
CS60010: Deep Learning

Recurrent Neural Network

Sudeshna Sarkar
Spring 2018

8 Feb 2018

RNN 3: hidden2hidden, single output.

Such a network can be used to summarize a sequence and produce a fixed-
size representation used as input for further processing.
There might be a target right at the end or the gradient on the output 𝑜(𝑡)
can be obtained by backpropagation from further downstream modules

Vector to sequence RNN

If x is a fixed-sized vector, we can
make it an extra input of the RNN
that generates the y sequence.
Some common ways of providing the
extra input

• as an extra input at each time step,
• as the initial state h0
• both

• Example: generate caption for an
image

March 2, 2017 4 / 48

• The input x is a sequence of
the same length as the
output sequence y

• Removing the dash lines, it
assumes yt ’s are independent
of each other when the past
input sequence is given, i.e.
P(yt |yt − 1, . . . , y1, xt , . . . , x1) = P(yt |xt , . . . , x1)

• Without the conditional independence
assumption, add the dash lines and the
prediction of yt +1 is based on both the past x’s
and past y’s

RNNs share same weights across Time Steps

• To go from multi-layer networks to RNNs:
• Need to share parameters across different parts of a model
• Separate parameters for each value of cannot generalize to

sequence lengths not seen during training
• Share statistical strength across different sequence lengths and

across different positions in time

• Sharing important when information can occur at
multiple positions in the sequence
• Given “I went to Nepal in 1999 ” and “In 1999, I went to Nepal ”,

an ML method to extract year, should extract 1999 whether in
position 6 or 2

• A feed-forward network that processes sentences of fixed length
would have to learn all of the rules of language separately at each
position

• An RNN shares the same weights across several time steps

Bidirectional RNNs

• In some applications, we want to
output at time t a prediction
regarding an output which may
depend on the whole input
sequence, e.g., speech
recognition, MT

• Bidirectional recurrent neural
network combines a forward-
going RNN and a backward-going
RNN

The idea can be extended to 2D input
with four RNN going in four directions

Xiaogang Wang (linux)
 l k h 6 / 48

Bidirectional RNNs

• ℎ(𝑡) summaries the
information from the
past sequence, and

• 𝑔(𝑡) summaries the
information from the
future sequence

Encoder-Decoder Sequence to Sequence RNN

Encoder-Decoder Sequence to Sequence RNN

• An encoder or reader or input RNN processes the input sequence. The
encoder emits the context C , usually as a simple function of its final hidden
state.

• A decoder or writer or output RNN is conditioned on that fixed-length
vector to generate the output sequence Y = (y(1) , . . . , y(ny)).

• Training: two RNNs are trained jointly to maximize the average of
logP(y(1),…,y(ny) |x(1),…,x(nx)) over all the pairs of x and y sequences in the
training set.

Deep Recurrent Networks

• The computation in most RNNs can be decomposed into three
blocks of parameters and associated transformations

1. From the input to the hidden state
2. From the previous hidden state to the next hidden state
3. From the hidden state to the output

• introduce depth in each of these operations?

5

1. Hidden recurrent state
can be broken down into
groups organized
hierarchically

2. Deeper computation can be
introduced in the input-hidden,
hidden-hidden and hidden-output
parts. This may lengthen the shortest
path linking different time steps

3. The path-
lengthening effect
can be mitigated by
introducing skip
connections.

Ways of making an RNN deep

Recurrent states broken down into groups

• We can think of lower levels of the
hierarchy play a role of transforming
the raw input into a representation
that is more appropriate at the
higher levels of the hidden state

Deeper computation in hidden-to-hidden

• Have a separate MLP (possibly deep) for each of the
three blocks:
• From input to hidden
• From hidden to hidden
• From hidden to output

• By adding depth may hurt learning by making
optimization difficult

• In general it is easier to optimize shallower
architectures

• Adding the extra depth makes the shortest time of
a variable from time step t to a variable in time step
t+1 become longer

Introducing skip connections

• For example, if an MLP with a single hidden
layer is used for the state-to- state transition,
we have doubled the length of the shortest
path between variables in any two different
time steps compared with the ordinary RNN.

• This can be mitigated by introducing skip
connections in the hidden-to-hidden path.

Problem of Long-Term Dependencies

• Consider the gradient of a loss LT at time T with respect to the
parameter θ of the recurrent function fθ

ℎ(𝑡) = 𝑓𝜃 ℎ(𝑡−1), 𝑥(𝑡)

𝜕𝐿𝑇
𝜕𝜃

= �
𝜕𝐿𝑇
𝜕ℎ(𝑡)

𝜕ℎ(𝑇)

𝜕ℎ(𝑡)
𝜕𝑓𝜃(ℎ(𝑡−1), 𝑥(𝑡))

𝜕𝜃
𝑡≤𝑇

Encodes long term dependencies when T-t is large

• Easy to predict last word in “the clouds are in the sky,”
• When gap between relevant information and place that it’s needed is

small, RNNs can learn to use the past information

• “I grew up in France… I speak fluent French.”
• We need the context of France, from further back.
• Large gap between relevant information and point where it is needed

Problem of Long-Term Dependencies

	CS60010: Deep Learning��Recurrent Neural Network
	RNN 3: hidden2hidden, single output.
	Vector to sequence RNN
	Slide Number 4
	RNNs share same weights across Time Steps
	Bidirectional RNNs
	Bidirectional RNNs
	Encoder-Decoder Sequence to Sequence RNN
	Encoder-Decoder Sequence to Sequence RNN
	Deep Recurrent Networks
	Ways of making an RNN deep
	Recurrent states broken down into groups
	Deeper computation in hidden-to-hidden
	Introducing skip connections
	Problem of Long-Term Dependencies
	Problem of Long-Term Dependencies

