets are harder to fit.  Simultaneously, the test 
error decreases, because fewer incorrect hypotheses are consistent with the 
training data. The quadratic model does not have enough capacity to solve the 
task. 
The test error at optimal capacity asymptotes to the Bayes error. The training 
error can fall below the Bayes error, due to the ability of the training algorithm to 
memorize specific instances of the training set. As the training size increases to 
infinity, the training error of any fixed-capacity model (here, the quadratic 
model) must rise to at least the Bayes error. 
(Bottom) As the training set size increases, the optimal capacity (shown here as 
the degree of the optimal polynomial regressor) increases. The optimal capacity 
plateaus after reaching sufficient complexity to solve the task 



Regularization 

• No free lunch theorem implies we must design ML algorithms to perform 
well on a specific task. We do so by building a set of preferences into the 
learning algorithm. 

• The behaviour of our algorithm is strongly affected not just by 
how large we make the set of functions allowed in its 
hypothesis space, but by the specific identity of those functions 

• We can also give a learning algorithm a preference for one 
solution in its hypothesis space to another 

• For example, we can modify the training criterion for linear 
regression to include weight decay 

𝐽 𝑤 = 𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡 + 𝜆𝑤𝑇𝑤 
• λ controls the strength of preference for smaller weights 

 





• We fit a high-degree polynomial regression model to our example training 
set.  

• The true function is quadratic, we use models with degree 9. 
• We vary the amount of weight decay to prevent these high-

degree models from overfitting. 
• With very large λ, we can force the model to learn a function 

with no slope at all. This underfits because it can only represent 
a constant function.  

• (Cente)eWith a medium value of λ, the learning algorithm 
recovers a curve with the right general shape. weight decay has 
encouraged it to use a simpler function described by smaller 
coefficients.  

• (Right)With weight decay approaching zero thedegree-9 
polynomial overfits significantly 



Regularization 

• More generally, we can regularize a model that learns a 
function f(x;θ) by adding a penalty called a regularizer to the 
cost function.  

• In the case of weight decay, the regularizer is Ω(w) =𝑤𝑇𝑤 
 

• Many other regularizers are possible 
• Regularization is any modification we make to a learning 

algorithm that is intended to reduce its generalization error but 
not its training error. 
 



Hyperparameters and Validation Sets 

• Most ML algs have several settings that we can use to control 
the behaviour - hyperparameters. 

• Poly regression problem –  
• degree of the poly is the hyperparameter 
• Value of lambda (weight decay) 

• Sometimes a setting is chosen to be a hyper-parameter that 
the learning algorithm does not learn because it is difficult to 
optimize. 

• Hyper-parameters that control model capacity cannot be 
learned on training set 

• To solve this problem, we need a validation set 
 
 



Cross-Validation 

 



Estimators, Bias and Variance 

• Function Estimation (or function approximation): predict a 
variable y given an input vector x. We may assume 

𝑦 = 𝑓 𝑥 + 𝜖 
• Bias of an estimator: 

𝑏𝑏𝑏𝑏 𝜃𝑚� = E 𝜃�𝑚 − 𝜃 
• Variance and Standard Error 

• how much we expect it to vary as a function of the data sample. 
𝑉𝑏𝑉(�̂�) 

• the square root of thevariance is called the standard error, denoted 
SE(ˆθ). 

• a measure of howwe would expect the estimate we compute from data 
to vary as we independentlyresample the dataset from the underlying 
data generating process. 



Trading off Bias and Variance to Minimize Mean Squared Error 



Maximum Likelihood Estimation 
• principle from which we can derive specific functions that are good 

estimators for different models. 
• 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑚)} drawn independently from 𝑝𝑑𝑡𝑡𝑡(𝑥) 
• Let 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥;𝜃) be a parametric family of probability distributions 

over the same space indexed by 𝜃  - maps any configuration 𝑥 to a 
real number estimating the true probability 𝑝𝑑𝑡𝑡𝑡(𝑥). 

• MLE of 𝑥  
𝜃𝑀𝑀 =

𝑏𝑉𝑟𝑟𝑏𝑥
𝜃 𝑝𝑚𝑚𝑑𝑚𝑚(𝑋;𝜃) 

=
𝑏𝑉𝑟𝑟𝑏𝑥

𝜃 �𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑡=1

 

𝜃𝑀𝑀 =
𝑏𝑉𝑟𝑟𝑏𝑥

𝜃 � log𝑝𝑚𝑚𝑑𝑚𝑚(𝑥 𝑖 ;𝜃)

𝑚

𝑡=1

 

𝜃𝑀𝑀 = 𝑏𝑉𝑟𝑟𝑏𝑥
𝜃 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥;𝜃) 



MLE 

• One way to interpret maximum likelihood estimation is to view 
it as minimizing the dissimilarity between the empirical 
distribution �̂�𝑑𝑡𝑡𝑡  defined by the training set and the model 
distribution. 

• Measured by KL-divergence  
𝐷𝐾𝑀(�̂�𝑑𝑡𝑡𝑡| 𝑝𝑚𝑚𝑑𝑚𝑚 = 𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑[log �̂�𝑑𝑡𝑡𝑡(𝑥) − log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)] 

• The term on the left is a function only of the data-generating 
process, not the model. So we only need to minimize  

−𝔼𝑥~𝑝�𝑑𝑑𝑑𝑑 [log 𝑝𝑚𝑚𝑑𝑚𝑚(𝑥)] 
• Minimizing this KL divergence corresponds exactly to 

minimizing the cross-entropy between the distributions. 



Conditional Log-Likelihood 

• ML estimator can be generalized to estimate a conditional 
probability 𝑃(𝑦|𝑥;𝜃)  

𝜃𝑀𝑀 = 𝑏𝑉𝑟𝑟𝑏𝑥
𝜃 𝑃 𝑌 𝑋;𝜃  

For i.i.d. examples,  

𝜃𝑀𝑀 = 𝑏𝑉𝑟𝑟𝑏𝑥
𝜃 � log𝑃(𝑦(𝑡)|𝑥(𝑡);𝜃)

𝑚

𝑡=1
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