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Convolve image with kernel having weights w (learned by  
backpropagation) 

Lecture 7 Convolutional Neural Networks CMSC 35246 



Convolution 

wT x 

What is the number of parameters? 
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Convolution 
Layer 

activation maps 

6 

28 

28 

If we had 6 5x5 filters, we’ll get 6 activation maps. 
We stack these up to get a “new image” of size 28x28x6! 
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32 
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32x32x3 image 
 
5x5x3 filter 
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- makes the representations smaller and more manageable  
- operates over each activation map independently: 

Pooling layer 
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General pooling 

• Other pooling functions: Average pooling, L2-norm pooling 

• Backpropagation. the backward pass for a max(x, y) operation 
routes the gradient to the input that had the highest value in the 
forward pass. 

• Hence, during the forward pass of a pooling layer you may keep 
track of the index of the max activation (sometimes also called the 
switches) so that gradient routing is efficient during 
backpropagation.  



Getting rid of pooling 

Striving for Simplicity: The All Convolutional Net  
• proposes to discard the pooling layer and have an architecture that only 

consists of repeated CONV layers.  
• To reduce the size of the representation they suggest using larger stride in 

CONV layer once in a while. 
 

• Argument:  
• The purpose of pooling layers is to perform dimensionality reduction to widen 

subsequent convolutional layers' receptive fields. 
• The same effect can be achieved by using a convolutional layer: using a stride of 2 also 

reduces the dimensionality of the output and widens the receptive field of higher 
layers. 

• The resulting operation differs from a max-pooling layer in that  
• it cannot perform a true max operation 
• it allows pooling across input channels.  



Getting rid of pooling 

Very Deep Convolutional Networks for Large-Scale Image 
Recognition.  
 
• The core idea here is that hand-tuning layer kernel sizes to achieve optimal 

receptive fields (say, 5×5 or 7×7) can be replaced by simply stacking 
homogenous 3×3 layers.  
• three stacked 3×3 have a 7×7 receptive field.  
• At the same time, the number of parameters is reduced:  
• a 7×7 layer has 81% more parameters than three stacked 3×3 layers.  
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html 

[ConvNetJS demo: training on CIFAR-10] 

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Case Studies 
• LeNet. The first successful applications of Convolutional Networks were 

developed by Yann LeCun in 1990’s. was used to read zip codes, digits, etc. 

• AlexNet. popularized Convolutional Networks in Computer Vision, 
developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.  

• The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and 
significantly outperformed the second runner-up (top 5 error of 16% 
compared to runner-up with 26% error). The Network had a very similar 
architecture to LeNet, but was deeper, bigger, and featured Convolutional 
Layers stacked on top of each other  

• ZF Net. The ILSVRC 2013 winner was a Convolutional Network from 
Matthew Zeiler and Rob Fergus. It was an improvement on AlexNet by 
tweaking the architecture hyperparameters, in particular by expanding the 
size of the middle convolutional layers and making the stride and filter size 
on the first layer smaller. 

http://www.image-net.org/challenges/LSVRC/2014/


LeNet 
• Yann LeCun and his collaborators developed a really good 

recognizer for handwritten digits by using backpropagation in a 
feedforward net with: 
• Many hidden layers 
• Many maps of replicated units in each layer. 
• Pooling of the outputs of nearby replicated units. 
• A wide net that can cope with several characters at once 

even if they overlap. 
• A clever way of training a complete system, not just a 

recognizer.  
• This net was used for reading ~10% of the checks in North 

America. 
• demos of LENET at http://yann.lecun.com 
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LeNet-5 
[LeCun et al., 1998] 

Conv filters were 5x5, applied at stride 1 
Subsampling (Pooling) layers were 2x2 applied at stride 2 
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC] 



Handwritten digit classification 

[Courtesy of Yann LeCun] 



The 82 errors made by 
LeNet5 

Notice that most of the 
errors are cases that 
people find quite easy. 

The human error rate is 
probably 20 to 30 errors 
but nobody has had the 
patience to measure it. 



The arrival of big visual data… 

• ~14 million labeled images, 20k 
classes 

• Images gathered from Internet 
• Human labels via Amazon MTurk  
• ImageNet Large-Scale Visual 

Recognition Challenge (ILSVRC):  
1.2 million training images, 1000 
classes 

www.image-net.org/challenges/LSVRC/ 

http://www.image-net.org/challenges/LSVRC/


The ILSVRC-2012 competition on ImageNet 

• The dataset has 1.2 million high-resolution training images. 
• The classification task: 

• Get the “correct” class in your top 5 bets. There are 1000 classes. 
• The localization task: 

• For each bet, put a box around the object. Your box must have at least 
50% overlap with the correct box. 

• Some of the best existing computer vision methods were  tried 
on this dataset by leading computer vision groups from Oxford, 
INRIA, XRCE, … 
• Computer vision systems use complicated multi-stage systems. 
• The early stages are typically hand-tuned by optimizing a few 

parameters. 



Examples from the test set  
(with the network’s guesses) 



AlexNet: ILSVRC 2012 winner 

• Similar framework to LeNet but: 
• Max pooling, ReLU nonlinearity 
• More data and bigger model (7 hidden layers, 650K units, 60M params) 
• GPU implementation (50x speedup over CPU) 

• Trained on two GPUs for a week 
• Dropout regularization 

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012 

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Error rates on the ILSVRC-2012 competition 

• University of Tokyo              
• Oxford University Computer Vision 

Group 
• INRIA (French national research 

institute in CS) + XRCE (Xerox 
Research Center Europe)   

• University of Amsterdam 
 

• 26.1%            
53.6% 

• 26.9%            
50.0% 

• 27.0% 
 

• 29.5%      
 

• University of Toronto (Alex Krizhevsky) • 16.4%         34.1% 
•   

classification classification 
&localization     



Tricks that significantly improve generalization 

• Train on random 224x224 patches from the 256x256 images 
to get more data. Also use left-right reflections of the images. 
• At test time, combine the opinions from ten different patches: The 

four 224x224 corner patches plus the central 224x224 patch plus the 
reflections of those five patches. 



The hardware required for Alex’s net 

• An efficient implementation of convolutional nets on 
two Nvidia GTX 580 Graphics Processor Units (over 
1000 fast little cores) 
– GPUs are very good for matrix-matrix multiplies. 
– GPUs have very high bandwidth to memory. 

• We can spread a network over many cores if we can 
communicate the states fast enough. 

• As cores get cheaper and datasets get bigger, big 
neural nets will improve faster than old-fashioned (i.e. 
pre Oct 2012) computer vision systems. 

 



Alexnet [Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters 
applied at stride 4 
 
Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K 
 

(227-11)/4+1 = 55 

Architecture: 
CONV1   
MAX POOL1  
NORM1  
CONV2   
MAX POOL2  
NORM2  
CONV3  
CONV4  
CONV5 
Max POOL3  
FC6 
FC7  
FC8 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
 
Q: what is the output volume size? Hint: (55-3)/2+1 = 
27 

Architecture: 
CONV1   
MAX POOL1  
NORM1  
CONV2   
MAX POOL2  
NORM2  
CONV3  
CONV4  
CONV5 
Max POOL3  
FC6 
FC7  
FC8 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 
 
Q: what is the number of parameters in this layer? 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 
Parameters: 0! 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
After CONV1: 55x55x96 
After POOL1: 27x27x96 
... 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
 
 
 
 
 
 
 
 



Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015 

Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, 
pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, 
pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, 
pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, 
pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, 
pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
 
 
 
 
 
 
 
 

Details/Retrospectives:  
- first use of ReLU 
- used Norm layers (not common anymore) 
- heavy data augmentation 
- dropout 0.5 
- batch size 128 
- SGD Momentum 0.9 
- Learning rate 1e-2, reduced by 10 
manually when val accuracy plateaus 
- L2 weight decay 5e-4 
- 7 CNN ensemble: 18.2% -> 15.4% 



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners 

First CNN-based winner 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 31 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 

ZFNet: Improved  
hyperparameters over  
AlexNet 



ZFNet [Zeiler and Fergus, 2013] 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 32 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 

AlexNet but: 
CONV1: change from (11x11 stride 4) to (7x7 stride 2)  
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512 

ImageNet top 5 error: 16.4% -> 11.7% 

TODO: remake figure 



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners 

Deeper Networks 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 33 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 



VGGNet: ILSVRC 2014 2nd place 
• Sequence of deeper networks 

trained progressively 
• Large receptive fields replaced by 

successive layers of 3x3 
convolutions (with ReLU in 
between) 
 
 

 
• One 7x7 conv layer with C feature 

maps needs 49C2 weights, three 
3x3 conv layers need only 27C2 
weights 

• Experimented with 1x1 
convolutions 

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image 
Recognition, ICLR 2015 

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 512 
3x3 conv, 512 
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3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 256 

3x3 conv, 384 

Pool 

3x3 conv, 384 

Pool 

5x5 conv, 256 

11x11 conv, 96 
Input 

Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

VGGNet  [Simonyan and Zisserman, 2014] 

Small filters, Deeper networks 
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net) 
 
Only 3x3 CONV stride 1, pad 1  
and 2x2 MAX POOL stride 2 

11.7% top 5 error in ILSVRC’13  
(ZFNet) 
-> 7.3% top 5 error in ILSVRC’14 

AlexNet VGG16 VGG19 



VGGNet 
[Simonyan and Zisserman, 2014] 
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Q: Why use smaller filters? (3x3 conv) 

Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 512 

3x3 conv, 512 
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Pool 

3x3 conv, 512 
3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 256 

3x3 conv, 384 

Pool 

3x3 conv, 384 

Pool 

5x5 conv, 256 

11x11 conv, 96 
Input 

Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

AlexNet VGG16 VGG19 

Stack of three 3x3 conv (stride 1) layers  
has same effective receptive field as  
one 7x7 conv layer 
 
Q: What is the effective receptive field of  
three 3x3 conv (stride 1) layers?  
[7x7] 
 
But deeper, more non-linearities 
 

And fewer parameters: 3 * (3 C ) vs.  
72C2 for C channels per layer 



INPUT: [224x224x3] memory:  224*224*3=150K params: 0 
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Softmax 

FC 1000 

FC 4096 

FC 4096 

Pool 

3x3 conv, 512 

3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 512 
3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

VGG16 

CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K params: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K params: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K params: 0 
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512] memory: 7*7*512=25K params: 0 
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)  
TOTAL params: 138M parameters 



INPUT: [224x224x3] memory:  224*224*3=150K params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K params: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K params: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K params: 0 
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512] memory: 7*7*512=25K params: 0 
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216  
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) 

Note: 

Most memory is in  
early CONV 

Most params are  
in late FC 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 

TOTAL params: 138M parameters 

Lecture 9 - 38 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 



INPUT: [224x224x3] memory:  224*224*3=150K params: 0 

CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K params: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824  
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K params: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296  
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512] memory: 14*14*512=100K params: 0 

params: (3*3*512)*512 = 2,359,296  
params: (3*3*512)*512 = 2,359,296  
params: (3*3*512)*512 = 2,359,296 

CONV3-512: [14x14x512] memory: 14*14*512=100K  
CONV3-512: [14x14x512] memory: 14*14*512=100K  
CONV3-512: [14x14x512]  memory: 14*14*512=100K 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
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3x3 conv, 512 
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Pool 
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3x3 conv, 512 

3x3 conv, 512 

Pool 

3x3 conv, 256 

3x3 conv, 256 

Pool 

3x3 conv, 128 

3x3 conv, 128 

Pool 

3x3 conv, 64 

3x3 conv, 64 
Input 

VGG16 

conv1-2  
conv1-1 

conv2-2  
conv2-1 

conv3-2  
conv3-1 

conv4-3  

conv4-2  

conv4-1 

conv5-3  

conv5-2  

conv5-1 

Common names 

fc8  
fc7  
fc6 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 

TOTAL params: 138M parameters 

Lecture 9 - 39 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) 



1x1 convolutions 

conv layer 



1x1 convolutions 

1x1 conv layer 



1x1 convolutions 

1x1 conv layer 



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners 

Deeper Networks 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017 Lecture 9 - 43 May 2, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung 



GoogLeNet: ILSVRC 2014 winner 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

• The Inception Module 
• Inception Module dramatically reduced the number of 

parameters in the network  
(4M, compared to AlexNet with 60M).  

• Uses Average Pooling instead of Fully Connected layers at 
the top of the ConvNet 

• Several followup versions to the GoogLeNet, most 
recently Inception-v4. 
 

https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261


GoogLeNet 

• The Inception Module 
• Parallel paths with different receptive field sizes and operations are 

meant to capture sparse patterns of correlations in the stack of 
feature maps 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

https://arxiv.org/abs/1409.4842


GoogLeNet 
• The Inception Module 

• Parallel paths with different receptive field sizes and operations are 
meant to capture sparse patterns of correlations in the stack of 
feature maps 

• Use 1x1 convolutions for dimensionality reduction before expensive 
convolutions 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

https://arxiv.org/abs/1409.4842


GoogLeNet 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

Inception module 

https://arxiv.org/abs/1409.4842


GoogLeNet 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

Auxiliary classifier 

https://arxiv.org/abs/1409.4842


GoogLeNet 

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015 

• An alternative view: 

https://arxiv.org/abs/1409.4842


Inception v2, v3 
• Regularize training with batch normalization, reducing 

importance of auxiliary classifiers 
• More variants of inception modules with aggressive 

factorization of filters 

 C. Szegedy et al., Rethinking the inception architecture for computer vision, CVPR 2016 

https://arxiv.org/pdf/1502.03167v3.pdf
https://arxiv.org/abs/1512.00567


Inception v2, v3 
• Regularize training with batch normalization, reducing 

importance of auxiliary classifiers 
• More variants of inception modules with aggressive 

factorization of filters 
• Increase the number of feature maps while decreasing 

spatial resolution (pooling)  

 C. Szegedy et al., Rethinking the inception architecture for computer vision, CVPR 2016 

https://arxiv.org/pdf/1502.03167v3.pdf
https://arxiv.org/abs/1512.00567
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