
CS60010: Deep Learning

Sudeshna Sarkar
Spring 2018

29 Jan 2018

Convolution
Kernel

w7 w8 w9

w4 w5 w6

w1 w2 w3

Feature Map

Grayscale Image

Convolve image with kernel having weights w (learned by
backpropagation)

Lecture 7 Convolutional Neural Networks CMSC 35246

Convolution

wT x

What is the number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246

Kernel
w7 w8 w9

w4 w5 w6

w1 w2 w3

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Convolution
Layer

activation maps

6

28

28

If we had 6 5x5 filters, we’ll get 6 activation maps.
We stack these up to get a “new image” of size 28x28x6!

32

32

3

32x32x3 image

5x5x3 filter

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

- makes the representations smaller and more manageable
- operates over each activation map independently:

Pooling layer

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2
filters and stride 2 6 8

3 4

MAX POOLING

General pooling

• Other pooling functions: Average pooling, L2-norm pooling

• Backpropagation. the backward pass for a max(x, y) operation
routes the gradient to the input that had the highest value in the
forward pass.

• Hence, during the forward pass of a pooling layer you may keep
track of the index of the max activation (sometimes also called the
switches) so that gradient routing is efficient during
backpropagation.

Getting rid of pooling

Striving for Simplicity: The All Convolutional Net
• proposes to discard the pooling layer and have an architecture that only

consists of repeated CONV layers.
• To reduce the size of the representation they suggest using larger stride in

CONV layer once in a while.

• Argument:
• The purpose of pooling layers is to perform dimensionality reduction to widen

subsequent convolutional layers' receptive fields.
• The same effect can be achieved by using a convolutional layer: using a stride of 2 also

reduces the dimensionality of the output and widens the receptive field of higher
layers.

• The resulting operation differs from a max-pooling layer in that
• it cannot perform a true max operation
• it allows pooling across input channels.

Getting rid of pooling

Very Deep Convolutional Networks for Large-Scale Image
Recognition.

• The core idea here is that hand-tuning layer kernel sizes to achieve optimal

receptive fields (say, 5×5 or 7×7) can be replaced by simply stacking
homogenous 3×3 layers.
• three stacked 3×3 have a 7×7 receptive field.
• At the same time, the number of parameters is reduced:
• a 7×7 layer has 81% more parameters than three stacked 3×3 layers.

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case Studies
• LeNet. The first successful applications of Convolutional Networks were

developed by Yann LeCun in 1990’s. was used to read zip codes, digits, etc.

• AlexNet. popularized Convolutional Networks in Computer Vision,
developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.

• The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and
significantly outperformed the second runner-up (top 5 error of 16%
compared to runner-up with 26% error). The Network had a very similar
architecture to LeNet, but was deeper, bigger, and featured Convolutional
Layers stacked on top of each other

• ZF Net. The ILSVRC 2013 winner was a Convolutional Network from
Matthew Zeiler and Rob Fergus. It was an improvement on AlexNet by
tweaking the architecture hyperparameters, in particular by expanding the
size of the middle convolutional layers and making the stride and filter size
on the first layer smaller.

http://www.image-net.org/challenges/LSVRC/2014/

LeNet
• Yann LeCun and his collaborators developed a really good

recognizer for handwritten digits by using backpropagation in a
feedforward net with:
• Many hidden layers
• Many maps of replicated units in each layer.
• Pooling of the outputs of nearby replicated units.
• A wide net that can cope with several characters at once

even if they overlap.
• A clever way of training a complete system, not just a

recognizer.
• This net was used for reading ~10% of the checks in North

America.
• demos of LENET at http://yann.lecun.com

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Handwritten digit classification

[Courtesy of Yann LeCun]

The 82 errors made by
LeNet5

Notice that most of the
errors are cases that
people find quite easy.

The human error rate is
probably 20 to 30 errors
but nobody has had the
patience to measure it.

The arrival of big visual data…

• ~14 million labeled images, 20k
classes

• Images gathered from Internet
• Human labels via Amazon MTurk
• ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC):
1.2 million training images, 1000
classes

www.image-net.org/challenges/LSVRC/

http://www.image-net.org/challenges/LSVRC/

The ILSVRC-2012 competition on ImageNet

• The dataset has 1.2 million high-resolution training images.
• The classification task:

• Get the “correct” class in your top 5 bets. There are 1000 classes.
• The localization task:

• For each bet, put a box around the object. Your box must have at least
50% overlap with the correct box.

• Some of the best existing computer vision methods were tried
on this dataset by leading computer vision groups from Oxford,
INRIA, XRCE, …
• Computer vision systems use complicated multi-stage systems.
• The early stages are typically hand-tuned by optimizing a few

parameters.

Examples from the test set
(with the network’s guesses)

AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Error rates on the ILSVRC-2012 competition

• University of Tokyo
• Oxford University Computer Vision

Group
• INRIA (French national research

institute in CS) + XRCE (Xerox
Research Center Europe)

• University of Amsterdam

• 26.1%
53.6%

• 26.9%
50.0%

• 27.0%

• 29.5%

• University of Toronto (Alex Krizhevsky) • 16.4% 34.1%
•

classification classification
&localization

Tricks that significantly improve generalization

• Train on random 224x224 patches from the 256x256 images
to get more data. Also use left-right reflections of the images.
• At test time, combine the opinions from ten different patches: The

four 224x224 corner patches plus the central 224x224 patch plus the
reflections of those five patches.

The hardware required for Alex’s net

• An efficient implementation of convolutional nets on
two Nvidia GTX 580 Graphics Processor Units (over
1000 fast little cores)
– GPUs are very good for matrix-matrix multiplies.
– GPUs have very high bandwidth to memory.

• We can spread a network over many cores if we can
communicate the states fast enough.

• As cores get cheaper and datasets get bigger, big
neural nets will improve faster than old-fashioned (i.e.
pre Oct 2012) computer vision systems.

Alexnet [Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters
applied at stride 4

Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

(227-11)/4+1 = 55

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 =
27

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 26

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4,
pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1,
pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1,
pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1,
pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1,
pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 31 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

ZFNet: Improved
hyperparameters over
AlexNet

ZFNet [Zeiler and Fergus, 2013]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 32 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

TODO: remake figure

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 33 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

VGGNet: ILSVRC 2014 2nd place
• Sequence of deeper networks

trained progressively
• Large receptive fields replaced by

successive layers of 3x3
convolutions (with ReLU in
between)

• One 7x7 conv layer with C feature

maps needs 49C2 weights, three
3x3 conv layers need only 27C2
weights

• Experimented with 1x1
convolutions

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, ICLR 2015

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 35 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96
Input

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

VGGNet [Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19

VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 36 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

Q: Why use smaller filters? (3x3 conv)

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96
Input

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?
[7x7]

But deeper, more non-linearities

And fewer parameters: 3 * (3 C) vs.
72C2 for C channels per layer

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 37 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

VGG16

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

Note:

Most memory is in
early CONV

Most params are
in late FC

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

TOTAL params: 138M parameters

Lecture 9 - 38 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

params: (3*3*512)*512 = 2,359,296
params: (3*3*512)*512 = 2,359,296
params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K
CONV3-512: [14x14x512] memory: 14*14*512=100K
CONV3-512: [14x14x512] memory: 14*14*512=100K
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64
Input

VGG16

conv1-2
conv1-1

conv2-2
conv2-1

conv3-2
conv3-1

conv4-3

conv4-2

conv4-1

conv5-3

conv5-2

conv5-1

Common names

fc8
fc7
fc6

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

TOTAL params: 138M parameters

Lecture 9 - 39 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

1x1 convolutions

conv layer

1x1 convolutions

1x1 conv layer

1x1 convolutions

1x1 conv layer

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 43 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

GoogLeNet: ILSVRC 2014 winner

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

• The Inception Module
• Inception Module dramatically reduced the number of

parameters in the network
(4M, compared to AlexNet with 60M).

• Uses Average Pooling instead of Fully Connected layers at
the top of the ConvNet

• Several followup versions to the GoogLeNet, most
recently Inception-v4.

https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261

GoogLeNet

• The Inception Module
• Parallel paths with different receptive field sizes and operations are

meant to capture sparse patterns of correlations in the stack of
feature maps

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

GoogLeNet
• The Inception Module

• Parallel paths with different receptive field sizes and operations are
meant to capture sparse patterns of correlations in the stack of
feature maps

• Use 1x1 convolutions for dimensionality reduction before expensive
convolutions

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

GoogLeNet

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Inception module

https://arxiv.org/abs/1409.4842

GoogLeNet

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Auxiliary classifier

https://arxiv.org/abs/1409.4842

GoogLeNet

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

• An alternative view:

https://arxiv.org/abs/1409.4842

Inception v2, v3
• Regularize training with batch normalization, reducing

importance of auxiliary classifiers
• More variants of inception modules with aggressive

factorization of filters

 C. Szegedy et al., Rethinking the inception architecture for computer vision, CVPR 2016

https://arxiv.org/pdf/1502.03167v3.pdf
https://arxiv.org/abs/1512.00567

Inception v2, v3
• Regularize training with batch normalization, reducing

importance of auxiliary classifiers
• More variants of inception modules with aggressive

factorization of filters
• Increase the number of feature maps while decreasing

spatial resolution (pooling)

 C. Szegedy et al., Rethinking the inception architecture for computer vision, CVPR 2016

https://arxiv.org/pdf/1502.03167v3.pdf
https://arxiv.org/abs/1512.00567

	CS60010: Deep Learning
	Convolution
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Pooling layer
	MAX POOLING
	General pooling
	Getting rid of pooling
	Getting rid of pooling
	Slide Number 11
	Case Studies
	LeNet
	Slide Number 14
	Slide Number 15
	The 82 errors made by LeNet5
	The arrival of big visual data…
	The ILSVRC-2012 competition on ImageNet
	Examples from the test set �(with the network’s guesses)
	AlexNet: ILSVRC 2012 winner
	Error rates on the ILSVRC-2012 competition
	Tricks that significantly improve generalization
	The hardware required for Alex’s net
	Alexnet
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	ZFNet
	Slide Number 33
	VGGNet: ILSVRC 2014 2nd place
	VGGNet [Simonyan and Zisserman, 2014]
	VGGNet[Simonyan and Zisserman, 2014]
	Slide Number 37
	Slide Number 38
	Slide Number 39
	1x1 convolutions
	1x1 convolutions
	1x1 convolutions
	Slide Number 43
	GoogLeNet: ILSVRC 2014 winner
	GoogLeNet
	GoogLeNet
	GoogLeNet
	GoogLeNet
	GoogLeNet
	Inception v2, v3
	Inception v2, v3

