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Residual Net

- Deep Residual Learning for Image Recognition, Kaiming He,
Xiangyu Zhang, Shaoqing Ren, and Jian Sun (CVPR 2016)



The deeper, the better?

- The deeper network can cover more complex problems
- Receptive field size T
» Non-linearity T

- However, training the deeper network is more difficult because
of vanishing/exploding gradients problem
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Deep NN

- Escape from few layers
- RelU for solving gradient vanishing problem
» Dropout ...

- Escape from 10 layers
- Normalized initialization
- Intermediate normalization layers

- Escape from 100 layers
- Residual network



Plain Network

- Plain nets: stacking 3x3 conv layers

- 56-layer net has higher training error and test error than 20-
layers net
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Plain Network

- “Overly deep” plain nets have higher training error
- A general phenomenon, observed in many datasets
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Residual Network

The residual module

Introduce skip or shortcut
connections

Make it easy for network
layers to represent the
identity mapping

weight layer

F(x) l relu

weight layer

H(x) =F(x)+x

identity
X

Residual block

- |f identity were optimal,
easy to set weights as O

- |If optimal mapping is closer
to identity, easier to find
small fluctuations

-> Appropriate for treating
perturbation as keeping a
base information



Residual Network

- Difference between an original image and a changed image

Preserving base information

- residual
Network

can treat perturbation



Residual Network

- Deeper ResNets have lower training error
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Residual Network

» Residual block
- Very simple
« Parameter-free

A naive residual block “bottleneck” residual block



Result

- Performances increase absolutely

2nd-place margin
winner (relative)
ImageNet Localization (wp-seror) 12.0 27%

ImageNet Detection (mre.s) 53.6 absolute g5 4 16%

11%

8.5% better!

COCO Detection (mar@.s:95)

COCO Segmentation mare.s:.s) 25.1 28.2 12%

- Based on ResNet-101
- Existing techniques can use residual networks or features from
it



Summary: ILSVRC 2012-2015

Team Year Place Error (top-5) External data
SuperVision = Toronto | 2012 - 16.4% no

(AlexNet, 7 layers)

SuperVision 2012 1st 15.3% ImageNet 22k
Clarifai — NYU (7 layers) 2013 - 11.7% no

Clarifai 2013 1st 11.2% ImageNet 22k

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Design principles

- Reduce filter sizes (except possibly at the lowest layer),
factorize filters aggressively

« Use 1x1 convolutions to reduce and expand the number of
feature maps judiciously

«  Use skip connections and/or create multiple paths through
the network



Reading list
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“You need a lot of a data If you want to
train/fuse CNNSs”

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015




Transfer Learning

“You need a lot of a data If you want to
train/use CNNS”

G
§




The Unreasonable Effectiveness of Deep Features

® & & & #® &
dog  bird jnvertebrate vehicle good, covering building
commodity

Low-level: Pool; High-level: FC¢

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]



Can be used as a generic feature
(“CNN code” = 4096-D vector before classifier)

T agaric|
mushroom

jelly fungus

gill fungus
dead-man's-fingers

query image nearest neighbors in the “code” space

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015




Can be used as a generic feature
(“CNN code” = 4096-D vector before classifier)

query image nearest neighbors in the “code” space

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015




Transfer Learning with CNNs

1. Train on
~ conv-64 Imagenet
conv-64 ',

t

conv-128

i

conv-256

conv-512

5

© FC-1000 |
' softmax

h

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015




Transfer Learning with CNNs

1. Train on

 conv-64 Imagenet -~ conv-64
conv-64 conv-64

~ maxpool | ~ maxpool

| conv-128 | conv-128
conv-128 conv-128

_conv128 _conv128
mwl mml

Fei-Fei Li & Andrej Karpathy

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

l.e. swap the Softmax
layer at the end

Lecture 7 -

21 Jan 2015




Transfer Learning with CNNs

s _| 1 Train on _imge | o |f small dataset: fix | imge | 3.If you have medium sized
_om6s  Imagenet  conv-64 all weights (treat CNN  conv-64 platfls%t, “flnfrt]une;;I -~

. conv6d onves  as fixed feature wnves  instead: use the old weights
~ maxpool maxpool | extractor), retrain only maxpool A initialization, train the full
' conv28 W the classifier | ~network or only some of the
_— L conv-128

higher layers
l.e. swap the Softmax

| | ' o .

= maxpoe layer at the end .. maxpesl | retrain bigger portion of the

conv-256 conv-256 network, or even all of it.
 conv-256 ' conv-256

maxpool [ mnxpuoi '
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' conv-512 ' conw-512

conv-512 conv-512

maxpool maxpool
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' softmax ' softmax

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015




Object Detection: PASCAL VOC mean Average Precision (mAP)

mean Average Precision (mAP)
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