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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. Indeed, since the
release of the pix2pix software associated with this pa-
per, a large number of internet users (many of them artists)
have posted their own experiments with our system, further
demonstrating its wide applicability and ease of adoption
without the need for parameter tweaking. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

1. Introduction
Many problems in image processing, computer graphics,

and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept
may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the task of translating one possible representation of a
scene into another, given sufficient training data (see Figure
1). Traditionally, each of these tasks has been tackled with
separate, special-purpose machinery (e.g., [15, 24, 19, 8,
10, 52, 32, 38, 17, 57, 61]), despite the fact that the setting
is always the same: predict pixels from pixels. Our goal in
this paper is to develop a common framework for all these
problems.

The community has already taken significant steps in this
direction, with convolutional neural nets (CNNs) becoming
the common workhorse behind a wide variety of image pre-
diction problems. CNNs learn to minimize a loss function –
an objective that scores the quality of results – and although
the learning process is automatic, a lot of manual effort still
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goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach, and ask the CNN to minimize
Euclidean distance between predicted and ground truth pix-
els, it will tend to produce blurry results [42, 61]. This is
because Euclidean distance is minimized by averaging all
plausible outputs, which causes blurring. Coming up with
loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem
and generally requires expert knowledge.

It would be highly desirable if we could instead specify
only a high-level goal, like “make the output indistinguish-
able from reality”, and then automatically learn a loss func-
tion appropriate for satisfying this goal. Fortunately, this is
exactly what is done by the recently proposed Generative
Adversarial Networks (GANs) [23, 12, 43, 51, 62]. GANs
learn a loss that tries to classify if the output image is real
or fake, while simultaneously training a generative model
to minimize this loss. Blurry images will not be tolerated
since they look obviously fake. Because GANs learn a loss
that adapts to the data, they can be applied to a multitude of
tasks that traditionally would require very different kinds of
loss functions.

In this paper, we explore GANs in the conditional set-
ting. Just as GANs learn a generative model of data, condi-
tional GANs (cGANs) learn a conditional generative model
[23]. This makes cGANs suitable for image-to-image trans-
lation tasks, where we condition on an input image and gen-
erate a corresponding output image.

GANs have been vigorously studied in the last two
years and many of the techniques we explore in this pa-
per have been previously proposed. Nonetheless, ear-
lier papers have focused on specific applications, and
it has remained unclear how effective image-conditional
GANs can be as a general-purpose solution for image-to-
image translation. Our primary contribution is to demon-
strate that on a wide variety of problems, conditional
GANs produce reasonable results. Our second contri-
bution is to present a simple framework sufficient to
achieve good results, and to analyze the effects of sev-
eral important architectural choices. Code is available at
https://github.com/phillipi/pix2pix.

2. Related work
Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-
sification or regression (e.g., [38, 57, 27, 34, 61]). These
formulations treat the output space as “unstructured” in the
sense that each output pixel is considered conditionally in-
dependent from all others given the input image. Condi-
tional GANs instead learn a structured loss. Structured
losses penalize the joint configuration of the output. A
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Figure 2: Training a conditional GAN to map edges→photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

large body of literature has considered losses of this kind,
with methods including conditional random fields [9], the
SSIM metric [55], feature matching [14], nonparametric
losses [36], the convolutional pseudo-prior [56], and losses
based on matching covariance statistics [29]. The condi-
tional GAN is different in that the loss is learned, and can, in
theory, penalize any possible structure that differs between
output and target.

Conditional GANs We are not the first to apply GANs
in the conditional setting. Prior and concurrent works have
conditioned GANs on discrete labels [40, 22, 12], text [45],
and, indeed, images. The image-conditional models have
tackled image prediction from a normal map [54], future
frame prediction [39], product photo generation [58], and
image generation from sparse annotations [30, 47] (c.f. [46]
for an autoregressive approach to the same problem). Sev-
eral other papers have also used GANs for image-to-image
mappings, but only applied the GAN unconditionally, re-
lying on other terms (such as L2 regression) to force the
output to be conditioned on the input. These papers have
achieved impressive results on inpainting [42], future state
prediction [63], image manipulation guided by user con-
straints [64], style transfer [37], and superresolution [35].
Each of the methods was tailored for a specific applica-
tion. Our framework differs in that nothing is application-
specific. This makes our setup considerably simpler than
most others.

Our method also differs from the prior works in several
architectural choices for the generator and discriminator.
Unlike past work, for our generator we use a “U-Net”-based
architecture [49], and for our discriminator we use a convo-
lutional “PatchGAN” classifier, which only penalizes struc-
ture at the scale of image patches. A similar PatchGAN
architecture was previously proposed in [37], for the pur-
pose of capturing local style statistics. Here we show that
this approach is effective on a wider range of problems, and
we investigate the effect of changing the patch size.

3. Method
GANs are generative models that learn a mapping from

random noise vector z to output image y,G : z → y [23]. In



contrast, conditional GANs learn a mapping from observed
image x and random noise vector z, to y, G : {x, z} → y.
The generatorG is trained to produce outputs that cannot be
distinguished from “real” images by an adversarially trained
discriminator, D, which is trained to do as well as possible
at detecting the generator’s “fakes”. This training procedure
is diagrammed in Figure 2.

3.1. Objective

The objective of a conditional GAN can be expressed as

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))], (1)

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G∗ =
argminG maxD LcGAN (G,D).

To test the importance of conditioning the discriminator,
we also compare to an unconditional variant in which the
discriminator does not observe x:

LGAN (G,D) =Ey[logD(y)]+

Ex,z[log(1−D(G(x, z))]. (2)

Previous approaches have found it beneficial to mix the
GAN objective with a more traditional loss, such as L2 dis-
tance [42]. The discriminator’s job remains unchanged, but
the generator is tasked to not only fool the discriminator but
also to be near the ground truth output in an L2 sense. We
also explore this option, using L1 distance rather than L2 as
L1 encourages less blurring:

LL1(G) = Ex,y,z[‖y −G(x, z)‖1]. (3)

Our final objective is

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G). (4)

Without z, the net could still learn a mapping from x
to y, but would produce deterministic outputs, and there-
fore fail to match any distribution other than a delta func-
tion. Past conditional GANs have acknowledged this and
provided Gaussian noise z as an input to the generator, in
addition to x (e.g., [54]). In initial experiments, we did not
find this strategy effective – the generator simply learned
to ignore the noise – which is consistent with Mathieu et
al. [39]. Instead, for our final models, we provide noise
only in the form of dropout, applied on several layers of our
generator at both training and test time. Despite the dropout
noise, we observe only minor stochasticity in the output of
our nets. Designing conditional GANs that produce highly
stochastic output, and thereby capture the full entropy of the
conditional distributions they model, is an important ques-
tion left open by the present work.

Encoder-decoder U-Net

x y x y

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [49] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

3.2. Network architectures

We adapt our generator and discriminator architectures
from those in [43]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [28].
Details of the architecture are provided in the supplemen-
tal materials online, with key features discussed below.

3.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [42, 54, 29, 63, 58] to problems
in this area have used an encoder-decoder network [25]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed. Such a network re-
quires that all information flow pass through all the layers,
including the bottleneck. For many image translation prob-
lems, there is a great deal of low-level information shared
between the input and output, and it would be desirable to
shuttle this information directly across the net. For exam-
ple, in the case of image colorizaton, the input and output
share the location of prominent edges.

To give the generator a means to circumvent the bottle-
neck for information like this, we add skip connections, fol-
lowing the general shape of a “U-Net” [49]. Specifically, we
add skip connections between each layer i and layer n − i,
where n is the total number of layers. Each skip connec-
tion simply concatenates all channels at layer i with those
at layer n− i.

3.2.2 Markovian discriminator (PatchGAN)

It is well known that the L2 loss – and L1, see Fig-
ure 4 – produces blurry results on image generation prob-
lems [33]. Although these losses fail to encourage high-



frequency crispness, in many cases they nonetheless accu-
rately capture the low frequencies. For problems where this
is the case, we do not need an entirely new framework to
enforce correctness at the low frequencies. L1 will already
do.

This motivates restricting the GAN discriminator to only
model high-frequency structure, relying on an L1 term to
force low-frequency correctness (Eqn. 4). In order to model
high-frequencies, it is sufficient to restrict our attention to
the structure in local image patches. Therefore, we design
a discriminator architecture – which we term a PatchGAN
– that only penalizes structure at the scale of patches. This
discriminator tries to classify if each N × N patch in an
image is real or fake. We run this discriminator convoluta-
tionally across the image, averaging all responses to provide
the ultimate output of D.

In Section 4.4, we demonstrate that N can be much
smaller than the full size of the image and still produce
high quality results. This is advantageous because a smaller
PatchGAN has fewer parameters, runs faster, and can be
applied on arbitrarily large images.

Such a discriminator effectively models the image as a
Markov random field, assuming independence between pix-
els separated by more than a patch diameter. This connec-
tion was previously explored in [37], and is also the com-
mon assumption in models of texture [16, 20] and style
[15, 24, 21, 36]. Our PatchGAN can therefore be under-
stood as a form of texture/style loss.

3.3. Optimization and inference

To optimize our networks, we follow the standard ap-
proach from [23]: we alternate between one gradient de-
scent step on D, then one step on G. As suggested in
the original GAN paper, rather than training G to mini-
mize log(1 − D(x,G(x, z)), we instead train to maximize
logD(x,G(x, z)) [23]. In addition, we divide the objec-
tive by 2 while optimizing D, which slows down the rate at
which D learns relative to G. We use minibatch SGD and
apply the Adam solver [31], with learning rate 0.0002, and
momentum parameters β1 = 0.5, β2 = 0.999.

At inference time, we run the generator net in exactly
the same manner as during the training phase. This differs
from the usual protocol in that we apply dropout at test time,
and we apply batch normalization [28] using the statistics of
the test batch, rather than aggregated statistics of the train-
ing batch. This approach to batch normalization, when the
batch size is set to 1, has been termed “instance normal-
ization” and has been demonstrated to be effective at im-
age generation tasks [53]. In our experiments, we use batch
sizes between 1 and 10 depending on the experiment.

4. Experiments
To explore the generality of conditional GANs, we test

the method on a variety of tasks and datasets, including both
graphics tasks, like photo generation, and vision tasks, like
semantic segmentation:

• Semantic labels↔photo, trained on the Cityscapes
dataset [11].
• Architectural labels→photo, trained on CMP Facades

[44].
• Map↔aerial photo, trained on data scraped from

Google Maps.
• BW→color photos, trained on [50].
• Edges→photo, trained on data from [64] and [59]; bi-

nary edges generated using the HED edge detector [57]
plus postprocessing.
• Sketch→photo: tests edges→photo models on human-

drawn sketches from [18].
• Day→night, trained on [32].
• Thermal→color photos, trained on data from [26].
• Photo with missing pixels→inpainted photo, trained

on Paris StreetView from [13].

Details of training on each of these datasets are provided
in the supplemental materials online. In all cases, the in-
put and output are simply 1-3 channel images. Qualita-
tive results are shown in Figures 8, 9, 11, 10, 12, 13, 14,
15, 16, 17, 18, 19. Several failure cases are highlighted
in Figure 20. More comprehensive results are available at
https://phillipi.github.io/pix2pix/.

Data requirements and speed We note that decent re-
sults can often be obtained even on small datasets. Our fa-
cade training set consists of just 400 images (see results in
Figure 13), and the day to night training set consists of only
91 unique webcams (see results in Figure 14). On datasets
of this size, training can be very fast: for example, the re-
sults shown in Figure 13 took less than two hours of training
on a single Pascal Titan X GPU. At test time, all models run
in well under a second on this GPU.

4.1. Evaluation metrics

Evaluating the quality of synthesized images is an open
and difficult problem [51]. Traditional metrics such as per-
pixel mean-squared error do not assess joint statistics of the
result, and therefore do not measure the very structure that
structured losses aim to capture.

In order to more holistically evaluate the visual qual-
ity of our results, we employ two tactics. First, we run
“real vs fake” perceptual studies on Amazon Mechanical
Turk (AMT). For graphics problems like colorization and
photo generation, plausibility to a human observer is often
the ultimate goal. Therefore, we test our map generation,
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Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

aerial photo generation, and image colorization using this
approach.

Second, we measure whether or not our synthesized
cityscapes are realistic enough that off-the-shelf recognition
system can recognize the objects in them. This metric is
similar to the “inception score” from [51], the object detec-
tion evaluation in [54], and the “semantic interpretability”
measures in [61] and [41].

AMT perceptual studies For our AMT experiments, we
followed the protocol from [61]: Turkers were presented
with a series of trials that pitted a “real” image against a
“fake” image generated by our algorithm. On each trial,
each image appeared for 1 second, after which the images
disappeared and Turkers were given unlimited time to re-
spond as to which was fake. The first 10 images of each
session were practice and Turkers were given feedback. No
feedback was provided on the 40 trials of the main experi-
ment. Each session tested just one algorithm at a time, and
Turkers were not allowed to complete more than one ses-
sion. ∼ 50 Turkers evaluated each algorithm. Unlike [61],
we did not include vigilance trials. For our colorization ex-
periments, the real and fake images were generated from the
same grayscale input. For map↔aerial photo, the real and
fake images were not generated from the same input, in or-

der to make the task more difficult and avoid floor-level re-
sults. For map↔aerial photo, we trained on 256×256 reso-
lution images, but exploited fully-convolutional translation
(described above) to test on 512× 512 images, which were
then downsampled and presented to Turkers at 256 × 256
resolution. For colorization, we trained and tested on
256 × 256 resolution images and presented the results to
Turkers at this same resolution.

“FCN-score” While quantitative evaluation of genera-
tive models is known to be challenging, recent works [51,
54, 61, 41] have tried using pre-trained semantic classifiers
to measure the discriminability of the generated stimuli as a
pseudo-metric. The intuition is that if the generated images
are realistic, classifiers trained on real images will be able
to classify the synthesized image correctly as well. To this
end, we adopt the popular FCN-8s [38] architecture for se-
mantic segmentation, and train it on the cityscapes dataset.
We then score synthesized photos by the classification accu-
racy against the labels these photos were synthesized from.

4.2. Analysis of the objective function

Which components of the objective in Eqn. 4 are impor-
tant? We run ablation studies to isolate the effect of the L1
term, the GAN term, and to compare using a discriminator
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Figure 5: Adding skip connections to an encoder-decoder to create
a “U-Net” results in much higher quality results.

Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.42 0.15 0.11
GAN 0.22 0.05 0.01
cGAN 0.57 0.22 0.16
L1+GAN 0.64 0.20 0.15
L1+cGAN 0.66 0.23 0.17
Ground truth 0.80 0.26 0.21

Table 1: FCN-scores for different losses, evaluated on Cityscapes
labels↔photos.

Loss Per-pixel acc. Per-class acc. Class IOU
Encoder-decoder (L1) 0.35 0.12 0.08
Encoder-decoder (L1+cGAN) 0.29 0.09 0.05
U-net (L1) 0.48 0.18 0.13
U-net (L1+cGAN) 0.55 0.20 0.14

Table 2: FCN-scores for different generator architectures (and ob-
jectives), evaluated on Cityscapes labels↔photos. (U-net (L1-
cGAN) scores differ from those reported in other tables since batch
size was 10 for this experiment and 1 for other tables, and random
variation between training runs.)

Discriminator
receptive field Per-pixel acc. Per-class acc. Class IOU
1×1 0.39 0.15 0.10
16×16 0.65 0.21 0.17
70×70 0.66 0.23 0.17
286×286 0.42 0.16 0.11

Table 3: FCN-scores for different receptive field sizes of the dis-
criminator, evaluated on Cityscapes labels→photos. Note that in-
put images are 256 × 256 pixels and larger receptive fields are
padded with zeros.

conditioned on the input (cGAN, Eqn. 1) against using an
unconditional discriminator (GAN, Eqn. 2).

Figure 4 shows the qualitative effects of these variations
on two labels→photo problems. L1 alone leads to reason-
able but blurry results. The cGAN alone (setting λ = 0 in
Eqn. 4) gives much sharper results, but introduces visual ar-
tifacts on certain applications. Adding both terms together
(with λ = 100) reduces these artifacts.

We quantify these observations using the FCN-score on
the cityscapes labels→photo task (Table 1): the GAN-based
objectives achieve higher scores, indicating that the synthe-
sized images include more recognizable structure. We also
test the effect of removing conditioning from the discrimi-

nator (labeled as GAN). In this case, the loss does not pe-
nalize mismatch between the input and output; it only cares
that the output look realistic. This variant results in very
poor performance; examining the results reveals that the
generator collapsed into producing nearly the exact same
output regardless of input photograph. Clearly it is impor-
tant, in this case, that the loss measure the quality of the
match between input and output, and indeed cGAN per-
forms much better than GAN. Note, however, that adding
an L1 term also encourages that the output respect the in-
put, since the L1 loss penalizes the distance between ground
truth outputs, which correctly match the input, and synthe-
sized outputs, which may not. Correspondingly, L1+GAN
is also effective at creating realistic renderings that respect
the input label maps. Combining all terms, L1+cGAN, per-
forms similarly well.

Colorfulness A striking effect of conditional GANs is
that they produce sharp images, hallucinating spatial struc-
ture even where it does not exist in the input label map. One
might imagine cGANs have a similar effect on “sharpening”
in the spectral dimension – i.e. making images more color-
ful. Just as L1 will incentivize a blur when it is uncertain
where exactly to locate an edge, it will also incentivize an
average, grayish color when it is uncertain which of sev-
eral plausible color values a pixel should take on. Specially,
L1 will be minimized by choosing the median of the condi-
tional probability density function over possible colors. An
adversarial loss, on the other hand, can in principle become
aware that grayish outputs are unrealistic, and encourage
matching the true color distribution [23]. In Figure 7, we
investigate whether our cGANs actually achieve this effect
on the Cityscapes dataset. The plots show the marginal dis-
tributions over output color values in Lab color space. The
ground truth distributions are shown with a dotted line. It
is apparent that L1 leads to a narrower distribution than the
ground truth, confirming the hypothesis that L1 encourages
average, grayish colors. Using a cGAN, on the other hand,
pushes the output distribution closer to the ground truth.

4.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to
shortcut across the network. Does this lead to better results?
Figure 5 and Table 2 compare the U-Net against an encoder-
decoder on cityscape generation. The encoder-decoder is
created simply by severing the skip connections in the U-
Net. The encoder-decoder is unable to learn to generate
realistic images in our experiments. The advantages of the
U-Net appear not to be specific to conditional GANs: when
both U-Net and encoder-decoder are trained with an L1 loss,
the U-Net again achieves the superior results.



L1 1×1 16×16 70×70 286×286

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70×70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (colorfulness) dimensions. The full 286×286 ImageGAN produces
results that are visually similar to the 70×70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 3). Please
see https://phillipi.github.io/pix2pix/ for additional examples.648

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#385

CVPR
#385

CVPR 2016 Submission #385. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

70 90 110 130 150
−11

−9

−7

−5

−3

−1

b

70 90 110 130
−11

−9

−7

−5

−3

−1

a
0 20 40 60 80 100

−11

−9

−7

−5

−3

−1

L

 

 

L1
cGAN
L1+cGAN
L1+pixelcGAN
Ground truth

(a)

70 90 110 130 150
−11

−9

−7

−5

−3

−1

b

70 90 110 130
−11

−9

−7

−5

−3

−1

a
0 20 40 60 80 100

−11

−9

−7

−5

−3

−1

L

 

 

L1
cGAN
L1+cGAN
L1+pixelcGAN
Ground truth

(b)

70 90 110 130 150
−11

−9

−7

−5

−3

−1

b

70 90 110 130
−11

−9

−7

−5

−3

−1

a
0 20 40 60 80 100

−11

−9

−7

−5

−3

−1

L

 

 

L1
cGAN
L1+cGAN
L1+pixelcGAN
Ground truth

(c)

Histogram intersection
against ground truth

Loss L a b
L1 0.81 0.69 0.70
cGAN 0.87 0.74 0.84
L1+cGAN 0.86 0.84 0.82
PixelGAN 0.83 0.68 0.78

(d)
Figure 5: Color distribution matching property of the cGAN, tested on Cityscapes. (c.f. Figure 1 of the original GAN paper [14]). Note
that the histogram intersection scores are dominated by differences in the high probability region, which are imperceptible in the plots,
which show log probability and therefore emphasize differences in the low probability regions.

L1 1x1 16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2).

Classification Ours
L2 [44] (rebal.) [44] (L1 + cGAN) Ground truth

Figure 7: Colorization results of conditional GANs versus the L2
regression from [44] and the full method (classification with re-
balancing) from [46]. The cGANs can produce compelling col-
orizations (first two rows), but have a common failure mode of
producing a grayscale or desaturated result (last row).

To begin to test this, we train a cGAN (with/without L1
loss) on cityscape photo!labels. Figure 8 shows qualita-
tive results, and quantitative classification accuracies are re-
ported in Table 4. Interestingly, cGANs, trained without the
L1 loss, are able to solve this problem at a reasonable degree
of accuracy. To our knowledge, this is the first demonstra-
tion of GANs successfully generating “labels”, which are

Input Ground truth L1 cGAN

Figure 8: Applying a conditional GAN to semantic segmentation.
The cGAN produces sharp images that look at glance like the
ground truth, but in fact include many small, hallucinated objects.

nearly discrete, rather than “images”, with their continuous-
valued variation. Although cGANs achieve some success,
they are far from the best available method for solving this
problem: simply using L1 regression gets better scores than
using a cGAN, as shown in Table 4. We argue that for vision
problems, the goal (i.e. predicting output close to ground
truth) may be less ambiguous than graphics tasks, and re-
construction losses like L1 are mostly sufficient.

4. Conclusion

The results in this paper suggest that conditional adver-
sarial networks are a promising approach for many image-
to-image translation tasks, especially those involving highly
structured graphical outputs. These networks learn a loss
adapted to the task and data at hand, which makes them ap-
plicable in a wide variety of settings.
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against ground truth

Loss L a b
L1 0.81 0.69 0.70
cGAN 0.87 0.74 0.84
L1+cGAN 0.86 0.84 0.82
PixelGAN 0.83 0.68 0.78

(d)
Figure 5: Color distribution matching property of the cGAN, tested on Cityscapes. (c.f. Figure 1 of the original GAN paper [14]). Note
that the histogram intersection scores are dominated by differences in the high probability region, which are imperceptible in the plots,
which show log probability and therefore emphasize differences in the low probability regions.

L1 1x1 16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2).

Classification Ours
L2 [44] (rebal.) [44] (L1 + cGAN) Ground truth

Figure 7: Colorization results of conditional GANs versus the L2
regression from [44] and the full method (classification with re-
balancing) from [46]. The cGANs can produce compelling col-
orizations (first two rows), but have a common failure mode of
producing a grayscale or desaturated result (last row).

To begin to test this, we train a cGAN (with/without L1
loss) on cityscape photo!labels. Figure 8 shows qualita-
tive results, and quantitative classification accuracies are re-
ported in Table 4. Interestingly, cGANs, trained without the
L1 loss, are able to solve this problem at a reasonable degree
of accuracy. To our knowledge, this is the first demonstra-
tion of GANs successfully generating “labels”, which are

Input Ground truth L1 cGAN

Figure 8: Applying a conditional GAN to semantic segmentation.
The cGAN produces sharp images that look at glance like the
ground truth, but in fact include many small, hallucinated objects.

nearly discrete, rather than “images”, with their continuous-
valued variation. Although cGANs achieve some success,
they are far from the best available method for solving this
problem: simply using L1 regression gets better scores than
using a cGAN, as shown in Table 4. We argue that for vision
problems, the goal (i.e. predicting output close to ground
truth) may be less ambiguous than graphics tasks, and re-
construction losses like L1 are mostly sufficient.

4. Conclusion

The results in this paper suggest that conditional adver-
sarial networks are a promising approach for many image-
to-image translation tasks, especially those involving highly
structured graphical outputs. These networks learn a loss
adapted to the task and data at hand, which makes them ap-
plicable in a wide variety of settings.
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L1 0.81 0.69 0.70
cGAN 0.87 0.74 0.84
L1+cGAN 0.86 0.84 0.82
PixelGAN 0.83 0.68 0.78

(d)
Figure 5: Color distribution matching property of the cGAN, tested on Cityscapes. (c.f. Figure 1 of the original GAN paper [14]). Note
that the histogram intersection scores are dominated by differences in the high probability region, which are imperceptible in the plots,
which show log probability and therefore emphasize differences in the low probability regions.
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Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2).

Classification Ours
L2 [44] (rebal.) [44] (L1 + cGAN) Ground truth

Figure 7: Colorization results of conditional GANs versus the L2
regression from [44] and the full method (classification with re-
balancing) from [46]. The cGANs can produce compelling col-
orizations (first two rows), but have a common failure mode of
producing a grayscale or desaturated result (last row).

To begin to test this, we train a cGAN (with/without L1
loss) on cityscape photo!labels. Figure 8 shows qualita-
tive results, and quantitative classification accuracies are re-
ported in Table 4. Interestingly, cGANs, trained without the
L1 loss, are able to solve this problem at a reasonable degree
of accuracy. To our knowledge, this is the first demonstra-
tion of GANs successfully generating “labels”, which are

Input Ground truth L1 cGAN

Figure 8: Applying a conditional GAN to semantic segmentation.
The cGAN produces sharp images that look at glance like the
ground truth, but in fact include many small, hallucinated objects.

nearly discrete, rather than “images”, with their continuous-
valued variation. Although cGANs achieve some success,
they are far from the best available method for solving this
problem: simply using L1 regression gets better scores than
using a cGAN, as shown in Table 4. We argue that for vision
problems, the goal (i.e. predicting output close to ground
truth) may be less ambiguous than graphics tasks, and re-
construction losses like L1 are mostly sufficient.

4. Conclusion

The results in this paper suggest that conditional adver-
sarial networks are a promising approach for many image-
to-image translation tasks, especially those involving highly
structured graphical outputs. These networks learn a loss
adapted to the task and data at hand, which makes them ap-
plicable in a wide variety of settings.
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Figure 7: Color distribution matching property of the cGAN, tested on Cityscapes. (c.f. Figure 1 of the original GAN paper [23]). Note
that the histogram intersection scores are dominated by differences in the high probability region, which are imperceptible in the plots,
which show log probability and therefore emphasize differences in the low probability regions.

4.4. From PixelGANs to PatchGANs to ImageGANs

We test the effect of varying the patch size N of our dis-
criminator receptive fields, from a 1 × 1 “PixelGAN” to a
full 286 × 286 “ImageGAN”1. Figure 6 shows qualitative
results of this analysis and Table 3 quantifies the effects us-
ing the FCN-score. Note that elsewhere in this paper, unless
specified, all experiments use 70× 70 PatchGANs, and for
this section all experiments use an L1+cGAN loss.

The PixelGAN has no effect on spatial sharpness, but
does increase the colorfulness of the results (quantified in
Figure 7). For example, the bus in Figure 6 is painted gray
when the net is trained with an L1 loss, but becomes red
with the PixelGAN loss. Color histogram matching is a
common problem in image processing [48], and PixelGANs
may be a promising lightweight solution.

Using a 16×16 PatchGAN is sufficient to promote sharp
outputs, and achieves good FCN-scores, but also leads to
tiling artifacts. The 70 × 70 PatchGAN alleviates these ar-
tifacts and achieves slightly better similar scores. Scaling
beyond this, to the full 286 × 286 ImageGAN, does not
appear to improve the visual quality of the results, and in
fact gets a considerably lower FCN-score (Table 3). This
may be because the ImageGAN has many more parameters
and greater depth than the 70× 70 PatchGAN, and may be
harder to train.

1We achieve this variation in patch size by adjusting the depth of the
GAN discriminator. Details of this process, and the discriminator architec-
tures are provided in the in the supplemental materials online.

Photo→Map Map→ Photo
Loss % Turkers labeled real % Turkers labeled real
L1 2.8% ± 1.0% 0.8% ± 0.3%
L1+cGAN 6.1% ± 1.3% 18.9% ± 2.5%

Table 4: AMT “real vs fake” test on maps↔aerial photos.

Method % Turkers labeled real
L2 regression from [61] 16.3% ± 2.4%
Zhang et al. 2016 [61] 27.8% ± 2.7%
Ours 22.5% ± 1.6%

Table 5: AMT “real vs fake” test on colorization.

Fully-convolutional translation An advantage of the
PatchGAN is that a fixed-size patch discriminator can be
applied to arbitrarily large images. We may also apply the
generator convolutionally, on larger images than those on
which it was trained. We test this on the map↔aerial photo
task. After training a generator on 256×256 images, we test
it on 512×512 images. The results in Figure 8 demonstrate
the effectiveness of this approach.

4.5. Perceptual validation

We validate the perceptual realism of our results on the
tasks of map↔aerial photograph and grayscale→color. Re-
sults of our AMT experiment for map↔photo are given in
Table 4. The aerial photos generated by our method fooled
participants on 18.9% of trials, significantly above the L1
baseline, which produces blurry results and nearly never
fooled participants. In contrast, in the photo→map direc-
tion our method only fooled participants on 6.1% of tri-



input output input output

Map to aerial photo Aerial photo to map

Figure 8: Example results on Google Maps at 512x512 resolution (model was trained on images at 256 × 256 resolution, and run convo-
lutionally on the larger images at test time). Contrast adjusted for clarity.

Classification Ours
L2 [61] (rebal.) [61] (L1 + cGAN) Ground truth

Figure 9: Colorization results of conditional GANs versus the L2
regression from [61] and the full method (classification with re-
balancing) from [63]. The cGANs can produce compelling col-
orizations (first two rows), but have a common failure mode of
producing a grayscale or desaturated result (last row).

als, and this was not significantly different than the perfor-
mance of the L1 baseline (based on bootstrap test). This
may be because minor structural errors are more visible
in maps, which have rigid geometry, than in aerial pho-
tographs, which are more chaotic.

Input Ground truth L1 cGAN

Figure 10: Applying a conditional GAN to semantic segmenta-
tion. The cGAN produces sharp images that look at glance like
the ground truth, but in fact include many small, hallucinated ob-
jects.

We trained colorization on ImageNet [50], and tested
on the test split introduced by [61, 34]. Our method, with
L1+cGAN loss, fooled participants on 22.5% of trials (Ta-
ble 5). We also tested the results of [61] and a variant of
their method that used an L2 loss (see [61] for details). The
conditional GAN scored similarly to the L2 variant of [61]
(difference insignificant by bootstrap test), but fell short of
[61]’s full method, which fooled participants on 27.8% of
trials in our experiment. We note that their method was
specifically engineered to do well on colorization.



by Jack Qiao

sketch by Ivy Tsai

by Kaihu Chen by Mario Klingemann

by Brannon Dorseyby Bertrand Gondouin sketch by Yann LeCun

#fotogenerator

Figure 11: Example applications developed by online community based on our pix2pix codebase: #edges2cats [3] by Christopher Hesse,
Background removal [6] by Kaihu Chen, Palette generation [5] by Jack Qiao, Sketch → Portrait [7] by Mario Klingemann, Sketch→
Pokemon [1] by Bertrand Gondouin, “Do As I Do” pose transfer [2] by Brannon Dorsey, and #fotogenerator by Bosman et al. [4].

Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.86 0.42 0.35
cGAN 0.74 0.28 0.22
L1+cGAN 0.83 0.36 0.29

Table 6: Performance of photo→labels on cityscapes.

4.6. Semantic segmentation

Conditional GANs appear to be effective on problems
where the output is highly detailed or photographic, as is
common in image processing and graphics tasks. What
about vision problems, like semantic segmentation, where
the output is instead less complex than the input?

To begin to test this, we train a cGAN (with/without L1
loss) on cityscape photo→labels. Figure 10 shows qualita-
tive results, and quantitative classification accuracies are re-
ported in Table 6. Interestingly, cGANs, trained without the
L1 loss, are able to solve this problem at a reasonable degree
of accuracy. To our knowledge, this is the first demonstra-
tion of GANs successfully generating “labels”, which are
nearly discrete, rather than “images”, with their continuous-
valued variation2. Although cGANs achieve some success,
they are far from the best available method for solving this
problem: simply using L1 regression gets better scores than
using a cGAN, as shown in Table 6. We argue that for vision
problems, the goal (i.e. predicting output close to ground
truth) may be less ambiguous than graphics tasks, and re-
construction losses like L1 are mostly sufficient.

4.7. Community-driven Research

Since the initial release of the paper and our pix2pix
codebase, the Twitter community, including computer vi-
sion and graphics practitioners as well as visual artists, have
successfully applied our framework to a variety of novel
image-to-image translation tasks, far beyond the scope of
the original paper. Figure 11 shows just a few examples
from the #pix2pix hashtag, including Background removal,
Palette generation, Sketch → Portrait, Sketch→Pokemon,

2Note that the label maps we train on are not exactly discrete valued,
as they are resized from the original maps using bilinear interpolation and
saved as jpeg images, with some compression artifacts.

”Do as I Do” pose transfer, as well as the bizarrely popular
#edges2cats and #fotogenerator. Note that these applica-
tions are creative projects, were not obtained in controlled,
scientific conditions, and may rely on some modifications to
the pix2pix code we released. Nonetheless, they demon-
strate the promise of our approach as a generic commodity
tool for image-to-image translation problems.

5. Conclusion
The results in this paper suggest that conditional adver-

sarial networks are a promising approach for many image-
to-image translation tasks, especially those involving highly
structured graphical outputs. These networks learn a loss
adapted to the task and data at hand, which makes them ap-
plicable in a wide variety of settings.
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Input Ground truth Output Input Ground truth Output

Figure 12: Example results of our method on Cityscapes labels→photo, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on facades labels→photo, compared to ground truth.
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Figure 14: Example results of our method on day→night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 15: Example results of our method on automatically detected edges→handbags, compared to ground truth.
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Figure 16: Example results of our method on automatically detected edges→shoes, compared to ground truth.

Input Output Input Output Input Output

Figure 17: Additional results of the edges→photo models applied to human-drawn sketches from [18]. Note that the models were trained
on automatically detected edges, but generalize to human drawings



Figure 18: Example results on photo inpainting, compared to [42], on the Paris StreetView dataset [13]. This experiment demonstrates that
the U-net architecture can be effective even when the predicted pixels are not geometrically aligned with the information in the input – the
information used to fill in the central hole has to be found in the periphery of these photos.

Input Ground truth Output Input Ground truth Output

Figure 19: Example results on translating thermal images to RGB photos, on the dataset from [26].

Day Night

EdgesShoe Handbag

Labels Facade Street scene

HandbagEdges

Labels

SketchSketch Shoe

Figure 20: Example failure cases. Each pair of images shows input on the left and output on the right. These examples are selected as some
of the worst results on our tasks. Common failures include artifacts in regions where the input image is sparse, and difficulty in handling
unusual inputs. Please see https://phillipi.github.io/pix2pix/ for more comprehensive results.
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6. Appendix
6.1. Network architectures

We adapt our network architectures from those
in [43]. Code for the models is available at
https://github.com/phillipi/pix2pix.

Let Ck denote a Convolution-BatchNorm-ReLU layer
with k filters. CDk denotes a a Convolution-BatchNorm-
Dropout-ReLU layer with a dropout rate of 50%. All convo-
lutions are 4× 4 spatial filters applied with stride 2. Convo-
lutions in the encoder, and in the discriminator, downsample
by a factor of 2, whereas in the decoder they upsample by a
factor of 2.

6.1.1 Generator architectures

The encoder-decoder architecture consists of:
encoder:
C64-C128-C256-C512-C512-C512-C512-C512
decoder:
CD512-CD512-CD512-C512-C256-C128-C64

After the last layer in the decoder, a convolution is ap-
plied to map to the number of output channels (3 in general,
except in colorization, where it is 2), followed by a Tanh
function. As an exception to the above notation, Batch-
Norm is not applied to the first C64 layer in the encoder.
All ReLUs in the encoder are leaky, with slope 0.2, while
ReLUs in the decoder are not leaky.

The U-Net architecture is identical except with skip con-
nections between each layer i in the encoder and layer n− i
in the decoder, where n is the total number of layers. The
skip connections concatenate activations from layer i to
layer n − i. This changes the number of channels in the
decoder:

U-Net decoder:
CD512-CD1024-CD1024-C1024-C1024-C512
-C256-C128

6.1.2 Discriminator architectures

The 70× 70 discriminator architecture is:
C64-C128-C256-C512

After the last layer, a convolution is applied to map to a 1
dimensional output, followed by a Sigmoid function. As an
exception to the above notation, BatchNorm is not applied
to the first C64 layer. All ReLUs are leaky, with slope 0.2.

All other discriminators follow the same basic architec-
ture, with depth varied to modify the receptive field size:

1× 1 discriminator:
C64-C128 (note, in this special case, all convolutions are
1× 1 spatial filters)
16× 16 discriminator:
C64-C128
286× 286 discriminator:

C64-C128-C256-C512-C512-C512

6.2. Training details

Random jitter was applied by resizing the 256×256 input
images to 286 × 286 and then randomly cropping back to
size 256× 256.

All networks were trained from scratch. Weights were
initialized from a Gaussian distribution with mean 0 and
standard deviation 0.02.

Cityscapes labels→photo 2975 training images from
the Cityscapes training set [11], trained for 200 epochs, with
random jitter and mirroring. We used the Cityscapes val
set for testing. To compare the U-net against an encoder-
decoder, we used a batch size of 10, whereas for the ob-
jective function experiments we used batch size 1. We find
that batch size 1 produces better results for the U-net, but is
inappropriate for the encoder-decoder. This is because we
apply batchnorm on all layers of our network, and for batch
size 1 this zeros the activations on the bottleneck layer. The
U-net is able to skip over the bottleneck, but the encoder-
decoder cannot, and so the encoder-decoder requires a batch
size greater than 1. Note, an alternative strategy is to re-
move batchnorm from the bottleneck layer. See errata for
more details.

Architectural labels→photo 400 training images from
[44], trained for 200 epochs, batch size 1, with random jitter
and mirroring. Data was split into train and test randomly.

Maps↔aerial photograph 1096 training images
scraped from Google Maps, trained for 200 epochs, batch
size 1, with random jitter and mirroring. Images were
sampled from in and around New York City. Data was then
split into train and test about the median latitude of the
sampling region (with a buffer region added to ensure that
no training pixel appeared in the test set).

BW→color 1.2 million training images (Imagenet train-
ing set [50]), trained for∼ 6 epochs, batch size 4, with only
mirroring, no random jitter. Tested on subset of Imagenet
val set, following protocol of [61] and [34].

Edges→shoes 50k training images from UT Zappos50K
dataset [60] trained for 15 epochs, batch size 4. Data was
split into train and test randomly.

Edges→Handbag 137K Amazon Handbag images from
[64], trained for 15 epochs, batch size 4. Data was split into
train and test randomly.

Day→night 17823 training images extracted from 91
webcams, from [32] trained for 17 epochs, batch size 4,
with random jitter and mirroring. We use 91 webcams as
training, and 10 webcams for test.

Thermal→color photos 36609 training images from set
00–05 of [26], trained for 10 epochs, batch size 4. Images
from set 06-11 are used for testing.

Photo with missing pixels→inpainted photo 14900



training images from [13], trained for 25 epochs, batch size
4, and tested on 100 held out images following the split of
[42].

6.3. Errata

For all experiments reported in this paper with batch
size 1, the activations of the bottleneck layer are zeroed by
the batchnorm operation, effectively making the innermost
layer skipped. This can be fixed by removing batchnorm
from this layer, as has been done in the public code. We ob-
serve little difference with this change and therefore leave
the experiments as is in the paper.

6.4. Change log

arXiv v2 Reran generator architecture comparisons
(Section 4.3) with batch size equal to 10 rather than
1, so that bottleneck layer is not zeroed (see Errata).
Reran FCN-scores with minor details cleaned up (re-
sults saved losslessly as pngs, removed unecessary
downsampling). FCN-scores computed using scripts at
https://github.com/phillipi/pix2pix/tree/
master/scripts/eval cityscapes, commit
d7e7b8b. Updated several figures and text. Added addi-
tional results on thermal→color photos and inpainting, as
well as community contributions.


