
Today: Model-free Control

Generalized policy improvement

Importance of exploration

Monte Carlo control

Model-free control with temporal difference (SARSA, Q-learning)

Maximization bias
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Model-free Control Examples

Many applications can be modeled as a MDP: Backgammon, Go,
Robot locomation, Helicopter flight, Robocup soccer, Autonomous
driving, Customer ad selection, Invasive species management, Patient
treatment

For many of these and other problems either:

MDP model is unknown but can be sampled
MDP model is known but it is computationally infeasible to use
directly, except through sampling
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On and Off-Policy Learning

On-policy learning

Direct experience
Learn to estimate and evaluate a policy from experience obtained from
following that policy

Off-policy learning

Learn to estimate and evaluate a policy using experience gathered from
following a different policy
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Recall Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute V π

Policy improvement: update π

π′(s) = arg max
a

R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V π(s ′) = arg max
a

Qπ(s, a)

(1)

Now want to do the above two steps without access to the true
dynamics and reward models

Last lecture introduced methods for model-free policy evaluation
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Model-free Generalized Policy Improvement

Given an estimate Qπi (s, a) ∀s, a
Update new policy

πi+1(s) = arg max
a

Qπi (s, a) (2)
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Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

May need to modify policy evaluation:

If π is deterministic, can’t compute Q(s, a) for any a 6= π(s)

How to interleave policy evaluation and improvement?

Policy improvement is now using an estimated Q
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Policy Evaluation with Exploration

Want to compute a model-free estimate of Qπ

In general seems subtle

Need to try all (s, a) pairs but then follow π
Want to ensure resulting estimate Qπ is good enough so that policy
improvement is a monotonic operator

For certain classes of policies can ensure all (s,a) pairs are tried such
that asymptotically Qπ converges to the true value
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ε-greedy Policies

Simple idea to balance exploration and exploitation

Let |A| be the number of actions

Then an ε-greedy policy w.r.t. a state-action value Qπ(s, a) is
π(a|s) =
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Monotonic19 ε-greedy Policy Improvement

Theorem

For any ε-greedy policy πi , the ε-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V π

Qπ(s, πi+1(s)) =
∑
a∈A

πi+1(a|s)Q
πi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)

Therefore V πi+1 ≥ V pi (from the policy improvement theorem)
19The theorem assumes that Qπi has been computed exactly.
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Monotonic21 ε-greedy Policy Improvement

Theorem

For any ε-greedy policy πi , the ε-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V π

Qπ(s, πi+1(s)) =
∑
a∈A

πi+1(a|s)Q
πi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)
1− ε
1− ε

= (ε/|A|)
∑
a

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)
∑
a

πi (a|s)− ε
|A|

1− ε

≥
ε

|A|

∑
a∈A

Qπi (s, a) + (1− ε)
∑
a

πi (a|s)− ε
|A|

1− ε
Qπi (s, a)

=
∑
a

πi (a|s)Q
πi (s, a) = Vπi (s)

Therefore V πi+1 ≥ V pi (from the policy improvement theorem)

21The theorem assumes that Qπi has been computed exactly.
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

lim
i→∞

Ni (s, a)→∞

Behavior policy converges to greedy policy

A simple GLIE strategy is ε-greedy where ε is reduced to 0 with the
following rate: εi = 1/i
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Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s, a) = 0,Returns(s, a) = 0 ∀(s, a), Set ε = 1, k = 1
2: πk = ε-greedy(Q) // Create initial ε-greedy policy
3: loop
4: Sample k-th episode (sk1, ak1, rk1, sk2, . . . , sT ) given πk
5: for t = 1, . . . ,T do
6: if First visit to (s, a) in episode k then
7: Append

∑T
j=t rkj to Returns(st , at)

8: Q(st , at) = average(Returns(st , at))
9: end if

10: end for
11: k = k + 1, ε = 1/k
12: πk = ε-greedy(Qπ) // Policy improvement
13: end loop
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GLIE Monte-Carlo Control

Theorem

GLIE Monte-Carlo control converges to the optimal state-action valuea

function Q(s, a)→ q(s, a)

av(s) and q(s, a) without any additional subscripts are used to indicate the
optimal state and state-action value function, respectively.
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Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

What about TD methods?
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Model-free Policy Iteration with TD Methods

Use temporal difference methods for policy evaluation step

Initialize policy π

Repeat:

Policy evaluation: compute Qπ using temporal difference updating
with ε-greedy policy
Policy improvement: Same as Monte carlo policy improvement, set π
to ε-greedy (Qπ)
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General Form of SARSA Algorithm

1: Set initial ε-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Update Q given (st , at , rt , st+1, at+1):

8: Perform policy improvement:

9: t = t + 1
10: end loop

What are the benefits to improving the policy after each step?
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Convergence Properties of SARSA

Theorem

Sarsa for finite-state and finite-action MDPs converges to the optimal
action-value, Q(s, a)→ q(s, a), under the following conditions:

1 The policy sequence πt(a|s) satisfies the condition of GLIE

2 The step-sizes αt satisfy the Robbins-Munro sequence such that

∞∑
t=1

αt = ∞

∞∑
t=1

α2
t < ∞
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Recall: Off Policy, Policy Evaluation

Given data from following a behavior policy πb can we estimate the
value V πe of an alternate policy πb?

Neat idea: can we learn about other ways to do things different than
what we actually did?

Discussed how to do this for Monte Carlo evaluation

Used Importance Sampling

First see how to do off policy evaluation with TD
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Importance Sampling for Off Policy TD (Policy Evaluation)

Recall the Temporal Difference (TD) algorithm which is used to
incremental model-free evaluation of a policy πb. Precisely, given a
state st , an action at sampled from πb(st) and the observed reward rt
and next state st+1, TD performs the following update:

V πb(st) = V πb(st) + α(rt + γV πb(st+1)− V πb(st)) (3)

Now want to use data generated from following πb to estimate the
value of different policy πe , V πe

Change TD target rt + γV (st+1) to weight target by single
importance sample ratio

New update:

V πe (st) = V πe (st) + α

[
πe(at |st)
πb(at |st)

(rt + γV πe (st+1)− V πe (st))

]
(4)
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Importance Sampling for Off Policy TD Cont.

Off Policy TD Update:

V πe (st) = V πe (st) + α

[
πe(at |st)
πb(at |st)

(rt + γV πe (st+1)− V πe (st))

]
(5)

Significantly lower variance than MC IS. (Why?)

Does πb need to be the same at each time step?

What conditions on πb and πe are needed for off policy TD to
converge to V πe ?
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Q-Learning: Learning the Optimal State-Action Value

Just saw how to use off policy TD to evaluate any particular policy πe

Can we estimate the value of the optimal policy π∗ without
knowledge of what π∗ is?

Yes! Q-learning

Does not require importance sampling

Key idea: Maintain state-action Q estimates and use to bootstrap–
use the value of the best future action

Recall Sarsa

Q(st , at)← Q(st , at) + α((rt + γQ(st+1, at+1))− Q(st , at)) (6)

Q-learning:

Q(st , at)← Q(st , at) + α((rt + γmax
a′

Q(st+1, a
′))− Q(st , at)) (7)
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Off-Policy Control Using Q-learning

In the prior slide assumed there was some πb used to act

πb determines the actual rewards received

Now consider how to improve the behavior policy (policy
improvement)

Let behavior policy πb be ε-greedy with respect to (w.r.t.) current
estimate of the optimal q(s, a)
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Q-Learning with ε-greedy Exploration

1: Initialize Q(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: Set πb to be ε-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Update Q given (st , at , rt , st+1):

7: Perform policy improvement: set πb to be ε-greedy w.r.t. Q
8: t = t + 1
9: end loop

What conditions are sufficient to ensure that Q-learning with ε-greedy
exploration converges to optimal q?
What conditions are sufficient to ensure that Q-learning with ε-greedy
exploration converges to optimal π∗?
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Maximization Bias39

Consider single-state MDP (|S | = 1) with 2 actions, and both actions
have 0-mean random rewards, (E(r |a = a1) = E(r |a = a2) = 0).

Then Q(s, a1) = Q(s, a2) = 0 = V (s)

Assume there are prior samples of taking action a1 and a2
Let Q̂(s, a1), Q̂(s, a2) be the finite sample estimate of Q

Assume using an unbiased estimator for Q: e.g.

Q̂(s, a1) = 1
n(s,a1)

∑n(s,a1)
i=1 ri (s, a1)

Let π̂ = arg maxa Q̂(s, a) be the greedy policy w.r.t. the estimated Q̂

Even though each estimate of the state-action values is unbiased, the
estimate of π̂’s value V̂ π̂ can be biased:

39Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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Double Learning

The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning

Avoid using max of estimates as estimate of max of true values

Instead split samples and use to create two independent unbiased
estimates of Q1(s1, ai ) and Q2(s1, ai ) ∀a.

Use one estimate to select max action: a∗ = arg maxa Q1(s1, a)
Use other estimate to estimate value of a∗: Q2(s, a∗)
Yields unbiased estimate: E(Q2(s, a∗)) = Q(s, a∗)

Why does this yield an unbiased estimate of the max state-action
value?

If acting online, can alternate samples used to update Q1 and Q2,
using the other to select the action chosen

Next slides extend to full MDP case (with more than 1 state)
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Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then
6: Q1(st , at)← Q1(st , at) + α
7: else
8: Q2(st , at)← Q2(st , at) + α
9: end if

10: t = t + 1
11: end loop

Compared to Q-learning, how does this change the: memory
requirements, computation requirements per step, amount of data
required?
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Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

Due to the maximization bias, Q-learning spends much more time
selecting suboptimal actions than double Q-learning.
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Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

The value function approximation structure for today closely follows much
of David Silver’s Lecture 6. For additional reading please see SB 2018
Sections 9.3, 9.6-9.7. The deep learning slides come almost exclusively
from Ruslan Salakhutdinov’s class, and Hugo Larochelle’s class (and with
thanks to Zico Kolter also for slide inspiration). The slides in my standard
style format in the deep learning section are my own.
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Last time: Model-Free Control

Last time: how to learn a good policy from experience

So far, have been assuming we can represent the value function or
state-action value function as a vector

Tabular representation

Many real world problems have enormous state and/or action spaces

Tabular representation is insu�cient
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Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized
function instead of a table
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Motivation for VFA

Don’t want to have to explicitly store or learn for every single state a
Dynamics or reward model
Value
State-action value
Policy

Want more compact representation that generalizes across state or
states and actions
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Benefits of Generalization

Reduce memory needed to store (P ,R)/V /Q/⇡

Reduce computation needed to compute (P ,R)/V /Q/⇡

Reduce experience needed to find a good P ,R/V /Q/⇡
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Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized
function instead of a table

Which function approximator?

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 5: Value Function Approximation Winter 2018 12 / 48



Function Approximators

Many possible function approximators including
Linear combinations of features
Neural networks
Decision trees
Nearest neighbors
Fourier / wavelet bases

In this class we will focus on function approximators that are
di↵erentiable (Why?)

Two very popular classes of di↵erentiable function approximators
Linear feature representations (Today)
Neural networks (Today and next lecture)
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Review: Gradient Descent

Consider a function J(w) that is a di↵erentiable function of a
parameter vector w

Goal is to find parameter w that minimizes J

The gradient of J(w) is
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Value Function Approximation for Policy Evaluation with
an Oracle

First consider if could query any state s and an oracle would return
the true value for v⇡(s)

The objective was to find the best approximate representation of v⇡

given a particular parameterized function
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Stochastic Gradient Descent

Goal: Find the parameter vector w that minimizes the loss between a
true value function v⇡(s) and its approximation v̂ as represented with
a particular function class parameterized by w .

Generally use mean squared error and define the loss as

J(w) = ⇡[(v⇡(S)� v̂(S ,w))2] (1)

Can use gradient descent to find a local minimum

�w = �1

2
↵5w J(w) (2)

Stochastic gradient descent (SGD) samples the gradient:

Expected SGD is the same as the full gradient update
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VFA Prediction Without An Oracle

Don’t actually have access to an oracle to tell true v⇡(S) for any
state s

Now consider how to do value function approximation for prediction /
evaluation / policy evaluation without a model

Note: policy evaluation without a model is sometimes also called
passive reinforcement learning with value function approximation

”passive” because not trying to learn the optimal decision policy
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Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)
Following a fixed policy ⇡ (or had access to prior data)
Goal is to estimate V

⇡ and/or Q⇡

Maintained a look up table to store estimates V ⇡ and/or Q⇡

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

Now: in value function approximation, change the estimate
update step to include fitting the function approximator
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Feature Vectors

Use a feature vector to represent a state

x(s) =

0

BB@

x

1

(s)
x

2

(s)
. . .
xn(s)

1

CCA (3)
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Linear Value Function Approximation for Prediction With
An Oracle

Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

v̂(S ,w) =
nX

j=1

xj(S)wj = x(S)T (w)

Objective function is

J(w) = ⇡[(v⇡(S)� v̂(S ,w))2]

Recall weight update is

�(w) = �1

2
↵5w J(w) (4)

Update is:

Update = step-size ⇥ prediction error ⇥ feature value
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Monte Carlo Value Function Approximation

Return Gt is an unbiased but noisy sample of the true expected return
v⇡(St)

Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: < S

1

,G
1

>,< S

2

,G
2

>, . . . , < ST ,GT >
Susbstituting Gt(St) for the true v⇡(St) when fitting the function
approximator

Concretely when using linear VFA for policy evaluation

�w = ↵(Gt � v̂(St ,w))5w v̂(St ,w) (5)

= ↵(Gt � v̂(St ,w))x(St) (6)

Note: Gt may be a very noisy estimate of true return
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MC Linear Value Function Approximation for Policy
Evaluation

1: Initialize w = 0,Returns(s) = 0 8(s, a), k = 1
2: loop
3: Sample k-th episode (sk1, ak1, rk1, sk2, . . . , sk,Lk ) given ⇡
4: for t = 1, . . . , Lk do
5: if First visit to (s) in episode k then
6: Append

PLk
j=t rkj to Returns(st)

7: Update weights

8: end if
9: end for

10: k = k + 1
11: end loop
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Recall: Temporal Di↵erence (TD(0)) Learning with a Look
up Table

Uses bootstrapping and sampling to approximate V

⇡

Updates V ⇡(s) after each transition (s, a, r , s 0):

V

⇡(s) = V

⇡(s) + ↵(r + �V ⇡(s 0)� V

⇡(s)) (7)

Target is r + �V ⇡(s 0), a biased estimate of the true value v

⇡(s)

Look up table represents value for each state with a separate table
entry
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Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

Uses bootstrapping and sampling to approximate true v

⇡

Updates estimate V

⇡(s) after each transition (s, a, r , s 0):

V

⇡(s) = V

⇡(s) + ↵(r + �V ⇡(s 0)� V

⇡(s)) (8)

Target is r + �V ⇡(s 0), a biased estimate of of the true value v

⇡(s)

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

3 forms of approximation:
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Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

Supervised learning on a di↵erent set of data pairs:
< S

1

, r
1

+ �v̂⇡(S
2

,w) >,< S

2

, r
2

+ �v̂(S
3

,w) >, . . .
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Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

Supervised learning on a di↵erent set of data pairs:
< S

1

, r
1

+ �v̂⇡(S
2

,w) >,< S

2

, r
2

+ �v̂(S
3

,w) >, . . .

In linear TD(0)

�w = ↵(r + �v̂⇡(s 0,w)� v̂

⇡(s,w))5w v̂

⇡(s,w) (9)

= ↵(r + �v̂⇡(s 0,w)� v̂

⇡(s,w))x(s) (10)
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Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation1

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡(s)� v̂⇡(s,w))2 (11)

where
d(s): stationary distribution of ⇡ in the true decision process
ˆv ,w⇡(s) = x(s)Tw , a linear value function approximation

1

Tsitsiklis and Van Roy. An Analysis of Temporal-Di↵erence Learning with Function

Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf
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Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation2

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡(s)� v̂⇡(s,w))2 (12)

where
d(s): stationary distribution of ⇡ in the true decision process
v̂

⇡(s) = x(s)Tw , a linear value function approximation

Monte Carlo policy evaluation with VFA converges to the weights
wMC which has the minimum mean squared error possible:

MSVE (wMC ) = min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (13)

2

Tsitsiklis and Van Roy. An Analysis of Temporal-Di↵erence Learning with Function

Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 5: Value Function Approximation Winter 2018 29 / 48



Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation3

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡ ⇤ (s)� v̂⇡(s,w))2 (14)

where
d(s): stationary distribution of ⇡ in the true decision process
v̂

⇡(s) = x(s)Tw , a linear value function approximation

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the minimum mean squared error possible:

MSVE (wTD) =
1

1� �
min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (15)

3

ibed.
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Summary: Convergence Guarantees for Linear Value
Function Approximation for Policy Evaluation4

Monte Carlo policy evaluation with VFA converges to the weights
wMC which has the minimum mean squared error possible:

MSVE (wMC ) = min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (16)

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the minimum mean squared error possible:

MSVE (wTD) =
1

1� �
min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (17)

Check your understanding: if the VFA is a tabular representation (one
feature for each state), what is the MSVE for MC and TD?

4

ibed.
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Convergence Rates for Linear Value Function
Approximation for Policy Evaluation

Does TD or MC converge faster to a fixed point?

Not (to my knowledge) definitively understood

Practically TD learning often converges faster to its fixed value
function approximation point
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Control using Value Function Approximation

Use value function approximation to represent state-action values
q̂

⇡(s, a,w) ⇡ q

⇡

Interleave
Approximate policy evaluation using value function approximation
Perform ✏-greedy policy improvement
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Action-Value Function Approximation with an Oracle

q̂

⇡(s, a,w) ⇡ q

⇡

Minimize the mean-squared error between the true action-value
function q

⇡(s, a) and the approximate action-value function:

J(w) = ⇡[(q
⇡(s, a)� q̂

⇡(s, a,w))2] (18)

Use stochastic gradient descent to find a local minimum

�1

2
5W J(w) = [(q⇡(s, a)� q̂

⇡(s, a,w))5w q̂

⇡(s, a,w)](19)

�(w) = �1

2
↵5w J(w) (20)

Stochastic gradient descent (SGD) samples the gradient
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Linear State Action Value Function Approximation with an
Oracle

Use features to represent both the state and action

x(s, a) =

0

BB@

x

1

(s, a)
x

2

(s, a)
. . .

xn(s, a)

1

CCA (21)

Represent state-action value function with a weighted linear
combination of features

q̂(s, a,w) = x(s, a)Tw =
nX

j=1

xj(s, a)wj (22)

Stochastic gradient descent update:

5wJ(w) = 5w ⇡[(q
⇡(s, a)� q̂

⇡(s, a,w))2] (23)
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Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

�w = ↵(Gt � q̂(st , at ,w))5w q̂(st , at ,w) (24)

For SARSA instead use a TD target r + �q̂(s 0, a0,w) which leverages
the current function approximation value

�w = ↵(r + �q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (25)
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Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

�w = ↵(Gt � q̂(st , at ,w))5w q̂(st , at ,w) (26)

For SARSA instead use a TD target r + �q̂(s 0, a0,w) which leverages
the current function approximation value

�w = ↵(r + �q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (27)

For Q-learning instead use a TD target r + �maxa q̂(s 0, a0,w) which
leverages the max of the current function approximation value

�w = ↵(r + �max
a0

q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (28)
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Convergence of TD Methods with VFA

TD with value function approximation is not following the gradient of
an objective function

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion
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vision slides from Gianni Di Caro and images from Stanford CS231n,
http://cs231n.github.io/convolutional-networks/
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Class Structure

Last time: Value function approximation and deep learning

This time: Convolutional neural networks and deep RL

Next time: Imitation learning
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Generalization

Want to be able use reinforcement learning to tackle self-driving cars,
Atari, consumer marketing, healthcare, education

Most of these domains have enormous state and/or action spaces

Requires representations (of models / state-action values / values /
policies) that can generalize across states and/or actions

Represent a (state-action/state) value function with a parameterized
function instead of a table
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Recall: The Benefit of Deep Neural Network Approximators

Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state
Linear VFA often work well given the right set of features
But can require carefully hand designing that feature set
An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features
Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can’t typically scale well to enormous spaces and datasets
Alternative: use deep neural networks

Uses distributed representations instead of local representations
Universal function approximator
Can potentially need exponentially less nodes/parameters (compared to
a shallow net) to represent the same function

Last time discussed basic feedforward deep networks
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Generalization

Using function approximation to help scale up to making decisions in
really large domains
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Deep Reinforcement Learning

Use deep neural networks to represent

Value function
Policy
Model

Optimize loss function by stochastic gradient descent (SGD)
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Deep Q-Networks (DQNs)

Represent value function by Q-network with weights w

q̂(s, a,w) ≈ q(s, a) (1)
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Recall: Action-Value Function Approximation with an
Oracle

q̂π(s, a,w) ≈ qπ

Minimize the mean-squared error between the true action-value
function qπ(s, a) and the approximate action-value function:

J(w) = Eπ[(qπ(s, a)− q̂π(s, a,w))2] (2)

Use stochastic gradient descent to find a local minimum

−1

2
5W J(w) = E [(qπ(s, a)− q̂π(s, a,w))5w q̂π(s, a,w)] (3)

∆(w) = −1

2
α5w J(w) (4)

Stochastic gradient descent (SGD) samples the gradient
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Recall: Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − q̂(st , at ,w))5w q̂(st , at ,w) (5)

For SARSA instead use a TD target r + γq̂(s ′, a′,w) which leverages
the current function approximation value

∆w = α(r + γq̂(s ′, a′,w)− q̂(s, a,w))5w q̂(s, a,w) (6)

For Q-learning instead use a TD target r + γmaxa q̂(s ′, a′,w) which
leverages the max of the current function approximation value

∆w = α(r + γmax
a′

q̂(s ′, a′,w)− q̂(s, a,w))5w q̂(s, a,w) (7)
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Using these ideas to do Deep RL in Atari
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
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Q-Learning with Value Function Approximation

Minimize MSE loss by stochastic gradient descent

Converges to optimal q using table lookup representation

But Q-learning with VFA can diverge

Two of the issues causing problems:

Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses both of these challenges by

Experience replay
Fixed Q-targets
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DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D
from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ q̂(s ′, a′,w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

q̂(s ′, a′,w)− q̂(s, a,w))∇w q̂(s, a,w) (8)
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DQNs: Experience Replay

To help remove correlations, store dataset D from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ q̂(s ′, a′,w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

q̂(s ′, a′,w)− q̂(s, a,w))∇w q̂(s, a,w) (9)

Can treat the target as a scalar, but the weights will get updated on
the next round, changing the target value
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DQNs: Fixed Q-Targets

To help improve stability, fix the target network weights used in the
target calculation for multiple updates

Use a different set of weights to compute target than is being updated

Let parameters w− be the set of weights used in the target, and w
be the weights that are being updated

Slight change to computation of target value:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ q̂(s ′, a′,w−)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

q̂(s ′, a′,w−)− q̂(s, a,w))∇w q̂(s, a,w) (10)
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQN Results in Atari
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317

Enduro 62 29 141 831 1006

River Raid 2345 1453 2868 4102 7447

Seaquest 656 275 1003 823 2894

Space
Invaders

301 302 373 826 1089

Replay is hugely important item Why? Beyond helping with
correlation between samples, what does replaying do?
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Deep RL

Success in Atari has lead to huge excitement in using deep neural
networks to do value function approximation in RL

Some immediate improvements (many others!)

Double DQN
Dueling DQN (best paper ICML 2016)
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Double DQN

Recall maximization bias challenge

Max of the estimated state-action values can be a biased estimate of
the max

Double Q-learning
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Recall: Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then

Q1(st , at)← Q1(st , at)+α(rt+Q1(st+1, arg max
a′

Q2(st+1, a
′))−Q1(st , at))

(11)

6: else

Q2(st , at)← Q2(st , at)+α(rt+Q2(st+1, arg max
a′

Q1(st+1, a
′))−Q2(st , at))

7: end if
8: t = t + 1
9: end loop

This was using a lookup table representation for the state-action value
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Double DQN

Extend this idea to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
q̂(arg max

a′
q̂(s ′, a′,w)︸ ︷︷ ︸

Action selection: w

,w−)−q̂(s, a,w)) (12)
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Double DQN
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Double DQN

Figure: van Hasselt, Guez, Silver, 2015
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Value & Advantage Function

Intuition: Features need to pay attention to determine value may be
different than those need to determine action benefit

E.g.

Game score may be relevant to predicting V (s)
But not necessarily in indicating relative action values

Advantage function (Baird 1993)

Aπ(s, a) = Qπ(s, a)− V π(s)
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Dueling DQN
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Identifiability

Advantage function

Aπ(s, a) = Qπ(s, a)− V π(s)

Identifiable?
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Identifiability

Advantage function

Aπ(s, a) = Qπ(s, a)− V π(s)

Unidentifiable

Option 1: Force A(s, a) = 0 if a is action taken

q̂(s, a; w) = v̂(s; w) +

(
A(s, a; w)−max

a′∈A
A(s, a′; w)

)
Option 2: Use mean as baseline (more stable)

q̂(s, a; w) = v̂(s; w) +

(
A(s, a; w)− 1

|A|
∑
a′

A(s, a′; w)

)

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning 64 Winter 2018 61 / 67



V.S. DDQN with Prioritized Replay
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Practical Tips for DQN on Atari (from J. Schulman)

DQN is more reliable on some Atari tasks than others. Pong is a
reliable task: if it doesn’t achieve good scores, something is wrong

Large replay buffers improve robustness of DQN, and memory
efficiency is key

Use uint8 images, don’t duplicate data

Be patient. DQN converges slowly—for ATARI it’s often necessary to
wait for 10-40M frames (couple of hours to a day of training on GPU)
to see results significantly better than random policy

In our Stanford class: Debug implementation on small test
environment
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Practical Tips for DQN on Atari (from J. Schulman) cont.

Try Huber loss on Bellman error

L(x) =

{
x2

2 if |x | ≤ δ
δ|x | − δ2

2 otherwise
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Practical Tips for DQN on Atari (from J. Schulman) cont.

Try Huber loss on Bellman error

L(x) =

{
x2

2 if |x | ≤ δ
δ|x | − δ2

2 otherwise

Consider trying Double DQN—significant improvement from 3-line
change in Tensorflow.

To test out your data pre-processing, try your own skills at navigating
the environment based on processed frames

Always run at least two different seeds when experimenting

Learning rate scheduling is beneficial. Try high learning rates in initial
exploration period

Try non-standard exploration schedules
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