Recurrent Neural Network

Sudeshna Sarkar
Spring 2018

12 Feb 2018

Long Short Term Memory Hochreiter & Schmidhuber (1997)

Repeating module in 1 | t
Standard RNN [A ﬂ A }_‘
© &

3 o0 — > <

Neural Network Pointwis Vector

Layer Opera tlon Transfer Concatanate Copy

Core idea behind LSTM

- The cell state, C; , is like a conveyor belt. Runs
through entire chain with minor linear

Ce_1 N) C

interactions. 1 b g
It’s very easy for information to just flow along
it unchanged.
» LSTM has the ability to remove/add

information to cell state regulated by

gates. ——
- Gates are composed out of a sigmoid neural

net layer and a pointwise multiplication

operation.

LSTM: Constant Error Carousel

| ® ®
r ‘HWF W "
—» 4> —> —»
(] x)
A lElI;"'..i!IIIlEl A
—- > —»
M A >y e A

© ® ©
Key Component: A remembered cell state.
C; is the linear history carried by the constant error carousel.

LSTM: Forget Gate

- Step 1: Forget Gate decide what information we’re going to throw
away from the cell state.

- It looks at h;_4 and x;, and outputs a number between 0 and 1 for
each number in the cell state C;_; for whether to forget.

fi=0 Wy [ht—1,2¢] + by)

« Language model: predict next word based on previous ones

 Cell state may include the gender of the present subject so that the proper
pronouns can be used

« When we see a new subject we want to forget old subject

LSTM : Input Gate

Decide what new information we’re going to store in the cell state

Two parts:

In the Language model, we'd
want to add the gender of the
new subject to the cell state, to
replace the old one we are
forgetting

a) A sigmoid layer called Input gate layer:
decides which values we will update

b) Next a tanh layer creates a vector of new
candidate values C; that could be added to the
state.

In Step 3 we combine these two to create an updatg

to the state

it = o0 (W;-[he—1,xe] + b;)
Cy = tanh(We - [he—1,x¢] + bo)

10

LSTM walk through: Step 3

- Update old cell state C;_; into new cell state C;.

* We multiply the old state by f;,

Ci @ = forgetting the things we decided to
fT _ forget earlier.
1 7T 7c e Thenwe add i; * C,.

Ce=fr*Ce+ip*C

In the Language model, this is where we’d actually
drop the information about the old subject’s gender
and add the new information, as we decided in
previous steps

LSTM: Output and Output gate

he 1

|

hy

For the Language model,
Since it just saw a subject it

might want to output
information relevant to a verb

This output will be based on our cell
state, but will be a filtered version.
First we run a sigmoid layer which
decides what parts of cell state we’re
going to output. Then we put the cell
state through tanh (to push values to
be between -1 and 1) and multiply it
by the output of the sigmoid gate, so
that we output only the parts we
decided to

U(Wo [ht—lawt] s bo)
o+ x tanh (C4)

O¢

h

LSTM Equations

i: input gate, how much of the new
information will be let through the memory
cell.

f: forget gate, responsible for which
information should be thrown away from
memory cell.

0: output gate, how much of the information
will be passed to expose to the next time step.

g: self-recurrent which is equal to standard RNN
C¢: internal memory of the memory cell
S¢: hidden state

y: final output

Variants of LSTM

LSTM with ”peephole” connections (let the cell directly influence

he A
the gates) |
_T _[S > f‘l’. = T (Wf' [Ct—l, ht—la :Ct] -+ bf)
&XJ r—hx) it = o (W;-[Ce—1,he 1, 7¢] + by;)
| D’ J] r l Lo] 0y — O (Wo [Ot, ht—l: -’L't] + bo)

Coupled forget and input gates

oo d

>
--f'*P-C’-E)—NX“ el }r Cr = fexCi_1+ (A — fe) * €
L?‘J ta |_0“_] L

Gated Recurrent Unit (GRU)

A dramatic variant of LSTM
It combines the forget and input gates into a single update gate

It also merges the cell state and hidden state, and makes some other changes
The resulting model is simpler than LSTM models

Has become increasingly popular

ze = o (We - [he—1, 2¢])
re =0 (Wi« [he—1, x¢])
he = tanh (W - [ry * he_1, T¢])
hy :(1—zt)*ht_1—|—zt>l<7zt

Gated Recurrent Unit (GRU)

Combine forget and input gates

— In new input is to be remembered, then this means old memory is to

be forgotten

* Why compute twice?

ze = o (We - [he—1, 2¢])
re =0 (Wi« [he—1, x¢])
he = tanh (W - [ry * he_1, T¢])
hy :(1—zt)=kht_1—|—zt>l<7zt

Gated Recurrent Units

z¢ = 0 (Wy - [he—1,x¢])
re — O (Wr : [ht—hﬂ?t])
Et — tanh (W - ['rt * ht—la IEt])

ht:(l—zt)*ht_1+zt*?lt

Don’t bother t o separately maintain compressed and regular
memories

But compress it before using it to decide on the usefulness of the
current input!

Gated RNN

- Gated RNNs are based on the idea of creating paths through
time that have derivatives that neither vanish nor explode.

- Accumulating Information over Longer Duration
- Gated RNN:

- Instead of manually deciding when to clear the state, we want
the neural network to learn to decide when to do it

NI

o Contribution of LSTMs

e introducing self-loops to produce paths where the gradient can flow for long
durations

« make weight on this self-loop conditioned on the context, rather than fixed

- By making weight of this self-loop gated (controlled by another hidden unit),
time-scale can be changed dynamically

« Even for an LSTM with fixed parameters, time scale of integration can change
based on the input sequence

* Because time constants are output by the model itself

« LSTM found extremely successful in:
« Unconstrained handwriting recognition, Speech recognition
« Handwriting generation, Machine Translation
* Image Captioning, Parsing

	CS60010: Deep Learning�Recurrent Neural Network
	Long Short Term Memory
	Core idea behind LSTM
	LSTM: Constant Error Carousel
	LSTM: Forget Gate
	LSTM : Input Gate
	LSTM walk through: Step 3
	LSTM: Output and Output gate
	LSTM Equations
	Variants of LSTM
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Units
	Gated RNN
	LSTM

