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RNN 3: hidden2hidden, single output.  

Such a network can be used to summarize a sequence and produce a fixed-
size representation used as input for further processing.  
There might be a target right at the end or the gradient on the output 𝑜(𝑡) 
can be obtained by backpropagation from further downstream modules 



Vector to sequence RNN 

If x is a fixed-sized vector, we can 
make it an extra input of the RNN 
that generates the y sequence.  
Some common ways of providing the 
extra input 

• as an extra input at each time step,  
• as the initial state h0 
• both 

• Example: generate caption for an 
image 
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• The input x is a sequence of  
the same length as the  
output sequence y 
 
 

• Removing the dash lines, it  
assumes yt ’s are independent 
of each other when the past  
input sequence is given, i.e.  
P(yt |yt − 1, . . . , y1, xt , . . . , x1) = P(yt |xt , . . . , x1) 

• Without the conditional independence 
assumption, add the dash lines and the 
prediction of yt +1  is based on both the past x’s 
and past y’s 



RNNs share same weights across Time Steps 

• To go from multi-layer networks to RNNs: 
• Need to share parameters across different parts of a model 
• Separate parameters for each value of cannot generalize to 

sequence lengths not seen during training 
• Share statistical strength across different sequence lengths and 

across different positions in time 

• Sharing important when information can occur at 
multiple positions in the sequence 
• Given “I went to Nepal in 1999 ” and “In 1999, I went to Nepal ”, 

an ML method to extract year, should extract 1999 whether in 
position 6 or 2 

• A feed-forward network that processes sentences of fixed length 
would have to learn all of the rules of language separately at each 
position 

• An RNN shares the same weights across several time steps 



Bidirectional RNNs 

• In some applications, we want to 
output at time t a prediction 
regarding an output which may 
depend on the whole input 
sequence, e.g., speech 
recognition, MT 

• Bidirectional recurrent neural 
network combines a forward-
going RNN and a backward-going 
RNN 

The idea can be extended to 2D input 
with four RNN going in four directions 

Xiaogang Wang  (linux) 
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Bidirectional RNNs 

• ℎ(𝑡) summaries the 
information from the 
past sequence, and  

• 𝑔(𝑡) summaries the 
information from the 
future sequence 



Encoder-Decoder Sequence to Sequence RNN 



Encoder-Decoder Sequence to Sequence RNN 

• An encoder or reader or input RNN processes the input sequence. The 
encoder emits the context C , usually as a simple function of its final hidden 
state. 

• A decoder or writer or output RNN is conditioned on that fixed-length 
vector to generate the output sequence Y = ( y(1) , . . . , y(ny ) ). 

• Training: two RNNs are trained jointly to maximize the average of 
logP(y(1),…,y(ny) |x(1),…,x(nx)) over all the pairs of x and y sequences in the 
training set. 



Deep Recurrent Networks 

• The computation in most RNNs can be decomposed into three 
blocks of parameters and associated transformations 

1. From the input to the hidden state 
2. From the previous hidden state to the next hidden state 
3. From the hidden state to the output 

• introduce depth in each of these operations? 
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1. Hidden recurrent state 
can be broken down into 
groups organized 
hierarchically 

2. Deeper computation can be 
introduced in the input-hidden, 
hidden-hidden and hidden-output 
parts. This may lengthen the shortest 
path linking different time steps 

3. The path- 
lengthening effect 
can be mitigated by 
introducing skip 
connections. 

Ways of making an RNN deep 



Recurrent states broken down into groups 

• We can think of lower levels of the 
hierarchy play a role of transforming 
the raw input into a representation 
that is more appropriate at the 
higher levels of the hidden state 
 

 



Deeper computation in hidden-to-hidden 

• Have a separate MLP (possibly deep) for each of the 
three blocks: 
• From input to hidden 
• From hidden to hidden 
• From hidden to output 

• By adding depth may hurt learning by making 
optimization difficult 

• In general it is easier to optimize shallower 
architectures 

• Adding the extra depth makes the shortest time of 
a variable from time step t to a variable in time step 
t+1 become longer 

 



Introducing skip connections 

• For example, if an MLP with a single hidden 
layer is used for the state-to- state transition, 
we have doubled the length of the shortest 
path between variables in any two different 
time steps compared with the ordinary RNN. 
 

• This can be mitigated by introducing skip 
connections in the hidden-to-hidden path. 



Problem of Long-Term Dependencies 

• Consider the gradient of a loss LT  at time T with respect to the 
parameter θ of the recurrent function fθ 

ℎ(𝑡) = 𝑓𝜃 ℎ(𝑡−1), 𝑥(𝑡)  
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Encodes long term dependencies when T-t is large 

 



• Easy to predict last word in “the clouds are in the sky,” 
• When gap between relevant information and place that it’s needed is 

small, RNNs can learn to use the past information 

• “I grew up in France… I speak fluent French.” 
• We need the context of France, from further back. 
• Large gap between relevant information and point where it is needed 

Problem of Long-Term Dependencies 
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