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Sequence 

• Sequence data: sentences, speech, stock market, signal data 
• Sequence of words in an English sentence 
• Acoustic features at successive time frames in speech recognition 
• Successive frames in video classification 
• Rainfall measurements on successive days in Hong Kong 
• Daily values of current exchange rate 

 
 
 



Modeling Sequential Data 
• Sample data sequences from a certain distribution 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑇) 
• Generate natural sentences to describe an image 

𝑃(𝑦1,𝑦2, … ,𝑦𝑇|𝐼) 
• Activity recognition from a video sequence 

𝑃(𝑦|𝑥1, 𝑥2, … , 𝑥𝑇) 
• Speech Recognition 

𝑃 𝑦1,𝑦2, … ,𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑇  
• Machine Translation 

𝑃 𝑦1,𝑦2, … ,𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑆  
 

 



Recurrent neural networks 
• RNNs are very powerful, because 

they combine two properties: 
• Distributed hidden state that allows 

them to store a lot of information 
about the past efficiently. 

• Non-linear dynamics that allows them 
to update their hidden state in 
complicated ways. 

• With enough neurons and time, 
RNNs can compute anything that 
can be computed by your 
computer.  
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson 

Recurrent Networks offer a lot of flexibility: 

Vanilla Neural Networks 



Why RNNs? 

• Can model sequences having variable length 
• Efficient: Weights shared across time-steps  

 



Dynamic system; Unfolded; Computation graph 

• Dynamical system: classical form 
𝑠(𝑡) = 𝑓 𝑠(𝑡−1);𝜃  
𝑠(3) = 𝑓 𝑓 𝑠(1);𝜃  

• For a finite no. of time steps τ, the graph can be unfolded by 
applying the definition τ-1 times. 
 
 
 

• The same parameters are used at all time steps. 
 



Dynamical system driven by external signal 

• Consider a dynamical system driven by external (input) 
signal 𝑥(𝑡):  𝑠(𝑡) = 𝑓 𝑠(𝑡−1), 𝑥(𝑡);𝜃  

• The state now contains information about the whole past input 
sequence. To indicate that the state is hidden rewrite using 
variable h for state: 

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃  
 



Output prediction by RNN 

• Task : To predict the future from the past 

• The network typically learns to use h (t)   as a summary of the 
task-relevant aspects of the past sequence of inputs upto t 

• The summary is in general lossy since it maps a sequence of 
arbitrary length (x (t), x (t-1),..,x (2),x (1))  to a fixed length 
vector h (t)  

• Depending on the training criterion, summary keeps some 
aspects of past sequence more precisely than other aspects 
 



ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃  

can be written in two different ways: circuit diagram or an 
unfolded computational graph 

 

 

 

 

The unfolded graph has a size dependent on the sequence 
length. 

 

 
 

Unfolding: from circuit diagram to computational graph 



Unfolding 

• We can represent the unfolded recurrence after t steps 
with a function 𝑔(𝑡): 

ℎ(𝑡) = 𝑔(𝑡) 𝑥(𝑡), 𝑥(𝑡−1) … , 𝑥(1)  
• The function 𝑔(𝑡) takes in whole past sequence 

𝑥(𝑡), 𝑥(𝑡−1) … , 𝑥(1)  as input and produces the current 
state . 

• But the unfolded recurrent structure allows us to factorize 
g(t) into repeated application of a function 𝑓. 

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃  
 

 



Advantages of unfolding model 

1. Regardless of sequence length, the learned model has the 
same input size because it is specified in terms of transition 
from one state to another state rather than specified in 
terms of a variable length history of states 

2. It is possible to use same function f with same parameters at 
every step 

• These two factors make it possible to learn a single model f 
that operates on all time steps and all sequence lengths. 

• Learning a single shared model: can apply the network to 
input sequences of different lengths and predict sequences of 
different lengths and to work with fewer training examples. 

 







o(t)= c+ Vh(t) 

h(t)=tanh(a(t)) 
a(t)= b+ Wh(t-1)+ Ux (t) 

Unfolding Computational Graphs 

• A Computational Graph is a way 
to formalize the structure of a set 
of computations such as mapping 
inputs and parameters to outputs 
and loss 
 
 
 

• We can unfold a recursive or 
recurrent computation into a 
computational graph that has a 
repetitive structure 
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A more complex unfolded computational graph 



Three design patterns of 
RNNs 

1. Output at each time step; 
recurrent connections between 
hidden units 

2. Output at each time step; 
recurrent connections only from 
output at one time step to hidden 
units at next time step 

3. Recurrent connections between 
hidden units to read entire input 
sequence and produce a single 
output 
Can summarize sequence to  
produce a fixed size representation for  
further processing 

 



RNN1: with recurrence between hidden units 
Maps input sequence x  to output o 
 
With softmax outputs Loss L  internally 
computes 𝑦�= softmax(𝑜)  and 
compares to target 𝑦 
• Update equation applied for each 

time step from 𝑡 = 1 to 𝑡 = 𝜏 

Parameters: 
• bias vectors b and c  
• weight matrices U (input-to-hidden),  

V (hidden-to-output) and  
W (hidden- to-hidden) connections 



Loss function for a given sequence 

• The total loss for a given sequence of x  values with a 
sequence of y  values is the sum of the losses over 
the time steps 

• If 𝐿(𝑡) is the negative log-likelihood of y (t)  given x (1),..x (t)   

then 

𝐿  𝑥(1), 𝑥(2), … , 𝑥(𝑡) , 𝑦(1),𝑦(2), … ,𝑦(𝑡) = �𝐿(𝑡)

𝑡

 

= −� log𝑝𝑚𝑚𝑚𝑚𝑚(𝑦(𝑡)| 𝑥(1), 𝑥(2), … , 𝑥(𝑡) )
𝑡

 



Backpropagation through time 

• We can think of the recurrent net as a layered, feed-forward 
net with shared weights and then train the feed-forward net 
with weight constraints. 

• We can also think of this training algorithm in the time domain:  
• The forward pass builds up a stack of the activities of all the units at each 

time step.  
• The backward pass peels activities off the stack to compute the error 

derivatives at each time step.  
• After the backward pass we add together the derivatives at all the 

different times for each weight. 



Gradients on V, c, W and U 
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Feedforward Depth (df) 
Feedforward depth: longest path  
between an input and output at the 
same timestep 

Feedforward 
depth = 4  

High level 
feature! 

Notation: h0,1 ⇒ time step 0, neuron #1 



Option 2: Recurrent Depth (dr) 

● Recurrent depth: Longest 
path between same hidden 
state in successive timesteps 

   

Recurrent depth = 3 
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