
CS60010: Deep Learning

Recurrent Neural Network

Sudeshna Sarkar
Spring 2018

5 Feb 2018

Sequence

• Sequence data: sentences, speech, stock market, signal data
• Sequence of words in an English sentence
• Acoustic features at successive time frames in speech recognition
• Successive frames in video classification
• Rainfall measurements on successive days in Hong Kong
• Daily values of current exchange rate

Modeling Sequential Data
• Sample data sequences from a certain distribution

𝑃(𝑥1, 𝑥2, … , 𝑥𝑇)
• Generate natural sentences to describe an image

𝑃(𝑦1,𝑦2, … ,𝑦𝑇|𝐼)
• Activity recognition from a video sequence

𝑃(𝑦|𝑥1, 𝑥2, … , 𝑥𝑇)
• Speech Recognition

𝑃 𝑦1,𝑦2, … ,𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑇
• Machine Translation

𝑃 𝑦1,𝑦2, … ,𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑆

Recurrent neural networks
• RNNs are very powerful, because

they combine two properties:
• Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

• Non-linear dynamics that allows them
to update their hidden state in
complicated ways.

• With enough neurons and time,
RNNs can compute anything that
can be computed by your
computer.

input

input

input

hidden

hidden

hidden

output

output

output
time

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

Vanilla Neural Networks

Why RNNs?

• Can model sequences having variable length
• Efficient: Weights shared across time-steps

Dynamic system; Unfolded; Computation graph

• Dynamical system: classical form
𝑠(𝑡) = 𝑓 𝑠(𝑡−1);𝜃
𝑠(3) = 𝑓 𝑓 𝑠(1);𝜃

• For a finite no. of time steps τ, the graph can be unfolded by
applying the definition τ-1 times.

• The same parameters are used at all time steps.

Dynamical system driven by external signal

• Consider a dynamical system driven by external (input)
signal 𝑥(𝑡): 𝑠(𝑡) = 𝑓 𝑠(𝑡−1), 𝑥(𝑡);𝜃

• The state now contains information about the whole past input
sequence. To indicate that the state is hidden rewrite using
variable h for state:

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃

Output prediction by RNN

• Task : To predict the future from the past

• The network typically learns to use h (t) as a summary of the
task-relevant aspects of the past sequence of inputs upto t

• The summary is in general lossy since it maps a sequence of
arbitrary length (x (t), x (t-1),..,x (2),x (1)) to a fixed length
vector h (t)

• Depending on the training criterion, summary keeps some
aspects of past sequence more precisely than other aspects

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃

can be written in two different ways: circuit diagram or an
unfolded computational graph

The unfolded graph has a size dependent on the sequence
length.

Unfolding: from circuit diagram to computational graph

Unfolding

• We can represent the unfolded recurrence after t steps
with a function 𝑔(𝑡):

ℎ(𝑡) = 𝑔(𝑡) 𝑥(𝑡), 𝑥(𝑡−1) … , 𝑥(1)
• The function 𝑔(𝑡) takes in whole past sequence

𝑥(𝑡), 𝑥(𝑡−1) … , 𝑥(1) as input and produces the current
state .

• But the unfolded recurrent structure allows us to factorize
g(t) into repeated application of a function 𝑓.

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃

Advantages of unfolding model

1. Regardless of sequence length, the learned model has the
same input size because it is specified in terms of transition
from one state to another state rather than specified in
terms of a variable length history of states

2. It is possible to use same function f with same parameters at
every step

• These two factors make it possible to learn a single model f
that operates on all time steps and all sequence lengths.

• Learning a single shared model: can apply the network to
input sequences of different lengths and predict sequences of
different lengths and to work with fewer training examples.

o(t)= c+ Vh(t)

h(t)=tanh(a(t))
a(t)= b+ Wh(t-1)+ Ux (t)

Unfolding Computational Graphs

• A Computational Graph is a way
to formalize the structure of a set
of computations such as mapping
inputs and parameters to outputs
and loss

• We can unfold a recursive or
recurrent computation into a
computational graph that has a
repetitive structure

15

A more complex unfolded computational graph

Three design patterns of
RNNs

1. Output at each time step;
recurrent connections between
hidden units

2. Output at each time step;
recurrent connections only from
output at one time step to hidden
units at next time step

3. Recurrent connections between
hidden units to read entire input
sequence and produce a single
output
Can summarize sequence to
produce a fixed size representation for
further processing

RNN1: with recurrence between hidden units
Maps input sequence x to output o

With softmax outputs Loss L internally
computes 𝑦�= softmax(𝑜) and
compares to target 𝑦
• Update equation applied for each

time step from 𝑡 = 1 to 𝑡 = 𝜏

Parameters:
• bias vectors b and c
• weight matrices U (input-to-hidden),

V (hidden-to-output) and
W (hidden- to-hidden) connections

Loss function for a given sequence

• The total loss for a given sequence of x values with a
sequence of y values is the sum of the losses over
the time steps

• If 𝐿(𝑡) is the negative log-likelihood of y (t) given x (1),..x (t)

then

𝐿 𝑥(1), 𝑥(2), … , 𝑥(𝑡) , 𝑦(1),𝑦(2), … ,𝑦(𝑡) = �𝐿(𝑡)

𝑡

= −� log𝑝𝑚𝑚𝑚𝑚𝑚(𝑦(𝑡)| 𝑥(1), 𝑥(2), … , 𝑥(𝑡))
𝑡

Backpropagation through time

• We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

• We can also think of this training algorithm in the time domain:
• The forward pass builds up a stack of the activities of all the units at each

time step.
• The backward pass peels activities off the stack to compute the error

derivatives at each time step.
• After the backward pass we add together the derivatives at all the

different times for each weight.

Gradients on V, c, W and U

𝜕𝐿
𝜕𝐿𝑡

= 1,
𝜕𝐿
𝜕𝑜𝑡

=
𝜕𝐿
𝜕𝐿𝑡

𝜕𝐿𝑡
𝜕𝑜𝑡

=
𝜕𝐿𝑡
𝜕𝑜𝑡

𝜕𝐿
𝜕𝑉

= �
𝜕𝐿𝑡
𝜕𝑜𝑡𝑡

𝜕𝑜𝑡
𝜕𝑉

𝜕𝐿
𝜕𝑐

= �
𝜕𝐿𝑡
𝜕𝑜𝑡𝑡

𝜕𝑜𝑡
𝜕𝑐

𝜕𝐿
𝜕𝑊

= �
𝜕𝐿𝑡
𝜕ℎ𝑡𝑡

𝜕ℎ𝑡
𝜕𝑊

𝜕𝐿
𝜕ℎ𝑡

=
𝜕𝐿

𝜕ℎ𝑡+1
𝜕ℎ𝑡+1
𝜕ℎ𝑡

+
𝜕𝐿
𝜕𝑜𝑡

𝜕𝑜𝑡
𝜕ℎ𝑡

Feedforward Depth (df)
Feedforward depth: longest path
between an input and output at the
same timestep

Feedforward
depth = 4

High level
feature!

Notation: h0,1 ⇒ time step 0, neuron #1

Option 2: Recurrent Depth (dr)

● Recurrent depth: Longest
path between same hidden
state in successive timesteps

Recurrent depth = 3

	CS60010: Deep Learning��Recurrent Neural Network
	Sequence
	Modeling Sequential Data
	Recurrent neural networks
	Slide Number 5
	Why RNNs?
	Dynamic system; Unfolded; Computation graph
	Dynamical system driven by external signal
	Output prediction by RNN
	Unfolding: from circuit diagram to computational graph
	Unfolding
	Advantages of unfolding model
	Slide Number 13
	Slide Number 14
	Unfolding Computational Graphs
	A more complex unfolded computational graph
	Three design patterns of RNNs
	RNN1: with recurrence between hidden units
	Loss function for a given sequence
	Backpropagation through time
	Gradients on V, c, W and U
	Feedforward Depth (df)
	Option 2: Recurrent Depth (dr)

