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INTRODUCTION




Milestones: Digit Recognition

LeNet 1989: recognize zip codes, Yann Lecun, Bernhard Boser
and others, ran live in US postal service
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Milestones: Image Classification

Convolutional NNs: AlexNet (2012): trained on 200 GB of
ImageNet Data
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Milestones: Speech Recognition

Recurrent Nets: LSTMs (1997):

TIMIT Speech Recognition

Traditional Deep Learning
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Milestones: Language Translation

Sequence-to-sequence models with LSTMs and attention:

Progress in Machine Translation
I"‘I fi |rl f |:il ||I.' [Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

| |
s et i el

|
i weekehd <E05>

I |
“'E|IIJ | | M Phrase-based SMT M Syntax-based SMT ™ Neural MT
: A . FA FLEAF: 25
: i 1 1 I i i .
mEmBELiRolD
| IR
e Proteste waren mwnmmmumﬁwﬁﬁr J{‘?tm: ﬁmmﬂgm 0

2013 2014 2015 2016

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Source Luong, Cho, Manning ACL Tutorial 2016.



Milestones: Deep Reinforcement Learning

In 2013, Deep Mind’s arcade player bests human expert on six
Atari Games. Acquired by Google in 2014,.
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Learning about Deep Neural Networks

Yann Lecun: DNNs require: “an interplay between intuitive
insights, theoretical modeling, practical implementations,
empirical studies, and scientific analyses”

i.e. there isn’t a framework or core set of principles to explain
everything (c.f. graphical models for machine learning).



Goals:
» Introduce deep learning.

- Review principles and techniques for understanding deep
networks.

- Develop skill at designing networks for applications



* Times: Mon 12-1, Tue 10-12, Thu 8-9

» Assignments (pre-midterm): 20%

- Post-midterm assignments / Project: 20%
» Midterm: 30%

- Endterm: 30%

- TAs: Ayan Das, Alapan Kuila, Aishik Chakraborty, Ravi Bansal,
Jeenu Grover

- Moodle: DL Deep Learning
- Course Home Page: cse.iitkgp.ac.in - TBD
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- Knowledge of calculus and linear algebra
- Probability and Statistics
- Machine Learning

* Programming in Python.
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* 3 hours of lecture
- 1 hour of programming / tutorial

- Attendance is compulsory
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Phases of Neural Network Research

» 1940s-1960s: Cybernetics: Brain like electronic systems, morphed
into modern control theory and signal processing.

« 1960s-1980s: Digital computers, automata theory, computational
complexity theory: simple shallow circuits are very limited...

» 1980s-1990s: Connectionism: complex, non-linear networks, back-
propagation.

« 1990s-2010s: Computational learning theory, graphical models:
Learning is computationally hard, simple shallow circuits are very
limited...

- 2006—>: Deep learning: End-to-end training, large datasets,
explosion in applications.



Citations of the “LeNet” paper

- Recall the LeNet was a modern visual classification network that
recognized digits for zip codes. Its citations look like this:

1990 1991 1992 1993 1994 1995 1996 1997 1998 99 2000 2001 2002 2003 2004 2005 0§ 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

/ m\_/!

Second phase Deep Learning “Winter” Third phase

- The 2000s were a golden age for machine learning, and marked
the ascent of graphical models. But not so for neural networks.



Why the success of DNNSs is surprising

- From both complexity and learning theory perspectives, simple
networks are very limited.

- Can’t compute parity with a small network.

- NP-Hard to learn “simple” functions like 3SAT formulae, and i.e.
training a DNN is NP-hard.
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Why the success of DNNSs is surprising

- The most successful DNN training algorithm is a version of gradient
descent which will only find local optima. In other words, it’s a
greedy algorithm. Backprop:

loss = f(g(h(y)))
d loss/dy = f'(g) x g’(h) x h’(y)

- Greedy algorithms are even more limited in what they can
represent and how well they learn.

- If a problem has a greedy solution, its regarded as an “easy”
problem.



Why the success of DNNSs is surprising

- In graphical models, values in a network represent random
variables, and have a clear meaning. The network structure

encodes dependency information, i.e. you can represent rich
models.

- In a DNN, node activations encode nothing in particular, and the
network structure only encodes (trivially) how they derive from

each other.
o
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Why the success of DNNs is surpricing Siovious

- Hierarchical representations are ubiquitous in Al. Computer vision:
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Why the success of DNNs is surpricing Siovious

- Natural language:
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Why the success of DNNs is surpricing Siovious

- Human Learning: is deeply layered.

Zone of proximal development
(Learner can do with guidance)

Learner cannot do



Why the success of DNNs is surpricing Siovious

- What about greedy optimization?

- Less obvious, but it looks like many learning problems (e.g. image
classification) are actually “easy” i.e. have reliable steepest descent
paths to a good model.

3-D plots without obstacles
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Representations Matter

Cartesian coordinates Polar coordinates




Representation Learning

- Use machine learning to discover not only the mapping from
representation to output but also the representation itself.

- Representation Learning

- Learned representations often result in much better
performance than can be obtained with hand-designed
representations.

- They also enable Al systems to rapidly adapt to new tasks, with
minimal human intervention.
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ML BASICS




- Mitchell (1997) “A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”



Linear Regression

- In the case of linear regression, the output is a linear
function of the input. Let y be the value that our model
predicts y should take on. We define the output to be
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Normal Equations
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Linear regression example i Optimization of w
1 I 1 | | i

0.50
0.45
0.40
0.35
0.30
0.25

N I I | | 0.20 I | |
—-1.0 -05 00 05 1.0 0.5 1.0 1.5

€L wy

-

Iu,d’SE[train]

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
cach containing one feature. Because there is only one feature. the weight vector w
contains only a single parameter to learn, w;. (Left)Observe that linear regression learns
to set wy such that the line y = wx comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w, found by the normal
equations, which we can see minimizes the mean squared error on the training set.
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