
CS60010: Deep Learning

Recurrent Neural Network

Sudeshna Sarkar
Spring 2018

6 Feb 2018

RNN1: with recurrence between hidden units
Maps input sequence x to output o

With softmax outputs Loss L internally
computes 𝑦�= softmax(𝑜) and
compares to target 𝑦
• Update equation applied for each

time step from 𝑡 = 1 to 𝑡 = 𝜏

Parameters:
• bias vectors b and c
• weight matrices U (input-to-hidden),

V (hidden-to-output) and
W (hidden- to-hidden) connections

Loss function for a given sequence

• The total loss for a given sequence of x values with a
sequence of y values is the sum of the losses over
the time steps

• If 𝐿(𝑡) is the negative log-likelihood of y (t) given x (1),..x (t)

then

𝐿 𝑥(1), 𝑥(2), … , 𝑥(𝑡) , 𝑦(1),𝑦(2), … ,𝑦(𝑡) = �𝐿(𝑡)

𝑡

= −� log𝑝𝑚𝑚𝑚𝑚𝑚(𝑦(𝑡)| 𝑥(1), 𝑥(2), … , 𝑥(𝑡))
𝑡

Backpropagation through time

• We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

• We can also think of this training algorithm in the time domain:
• The forward pass builds up a stack of the activities of all the units at each

time step.
• The backward pass peels activities off the stack to compute the error

derivatives at each time step.
• After the backward pass we add together the derivatives at all the

different times for each weight.

Gradients on V, c, W and U

𝜕𝐿
𝜕𝐿𝑡

= 1,
𝜕𝐿
𝜕𝑜𝑡

=
𝜕𝐿
𝜕𝐿𝑡

𝜕𝐿𝑡
𝜕𝑜𝑡

=
𝜕𝐿𝑡
𝜕𝑜𝑡

𝜕𝐿
𝜕𝑉

= �
𝜕𝐿𝑡
𝜕𝑜𝑡𝑡

𝜕𝑜𝑡
𝜕𝑉

𝜕𝐿
𝜕𝑐

= �
𝜕𝐿𝑡
𝜕𝑜𝑡𝑡

𝜕𝑜𝑡
𝜕𝑐

𝜕𝐿
𝜕𝑊

= �
𝜕𝐿𝑡
𝜕ℎ𝑡𝑡

𝜕ℎ𝑡
𝜕𝑊

𝜕𝐿
𝜕ℎ𝑡

=
𝜕𝐿

𝜕ℎ𝑡+1
𝜕ℎ𝑡+1
𝜕ℎ𝑡

+
𝜕𝐿
𝜕𝑜𝑡

𝜕𝑜𝑡
𝜕ℎ𝑡

Feedforward Depth (df)
Feedforward depth: longest path
between an input and output at the
same timestep

Feedforward
depth = 4

High level
feature!

Notation: h0,1 ⇒ time step 0, neuron #1

Recurrent Depth (dr)

● Recurrent depth: Longest
path between same hidden
state in successive timesteps

Recurrent depth = 3

Backpropagation Through Time (BPTT)

• Update the weight matrix:

• Issue: W occurs each

timestep
• Every path from W to L is one

dependency
• Find all paths from W to L

Systematically Finding All Paths

• How many paths exist
from W to L through L1?
• 1

• How many paths from W
to L through L2?
• 2 (originating at h0 and h1)

The gradient has two
summations:
1: Over Lj
2: Over hk

Backpropagation as two summations

First summation over L

Backpropagation as two summations

Second summation over h:
Each Lj depends on the
weight matrices before it

Lj depends on
all hk before it.

Backpropagation as two summations

● No explicit dep of Lj on hk

● Use chain rule to fill missing steps

j

k

Backpropagation as two summations

● No explicit of Lj on hk

● Use chain rule to fill missing steps

j

k

The Jacobian

Indirect dependency. One final
use of the chain rule gives:

“The Jacobian”

j

k

The Final Backpropagation Equation

Backpropagation as two summations

j

k

● Often, to reduce memory
requirement, we truncate the network

● Inner summation runs from
𝑗 − 𝑝 to 𝑗 for some p
==> truncated BPTT

Expanding the Jacobian

The Issue with the Jacobian

Repeated matrix multiplications leads to vanishing and exploding
gradients.

Weight Matrix Derivative of activation function

Eigenvalues and Stability

Consider identity activation function
If Recurrent Matrix Wh is a diagonalizable:

Computing powers of Wh is simple:

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

Q matrix composed of
eigenvectors of Wh

Λ is a diagonal matrix with
eigenvalues placed on the
diagonals

Eigenvalues and stability

Vanishing
gradients

Exploding
gradients

• RNNs involve composition of the same function
multiple times, one per step

• These compositions can result in extremely nonlinear
behaviour

Composing many nonlinear
functions: eg tanh

h has 100 dimensions
mapped to a single
dimension

Most of the space it has a
small derivative and highly
nonlinear elsewhere

• Problem particular to RNNs

Function Composition in RNNs

22

The problem of exploding or vanishing gradients

• What happens to the
magnitude of the gradients
as we backpropagate through
many layers?
– If the weights are small, the

gradients shrink exponentially.
– If the weights are big the

gradients grow exponentially.

• In an RNN trained on long
sequences the gradients can
easily explode or vanish.
– We can avoid this by initializing

the weights very carefully.

• Even with good initial
weights, its very hard to
detect that the current target
output depends on an input
from many time-steps ago.
– So RNNs have difficulty dealing

with long-range dependencies.

Addressing Vanishing / exloding gradients

Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

Hessian Free
Optimization

Echo State
Networks

● Identity-RNN
● np-RNN

● LSTM
● GRU

Complexity of BPTT

• Computing gradient of the loss function wrt parameters
is expensive
• It involves performing a forward propagation pass followed by a

backward propagation through the graph

• Run time is O (τ) and cannot be reduced by parallelization
• States computed during forward pass must be stored until

reused in the backward pass
• So memory cost is also O (τ)

• RNN with hidden unit recurrence is very powerful but also
expensive to train

RNN Variation 2: output2hidden, sequence output

Teacher Forcing and Networks with Output Recurrence

• The model is trained to maximize the conditional probability of
current output y(t), given both the x sequence so far and the
previous output y(t-1)

RNN Variation 2: output2hidden, sequence output
Less powerful than with
hidden-to- hidden recurrent
connections

• It cannot simulate a
universal TM

• It requires that the
output capture all
information of past to
predict future

Training with Teacher forcing
• Teacher forcing is a procedure that

emerges from the maximum likelihood
criterion, in which during training the
model receives the ground truth output
𝑦(𝑡) as input at time 𝑡 + 1.

• Advantage
• In comparing loss function to output all time

steps are decoupled each step can be trained in
isolation

• Training can be parallelized
• Gradient for each step t computed in

isolation
• No need to compute output for the

previous step first, because training set
provides ideal value of output

• Train time: We feed the correct output
y(t) (from teacher) drawn from the
training set as input to h(t+1)

Teacher forcing

8

Test time:
True output is not known.
We approximate the correct
output y (t) with the model’s
output o (t) and feed the output
back to the model

Visualizing Teacher Forcing

• Imagine that the network is learning to follow a trajectory

• It goes astray (because the weights are wrong) but teacher
forcing puts the net back on its trajectory
• By setting the state of all the units to that of teacher’s.

(a) Without teacher forcing, trajectory
runs astray (solid lines) while the
correct trajectory are the dotted
lines

(b) With teacher forcing trajectory
corrected at each step

Training with both Teacher Forcing and BPTT

• Some models may be trained with both Teacher
forcing and Backward Propagation through time
(BPTT)
• When there are both hidden-to-hidden recurrences as well as

output-to- hidden recurrences

Disadvantage of Teacher Forcing

• Limited expressive power

	CS60010: Deep Learning��Recurrent Neural Network
	RNN1: with recurrence between hidden units
	Loss function for a given sequence
	Backpropagation through time
	Gradients on V, c, W and U
	Feedforward Depth (df)
	Recurrent Depth (dr)
	Backpropagation Through Time (BPTT)
	Systematically Finding All Paths
	Backpropagation as two summations
	Backpropagation as two summations
	Backpropagation as two summations
	Backpropagation as two summations
	The Jacobian
	The Final Backpropagation Equation
	Backpropagation as two summations
	Expanding the Jacobian
	The Issue with the Jacobian
	Eigenvalues and Stability
	Eigenvalues and stability
	Function Composition in RNNs
	The problem of exploding or vanishing gradients
	Addressing Vanishing / exloding gradients
	Complexity of BPTT
	RNN Variation 2: output2hidden, sequence output
	RNN Variation 2: output2hidden, sequence output
	Training with Teacher forcing
	Teacher forcing
	Visualizing Teacher Forcing
	Training with both Teacher Forcing and BPTT
	Disadvantage of Teacher Forcing

