Today: Model-free Control

Generalized policy improvement
Importance of exploration
Monte Carlo control

Model-free control with temporal difference (SARSA, Q-learning)

Maximization bias
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Model-free Control Examples

@ Many applications can be modeled as a MDP: Backgammon, Go,
Robot locomation, Helicopter flight, Robocup soccer, Autonomous
driving, Customer ad selection, Invasive species management, Patient

treatment
@ For many of these and other problems either:

o MDP model is unknown but can be sampled
o MDP model is known but it is computationally infeasible to use

directly, except through sampling
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On and Off-Policy Learning

@ On-policy learning
e Direct experience
e Learn to estimate and evaluate a policy from experience obtained from
following that policy

o Off-policy learning
o Learn to estimate and evaluate a policy using experience gathered from
following a different policy
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Recall Policy lteration

Initialize policy 7
Repeat:

e Policy evaluation: compute V7™
e Policy improvement: update 7

7'(s) = argmax R(s,a) + v Z P(s'|s,a)V™(s") = argmax Q" (s, a)
a a

s'eS
(1)
@ Now want to do the above two steps without access to the true
dynamics and reward models

Last lecture introduced methods for model-free policy evaluation
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Model-free Generalized Policy Improvement

e Given an estimate Q7i(s,a) Vs, a

@ Update new policy

mi:1(s) = argmax Q" (s, ) 2)
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Model-free Policy lteration

Initialize policy 7
Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update m given Q™

@ May need to modify policy evaluation:

o If w is deterministic, can’'t compute Q(s, a) for any a # 7(s)
@ How to interleave policy evaluation and improvement?

e Policy improvement is now using an estimated Q
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Policy Evaluation with Exploration

@ Want to compute a model-free estimate of Q™
@ In general seems subtle

o Need to try all (s, a) pairs but then follow 7

e Want to ensure resulting estimate Q™ is good enough so that policy
improvement is a monotonic operator

@ For certain classes of policies can ensure all (s,a) pairs are tried such
that asymptotically Q™ converges to the true value
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e-greedy Policies

@ Simple idea to balance exploration and exploitation
@ Let |A| be the number of actions

@ Then an e-greedy policy w.r.t. a state-action value Q™ (s, a) is
m(als) =
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Monotonic!®

e-greedy Policy Improvement

Theorem

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, i1 is a
monotonic improvement V7i+l > V7

Q7 (s, mit1(s))

= > mip(als)QTi(s, a)

acA

= (¢/IA) D QTi( + (1 — ) maxQTi(s, a)

acA

@ Therefore V™i+1 > VP (from the policy improvement theorem)

¥The theorem assumes that Q™ has been computed exactly
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Monotonic?! e-greedy Policy Improvement

Theorem

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, miy1 is a
monotonic improvement V7™i+1 > V7

Q" (s, miy1(s)) = Z mir1(als)Q™i(s, a)
acA

= (e/]A]) Z QTi(s,a) + (1 — e)maxQ i(s,a)

acA
= (e/IAD DD QTi( l—e)maxQ i(s, a) 1-e

acA

. N mitals) — 15

= (€/|A|)ZQ’(S,a)+(1—e)maa><Q'(s,a)ZT
> IAIZQ i(s, a)+(1—e)zﬂ’i(a|15)gc)ﬂ'i(s7a)

acA

= > mi(als)QTi(s,a) = VTi(s)

a

o Therefore V™i+1 > VP (from the policy improvement theorem)

2 The theorem assumes that Q™ has been computed exactly.
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim Ni(s,a) — oo
1—00

@ Behavior policy converges to greedy policy

@ A simple GLIE strategy is e-greedy where € is reduced to 0 with the
following rate: ¢; = 1/i
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Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s,a) =0, Returns(s,a) =0 V(s,a), Sete=1, k=1
2: my = e-greedy(Q) // Create initial e-greedy policy

3: loop

4:  Sample k-th episode (Sk1,ak1, rk1, Sk2, - - -, ST) given Tk
5 fort=1,...,T do

6: if First visit to (s, a) in episode k then

7: Append ZJ-T:t rij to Returns(s, a;)

8: Q(st, a;) = average(Returns(s;, at))

o: end if

10:  end for

1. k=k+1 e=1/k

12: 7, = e-greedy(Q™) // Policy improvement

13: end loop
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GLIE Monte-Carlo Co

GLIE Monte-Carlo control converges to the optimal state-action value?
function Q(s,a) — q(s, a)

?v(s) and q(s, a) without any additional subscripts are used to indicate the
optimal state and state-action value function, respectively.
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Model-free Policy lteration

@ Initialize policy 7
@ Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update m given Q™

@ What about TD methods?
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Model-free Policy Iteration with TD Methods

@ Use temporal difference methods for policy evaluation step
@ Initialize policy w
@ Repeat:
e Policy evaluation: compute Q™ using temporal difference updating

with e-greedy policy
e Policy improvement: Same as Monte carlo policy improvement, set 7

to e-greedy (Q™)
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General Form of SARSA Algorithm

Set initial e-greedy policy w, t = 0, initial state s; = sp
Take a; ~ 7(st) // Sample action from policy
Observe (rt, st+1)
loop

Take action ary1 ~ 7(St+1)

Observe (re+1, St+2)

Update Q given (st, at, rt, St+1, 3¢41):

e o

8:  Perform policy improvement:

9: t=t+1
10: end loop

@ What are the beneﬂts to improving the po||cy after each step?
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Convergence Properties of SARSA

Sarsa for finite-state and finite-action MDPs converges to the optimal
action-value, Q(s,a) — q(s, a), under the following conditions:

@ The policy sequence m¢(als) satisfies the condition of GLIE

@ The step-sizes o satisfy the Robbins-Munro sequence such that
[o.¢]
Z ar = o0
t=1
[o¢]
Yol <
t=1
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Recall: Off Policy, Policy Evaluation

@ Given data from following a behavior policy 7w, can we estimate the
value V™ of an alternate policy 757

@ Neat idea: can we learn about other ways to do things different than
what we actually did?

@ Discussed how to do this for Monte Carlo evaluation
@ Used Importance Sampling

@ First see how to do off policy evaluation with TD
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Importance Sampling for Off Policy TD (Policy Evaluation)

@ Recall the Temporal Difference (TD) algorithm which is used to
incremental model-free evaluation of a policy 7. Precisely, given a
state s;, an action a; sampled from mp(s;) and the observed reward r;
and next state s;y1, TD performs the following update:

V7(st) = V™ (st) + a(re + 7V (se41) — V™(st)) (3)

@ Now want to use data generated from following 7, to estimate the
value of different policy me, V™

@ Change TD target r: + v V/(st41) to weight target by single
importance sample ratio

o New update:

7Te(at|5t)

V7 (s:) = V™ (s:) +
( t) ( t) Wb(atlst)

(re + V™ (se41) = V()| (4)
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Importance Sampling for Off Policy TD Cont.

o Off Policy TD Update:

7Te(at|5t)

V7e(s:) = V™ (s:) +
( t) ( t) Wb(atlst)

(re + V™ (se41) = V™(st))| (5)

e Significantly lower variance than MC IS. (Why?)
@ Does mp, need to be the same at each time step?

@ What conditions on 7, and m are needed for off policy TD to
converge to V7e?
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Q-Learning: Learning the Optimal State-Action Value

@ Just saw how to use off policy TD to evaluate any particular policy e

@ Can we estimate the value of the optimal policy 7* without
knowledge of what 7* is?

@ Yes! Q-learning
@ Does not require importance sampling

o Key idea: Maintain state-action @ estimates and use to bootstrap—
use the value of the best future action

@ Recall Sarsa

Q(st, at) < Q(st, ar) + a(re + vQ(St+1,ae+1)) — Q(st, ar))  (6)

Q-learning:

Q(st; ar) < Q(st, ar) + a(re + max Q(st+1, ") — Qlse, ar)) (7)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control 3> Winter 2018 31/ 40



Off-Policy Control Using Q-learning

In the prior slide assumed there was some 7, used to act

7 determines the actual rewards received

Now consider how to improve the behavior policy (policy
improvement)

Let behavior policy mp, be e-greedy with respect to (w.r.t.) current
estimate of the optimal g(s, a)
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Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a € At =0, initial state s; = 59

2: Set 7y, to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ mp(st) // Sample action from policy

5. Observe (rt, St+1)

6:  Update Q given (st, a¢, rt, St+1):

7 Perform policy improvement: set 7, to be e-greedy w.r.t. @
8 t=t+1

9: end loop

@ What conditions are sufficient to ensure that Q-learning with e-greedy
exploration converges to optimal g?
@ What conditions are sufficient to ensure that Q-learning with e-greedy

exploration converges to optimal 7*7
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Maximization Bias®?

Consider single-state MDP (|S| = 1) with 2 actions, and both actions
have 0-mean random rewards, (E(r|a = a;) = E(r|a = a2) = 0).
Then Q(s,a1) = Q(s,a2) = 0= V(s)

Assume there are prior samples of taking action a; and a;

Let Q(s, a1), Q(s, a2) be the finite sample estimate of Q

Assume using an unbiased estimator for Q: e.g.

é(sa a1) = n(s 21) Zn(s o) ri(s, a1)
Let &+ = arg max, Q(s, a) be the greedy policy w.r.t. the estimated Q

o Even though each estimate of the state-action values is unbiased, the

estimate of 7's value V™ can be biased:

39Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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Double Learning

@ The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning
@ Avoid using max of estimates as estimate of max of true values

@ Instead split samples and use to create two independent unbiased
estimates of Q1(s1, a;) and Qx(s1, a;) Va.
o Use one estimate to select max action: a* = arg max, Q1(s1, a)
o Use other estimate to estimate value of a*: Qy(s, a*)
o Yields unbiased estimate: IE(Qx(s, a*)) = Q(s, a*)

@ Why does this yield an unbiased estimate of the max state-action
value?

@ If acting online, can alternate samples used to update @ and @Q»,
using the other to select the action chosen

o Next slides extend to full MDP case (with more than 1 state)
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Double Q-Learning

1. Initialize Qi(s,a) and Qx(s,a),Vs € S,a € At =0, initial state s; = 5

2: loop

3. Select a; using e-greedy 7(s) = arg max, Q1(st, a) + Q2(st, a)
4:  Observe (r¢, Se4+1)

5. if (with 0.5 probability) then

6: Qu(st, ar) < Qu(st; ar) + «

7. else

8: Qa(st, ar) < Qa(st; ar) + «

9: endif

10: t=t+1

11: end loop

o Compared to Q-learning, how does this change the: memory
requirements, computation requirements per step, amount of data
required?
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Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

19,
100% N(-0.1,1)
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Due to the maximization bias, Q-learning spends much more time
selecting suboptimal actions than double Q-learning.
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Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

The value function approximation structure for today closely follows much
of David Silver's Lecture 6. For additional reading please see SB 2018
Sections 9.3, 9.6-9.7. The deep learning slides come almost exclusively
from Ruslan Salakhutdinov's class, and Hugo Larochelle's class (and with
thanks to Zico Kolter also for slide inspiration). The slides in my standard
style format in the deep learning section are my own.
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Last time: Model-Free Co

Last time: how to learn a good policy from experience

So far, have been assuming we can represent the value function or
state-action value function as a vector

e Tabular representation

Many real world problems have enormous state and/or action spaces

Tabular representation is insufficient
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Value Function Approximation (VFA)

@ Represent a (state-action/state) value function with a parameterized
function instead of a table

S (S, w)
S

4(s,a, w)
a.
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Motivation for VFA

@ Don't want to have to explicitly store or learn for every single state a

Dynamics or reward model

Value
State-action value

Policy
@ Want more compact representation that generalizes across state or

states and actions
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Benefits of Generalization

@ Reduce memory needed to store (P,R)/V/Q/x
@ Reduce computation needed to compute (P, R)/V/Q/7
@ Reduce experience needed to find a good P,R/V/Q/7
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Value Function Approximation (VFA)

@ Represent a (state-action/state) value function with a parameterized
function instead of a table

S (S, w)
S

6(57 a, W)
a.

@ Which function approximator?
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Function Approximators

@ Many possible function approximators including

Linear combinations of features
Neural networks

Decision trees

Nearest neighbors

Fourier / wavelet bases

@ In this class we will focus on function approximators that are
differentiable (Why?)
@ Two very popular classes of differentiable function approximators

o Linear feature representations (Today)
o Neural networks (Today and next lecture)
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Review: Gradient Descent

o Consider a function J(w) that is a differentiable function of a
parameter vector w

@ Goal is to find parameter w that minimizes J
@ The gradient of J(w) is
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Value Function Approximation for Policy Evaluation with

an Oracle

@ First consider if could query any state s and an oracle would return
the true value for v™(s)

@ The objective was to find the best approximate representation of v
given a particular parameterized function

™
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Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function v (s) and its approximation V as represented with
a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
J(w) = Ex[(va(S) = 0(S, w))?] (1)
@ Can use gradient descent to find a local minimum
1
Aw = _EO‘ Vw J(W) (2)

@ Stochastic gradient descent (SGD) samples the gradient:

@ Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation Winter 2018



VFA Prediction Without An Oracle

@ Don't actually have access to an oracle to tell true v,(S) for any
state s

@ Now consider how to do value function approximation for prediction /
evaluation / policy evaluation without a model

o Note: policy evaluation without a model is sometimes also called
passive reinforcement learning with value function approximation

e "passive” because not trying to learn the optimal decision policy
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Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)

o Following a fixed policy 7 (or had access to prior data)
o Goal is to estimate V™ and/or Q™

Maintained a look up table to store estimates V™ and/or Q™

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

@ Now: in value function approximation, change the estimate
update step to include fitting the function approximator
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@ Use a feature vector to represent a state
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Linear Value Function Approximation for Prediction With

An Oracle

@ Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

(S, w) =) x(S)w; = x(5) T (w)
j=1

@ Objective function is
J(w) = Ec[(va(S) = 0(S, w))’]
@ Recall weight update is
1
A(w) = 50V J(w) )

e Update is:

@ Update = step-size x prediction error x feature value
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Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return
VTr(St)
@ Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: < S1,G1 >,< S2,Gp >,...,< S1,Gr >
o Susbstituting G¢(S;) for the true v;(S;) when fitting the function
approximator

@ Concretely when using linear VFA for policy evaluation

Aw = oGt — V(St,w)) Vw V(St, w) (5)
= a(Gt — V(St,w))x(St) (6)

@ Note: G; may be a very noisy estimate of true return
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MC Linear Value Function Approximation for Policy

Evaluation

1. Initialize w = 0,Returns(s) = 0 V(s, a), k =1
2: loop
3:  Sample k-th episode (Sk1, ak1, rki, Sk2; - - - Sk,L, ) given T

4: fort=1,...,L, do

5: if First visit to (s) in episode k then
6: Append ZJL; rij to Returns(s;)

7 Update weights

8: end if

9:  end for

100 k=k+1

11: end loop
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Recall: Temporal Difference (TD(0)) Learning with a Look

up Table

Uses bootstrapping and sampling to approximate V™

Updates V™ (s) after each transition (s, a, r,s’):
Vi(s) = V7(s)+a(r+yV7(s") = V7(s)) (7)

Target is r + yV™(s’), a biased estimate of the true value v7(s)

Look up table represents value for each state with a separate table
entry
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

Uses bootstrapping and sampling to approximate true v™
Updates estimate V™ (s) after each transition (s, a, r,s'):

VT(s) = V7(s)+a(r+~yV7(s) - V(s)) (8)

Target is r + yV™(s’), a biased estimate of of the true value v™(s)

In value function approximation, target is r +y9™(s’), a biased and
approximated estimate of of the true value v™(s)

@ 3 forms of approximation:
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

@ In value function approximation, target is r + 07 (s’), a biased and
approximated estimate of of the true value v”(s)

@ Supervised learning on a different set of data pairs:
< S1,n+0"(So,w) >, < So, +0(S3,w) >,
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

@ In value function approximation, target is r + 07 (s’), a biased and
approximated estimate of of the true value v™(s)

@ Supervised learning on a different set of data pairs:
<S,n+ 7\7”(52, W) >. < S5,mn+ 7\7(53, W) >,
@ In linear TD(0)

Aw = afr+~0"(s,w)— 0" (s,w)) Vw V" (s, w) (9)
= a(r+0"(s,w) — 0" (s, w))x(s) (10)
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation?

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value as

MSVE(w) = " d(s)(v"(s) — ¥" (s, w))? (11)

seS

@ where

o d(s): stationary distribution of 7 in the true decision process
o v;w”(s) = x(s)"w, a linear value function approximation

Tsitsiklis and Van Roy. An Analysis of Temporal-Difference Learning with Function
Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation?

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value as

MSVE(w) = " d(s)(v"(s) — i"(s, w))? (12)
seS
@ where

o d(s): stationary distribution of 7 in the true decision process

o 0™(s) = x(s)Tw, a linear value function approximation

@ Monte Carlo policy evaluation with VFA converges to the weights
wyc which has the minimum mean squared error possible:

MSVE(wic) = min D d(s)(vTx(s) — 07 (s,w))>  (13)
seS

2Tsitsiklis and Van Roy. An Analysis of Temporal-Difference Learning with Function
Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation Winter 2018 29 / 48



Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation?

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value as

MSVE(w) = " d(s)(v" * (s) — 0" (s, w))? (14)

seS

@ where

e d(s): stationary distribution of 7 in the true decision process
o U™(s) = x(s)"w, a linear value function approximation

e TD(0) policy evaluation with VFA converges to weights wp which is
within a constant factor of the minimum mean squared error possible:

MSVE(wrp) — 1% min S~ d(s)(vT * (s) — 07(s, w))? (15

3ibed.
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Summary: Convergence Guarantees for Linear Value

Function Approximation for Policy Evaluation*

@ Monte Carlo policy evaluation with VFA converges to the weights
wyc which has the minimum mean squared error possible:

MSVE(wpc) = min D d(s)(vTx(s) — 07 (s,w))>  (16)
seS

e TD(0) policy evaluation with VFA converges to weights wtp which is
within a constant factor of the minimum mean squared error possible:

MSVE(wrp) = % min 3" d(s)(v" # (s) — 07(s,w)?  (17)

@ Check your understanding: if the VFA is a tabular representation (one
feature for each state), what is the MSVE for MC and TD?

*ibed.
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Convergence Rates for Linear Value Function

Approximation for Policy Evaluation

@ Does TD or MC converge faster to a fixed point?
e Not (to my knowledge) definitively understood

@ Practically TD learning often converges faster to its fixed value
function approximation point
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Control using Value Function Approximation

@ Use value function approximation to represent state-action values
§7(s.a,w) ~ g~
@ Interleave

e Approximate policy evaluation using value function approximation
o Perform e-greedy policy improvement
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Action-Value Function Approximation with an Oracle

o (s, a,w) ~ q"
@ Minimize the mean-squared error between the true action-value
function ¢ (s, a) and the approximate action-value function:

J(w) =Ex[(¢7(s,a) — G (s, a, w))] (18)
@ Use stochastic gradient descent to find a local minimum

3 TwIw) = Bl(7(5.2) — 4"(5.0,w)) Tu §°(s. 2, w)[19)

Aw) = o J(w) (20)

@ Stochastic gradient descent (SGD) samples the gradient
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Linear State Action Value Function Approximation with an

Oracle

@ Use features to represent both the state and action

X1(57 a)
x(s,a) = | 252 (21)
Xn(s, a)
@ Represent state-action value function with a weighted linear
combination of features
n
i(s,a,w) = x(s,a)Tw = 3 xi(s, a)w; (22)

Jj=1

@ Stochastic gradient descent update:

Vwd(w) = VuwEr[(q7(s, ) — §7(s, 2, w))’] (23)
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Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target

Aw = a(Gt - d(stv at, W)) Vw é\l(sh at, W) (24)

@ For SARSA instead use a TD target r + y4(s’, &', w) which leverages
the current function approximation value

Aw = a(r +74(s, o, w) — 4(s,3,w)) Vw 4(s. 2, W) (25)
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Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target
Aw = a(Gt - CAI(Sh dt, W)) Vw CAI(Sh at, W) (26)

@ For SARSA instead use a TD target r + v§(s’, ', w) which leverages
the current function approximation value

Aw = a(r +74(s o, w) — 4(s,3,w)) Vw d(s.a,w)  (27)

e For Q-learning instead use a TD target r + v max, §(s’, &', w) which
leverages the max of the current function approximation value

Aw = a(r +ymax §(s', &', w) — 4(s, 3, w)) Vw (s, 3, w)  (28)
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Convergence of TD Methods with VFA

@ TD with value function approximation is not following the gradient of
an objective function

o Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion
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Lecture 6: CNNs and Deep Q Learning °

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

2With many slides for DQN from David Silver and Ruslan Salakhutdinov and some
vision slides from Gianni Di Caro and images from Stanford CS5231n,
http://cs231n.github.io/convolutional-networks/
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Class Structure

@ Last time: Value function approximation and deep learning
@ This time: Convolutional neural networks and deep RL

o Next time: Imitation learning
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Generalization

@ Want to be able use reinforcement learning to tackle self-driving cars,
Atari, consumer marketing, healthcare, education

@ Most of these domains have enormous state and/or action spaces

@ Requires representations (of models / state-action values / values /
policies) that can generalize across states and/or actions

@ Represent a (state-action/state) value function with a parameterized
function instead of a table

S v(S,w)
S

G(s,a, w)
a.
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Recall: The Benefit of Deep Neural Network Approximators

@ Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state

@ Linear VFA often work well given the right set of features

@ But can require carefully hand designing that feature set

@ An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features

@ Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can't typically scale well to enormous spaces and datasets

o Alternative: use deep neural networks

o Uses distributed representations instead of local representations

e Universal function approximator

e Can potentially need exponentially less nodes/parameters (compared to
a shallow net) to represent the same function

@ Last time discussed basic feedforward deep networks
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Generalization

@ Using function approximation to help scale up to making decisions in
really large domains
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Deep Reinforcement Learning

@ Use deep neural networks to represent

o Value function
e Policy
e Model

@ Optimize loss function by stochastic gradient descent (SGD)

Emma Brunskill (C5234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning * Winter 2018 37/ 67



Deep Q-Networks (DQNs)

@ Represent value function by Q-network with weights w

G(s,a,w) ~q(s, a) (1)
S v(S,w)
S
4(s,a, w)
a.
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Recall: Action-Value Function Approximation with an

Oracle

o §7(s,a,w) ~ q"
@ Minimize the mean-squared error between the true action-value
function g™ (s, a) and the approximate action-value function:

J(w) = Ex[(q"(s,a) — 4" (s, a,w))?] (2)
@ Use stochastic gradient descent to find a local minimum

W Iw) = Bl (s.2) - 67 (s.2w) Vi 475, 2.0 (3)

Aw) = —3a 7y I(w) *)

@ Stochastic gradient descent (SGD) samples the gradient
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Recall: Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target

Aw = a(Gt - CAI(SH at, W)) Vw CAI(SU dt, W) (5)

@ For SARSA instead use a TD target r + v§(s’, a’, w) which leverages
the current function approximation value

Aw = a(r +~4(s’,a',w) — §(s,a,w)) Vw G(s, a, w) (6)

e For Q-learning instead use a TD target r + v max, §(s’, ', w) which
leverages the max of the current function approximation value

Aw = a(r+7 max G(s',d,w) —4(s,a,w)) Vw 4(s,a,w)  (7)
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Using these ideas to do Deep RL in Atari

state /" > I W ) action
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units

4xB4x84

[T

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Mnih et.al., Nature, 2014

@ Network architecture and hyperparameters fixed across all games
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End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer
16 8x8 filters
= %

DQN source code:
sites.google.com/a/deepmind.com/dgn/

Mnih et.al., Nature, 2014

@ Network architecture and hyperparameters fixed across all games
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Q-Learning with Value Function Approximation

Minimize MSE loss by stochastic gradient descent
Converges to optimal g using table lookup representation
But Q-learning with VFA can diverge

Two of the issues causing problems:
e Correlations between samples
o Non-stationary targets
Deep Q-learning (DQN) addresses both of these challenges by

e Experience replay
o Fixed Q-targets

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning &4 Winter 2018



DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D
from prior experience

51,491, 12,52
/
52,d2,13,53 — s,a,n,s

53,43, 14,54

sl’a at) rt—i—la st+1

@ To perform experience replay, repeat the following:

o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v maxy (s, @', w)
o Use stochastic gradient descent to update the network weights

Aw = a(r +ymaxd(s', @, w) — 4(s, 3, w))Vui(s, 2, w)  (8)
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DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 2,52

52,4d2,13,53

S3,4d3, 14,54

sta ata rt—i—la st+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v max, §(s’,a’, w)
o Use stochastic gradient descent to update the network weights

Aw = a(r + I’TI?X C?(Slv alv W) - a(sv a, w))Vwa(s, a, W) (9)

@ Can treat the target as a scalar, but the weights will get updated on
the next round, changing the target value
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DQNs: Fixed Q-Targets

@ To help improve stability, fix the target network weights used in the
target calculation for multiple updates

@ Use a different set of weights to compute target than is being updated

@ Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated

@ Slight change to computation of target value:

o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v maxy G(s',a’, w™)
o Use stochastic gradient descent to update the network weights

Aw = a(r +ymaxd(s',a', w™) — 4(s,a,w))Vid(s,a,w)  (10)
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s¢, at, re+1, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—
Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important item Why? Beyond helping with
correlation between samples, what does replaying do?
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@ Success in Atari has lead to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)

e Double DQN
o Dueling DQN (best paper ICML 2016)
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Double DQN

@ Recall maximization bias challenge

e Max of the estimated state-action values can be a biased estimate of
the max

@ Double Q-learning
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Recall: Double Q-Learning

1: Initialize Qi(s,a) and @x(s,a),Vs € S,a € At =0, initial state s; = sg
2: loop

3:  Select a; using e-greedy 7(s) = arg max, Q1(st, a) + Qa2(st, )

4:  Observe (rt, St+1)

5. if (with 0.5 probability) then

Q1(st,ar) + Qu(se,ar)+a(re+Qi(sey1,arg max Qa(5e11,2'))—Qu(se, ar))
(11)

6: else

Qx(st; ac) = Qa(st, at)+aritQa(se41, arg max Qu(se1, )= Qa(sts ar))

7. end if
8: t=t+1
9: end loop
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Double DQN

o Extend this idea to DQN
@ Current Q-network w is used to select actions
@ Older Q-network w™ is used to evaluate actions

Action evaluation: w—

-~

Aw = a(r + ’y;“](arg max §(s’,a,w),w™) —
a/

n

(s,a,w)) (12)

Action selection: w
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Double DQN

Convglution Convglution Fully cgnnected Fully covnnemed
No input
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Value & Advantage Function

@ Intuition: Features need to pay attention to determine value may be
different than those need to determine action benefit

o Eg.
e Game score may be relevant to predicting V/(s)
e But not necessarily in indicating relative action values

e Advantage function (Baird 1993)

A" (s,a) = Q" (s,a) — V™ (s)
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Dueling DQN

DQN Q(s,al)
@ Q(s,a2)
Dueling DQN gV
. Q(s,al)
S S
A(s,al)
A(s,a2)

Wang et.al., ICML, 2016
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|dentifiability

@ Advantage function
A" (s,a) = Q" (s,a) — V™ (s)

o |dentifiable?
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|dentifiability

@ Advantage function
A" (s,a) = Q" (s,a) — V™(s)

@ Unidentifiable
@ Option 1: Force A(s,a) = 0 if a is action taken

4(s, a w) = (s; w) + <A(s, a; w) — max A(s, w)>

@ Option 2: Use mean as baseline (more stable)

~ ~ 1 /
4(s,a;w) =V(s;w) + (A(s, aw)— A ZA(S, a’; w)>

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning Winter 2018 61 / 67



V.S. DDQN with Prioritized Replay

1097.02%
Space lnvadcrs 457.93%
nix 281.56%

Frostbite

Video Pinball
Chopper Con\man‘d
Bav\k Helsl

River Raid
Defender

Name 1‘m< Game
xx0n

CPI’\U ede

Beam Rider
midar

Kung-Fu Master
utankham

Crazy (I\mber

Battle ZO"E
Atlantis

Enduro

Krull

Road Runner

Pitfall!

oxing Scoresgen — SCOregageine

Demon Attack

msh-ng Demy

ng
vate Eye
Monbezumars Re;sr\qe

Max{SCOreyymans SCOMeRacetine } — SCOIRandom

Breakou
Asteroids
Alien

Gravitar
Ice Hockey
Time Pilot
aris
Surround

Seaquest

iing

Double Dunk

James Bond
Kangari
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Practical Tips for DQN on Atari (from J. Schulman)

@ DQN is more reliable on some Atari tasks than others. Pong is a
reliable task: if it doesn't achieve good scores, something is wrong

o Large replay buffers improve robustness of DQN, and memory
efficiency is key

e Use uint8 images, don't duplicate data

o Be patient. DQN converges slowly—for ATARI it's often necessary to
wait for 10-40M frames (couple of hours to a day of training on GPU)
to see results significantly better than random policy

@ In our Stanford class: Debug implementation on small test
environment

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning Winter 2018 63 / 67



Practical Tips for DQN on Atari (from J. Schulman) cont.

@ Try Huber loss on Bellman error
2

L(x) = {X2 Tlx <9

o|x| — % otherwise
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Practical Tips for DQN on Atari (from J. Schulman) cont.

@ Try Huber loss on Bellman error
2

% if <
L(X):{2 2 I‘X|76

o|x| — % otherwise

@ Consider trying Double DQN—significant improvement from 3-line
change in Tensorflow.

@ To test out your data pre-processing, try your own skills at navigating
the environment based on processed frames

@ Always run at least two different seeds when experimenting

@ Learning rate scheduling is beneficial. Try high learning rates in initial
exploration period

@ Try non-standard exploration schedules
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