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Long Short Term Memory Hochreiter & Schmidhuber (1997)
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Core idea behind LSTM

- The cell state, C; , is like a conveyor belt. Runs
through entire chain with minor linear
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interactions. 1 b g
It’s very easy for information to just flow along
it unchanged.
» LSTM has the ability to remove/add

information to cell state regulated by

gates. ——
- Gates are composed out of a sigmoid neural

net layer and a pointwise multiplication

operation.



LSTM: Constant Error Carousel
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Key Component: A remembered cell state.
C; is the linear history carried by the constant error carousel.



LSTM: Forget Gate

- Step 1: Forget Gate decide what information we’re going to throw
away from the cell state.

- It looks at h;_4 and x;, and outputs a number between 0 and 1 for
each number in the cell state C;_; for whether to forget.

fi=0 Wy [ht—1,2¢] + by)

« Language model: predict next word based on previous ones

 Cell state may include the gender of the present subject so that the proper
pronouns can be used

« When we see a new subject we want to forget old subject



LSTM : Input Gate

Decide what new information we’re going to store in the cell state

Two parts:

In the Language model, we'd
want to add the gender of the
new subject to the cell state, to
replace the old one we are
forgetting

a) A sigmoid layer called Input gate layer:
decides which values we will update

b) Next a tanh layer creates a vector of new
candidate values C; that could be added to the
state.

In Step 3 we combine these two to create an updatg

to the state

it = o0 (W;-[he—1,xe] + b;)
Cy = tanh(We - [he—1,x¢] + bo)
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LSTM walk through: Step 3

- Update old cell state C;_; into new cell state C;.

* We multiply the old state by f;,

Ci @ = forgetting the things we decided to
fT _ forget earlier.
1 7T 7c e Thenwe add i; * C,.

Ce=fr*Ce+ip*C

In the Language model, this is where we’d actually
drop the information about the old subject’s gender
and add the new information, as we decided in
previous steps




LSTM: Output and Output gate
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For the Language model,
Since it just saw a subject it

might want to output
information relevant to a verb

This output will be based on our cell
state, but will be a filtered version.
First we run a sigmoid layer which
decides what parts of cell state we’re
going to output. Then we put the cell
state through tanh (to push values to
be between -1 and 1) and multiply it
by the output of the sigmoid gate, so
that we output only the parts we
decided to

U(Wo [ht—lawt] s bo)
o+ x tanh (C4)
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LSTM Equations

i: input gate, how much of the new
information will be let through the memory
cell.

f: forget gate, responsible for which
information should be thrown away from
memory cell.

0: output gate, how much of the information
will be passed to expose to the next time step.

g: self-recurrent which is equal to standard RNN
C¢: internal memory of the memory cell
S¢: hidden state

y: final output



Variants of LSTM

LSTM with ”peephole” connections (let the cell directly influence
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the gates) |
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&XJ r—hx) it = o (W;-[Ce—1,he 1, 7¢] + by;)
| D’ J ] r l Lo ] 0y — O (Wo [Ot, ht—l: -’L't] + bo)

Coupled forget and input gates
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Gated Recurrent Unit (GRU)

A dramatic variant of LSTM
It combines the forget and input gates into a single update gate

It also merges the cell state and hidden state, and makes some other changes
The resulting model is simpler than LSTM models

Has become increasingly popular

ze = o (We - [he—1, 2¢])
re =0 (Wi« [he—1, x¢])
he = tanh (W - [ry * he_1, T¢])
hy :(1—zt)*ht_1—|—zt>l<7zt




Gated Recurrent Unit (GRU)

Combine forget and input gates

— In new input is to be remembered, then this means old memory is to

be forgotten

* Why compute twice?

ze = o (We - [he—1, 2¢])
re =0 (Wi« [he—1, x¢])
he = tanh (W - [ry * he_1, T¢])
hy :(1—zt)=kht_1—|—zt>l<7zt




Gated Recurrent Units

z¢ = 0 (Wy - [he—1,x¢])
re — O (Wr : [ht—hﬂ?t])
Et — tanh (W - ['rt * ht—la IEt])

ht:(l—zt)*ht_1+zt*?lt

Don’t bother t o separately maintain compressed and regular
memories

But compress it before using it to decide on the usefulness of the
current input!



Gated RNN

- Gated RNNs are based on the idea of creating paths through
time that have derivatives that neither vanish nor explode.

- Accumulating Information over Longer Duration
- Gated RNN:

- Instead of manually deciding when to clear the state, we want
the neural network to learn to decide when to do it
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o Contribution of LSTMs

e introducing self-loops to produce paths where the gradient can flow for long
durations

« make weight on this self-loop conditioned on the context, rather than fixed

- By making weight of this self-loop gated (controlled by another hidden unit),
time-scale can be changed dynamically

« Even for an LSTM with fixed parameters, time scale of integration can change
based on the input sequence

* Because time constants are output by the model itself

« LSTM found extremely successful in:
« Unconstrained handwriting recognition, Speech recognition
« Handwriting generation, Machine Translation
* Image Captioning, Parsing
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