
RL Agent Components

• Often include one or more of:
• Model: Agent’s representation of how the world

changes in response to agent’s action
• Policy: function mapping agent’s states to action
• Value function: future rewards from being in a state

and/or action when following a particular policy

Model

• Agent’s representation of how the world changes in
response to agent’s action

• Transition / dynamics model predicts next agent
state
• P(s

t+1
= s’|s

t
 = s, a

t
= a)

• Reward model predicts immediate reward
• R(s

t
 = s, a

t
= a)= ᯛ [r

t
 | s

t
 = s, a

t
= a]

Policy

• Policy π determines how the action chooses actions
• π: S→ A, mapping from state to action
• Deterministic policy π(s) = a
• Stochastic policy π(a|s) = P(a

t
= a|s

t
 = s)

Value

• Value function Vπ: expected discounted sum of
future rewards under a particular policy π
• Vπ(s

t
=s) = ᯛπ [r

t
 + ᶕr

t+1
 + ᶕ2r

t+1
 +ᶕ3r

t+1
 +...| s

t
= s]

• Discount factor ᶕ weighs immediate vs future
rewards

• Can be used to quantify goodness/badness of states
and actions

• And decide how to act by comparing policies

Types of RL Agents:
What the Agent (Algorithm) Learns
• Value based

• Explicit: Value function
• Implicit: Policy (can derive a policy from value

function)
• Policy based

• Explicit: policy
• No value function

• Actor Critic
• Explicit: Policy
• Explicit: Value function

Types of RL Agents

• Model Based
• Explicit: model
• May or may not have policy and/or value function

• Model Free
• Explicit: Value function and/or Policy Function
• No model

Today: Given a Model of the World

1. Markov Processes

2. Markov Reward Processes (MRPs)

3. Markov Decision Processes (MDPs)

4. Evaluation and Control in MDPs

Full Observability:
Markov Decision Process (MDP)

Agent

World

Action a
t

● MDPs can model a huge number of interesting problems and settings
○ Bandits: single state MDP
○ Optimal control mostly about continuous-state MDPs
○ Partially observable MDPs = MDP where state is history

State s
t

Reward r
t

Markov Reward Process (MRP)

• A Markov Reward Process is a Markov Chain + rewards
• Definition of MRP:

• S is a (finite) set of states
• P is dynamics / transition model, that specifies P(s

t+1
= s’|s

t
 = s)

• R is a reward function R(s
t
 = s)= ᯛ [r

t
 | s

t
 = s]

• Discount factor ᶕ ∊ [0,1]
• Note: no actions
• If finite number (N) of states, can express R as a vector

Return & Value Function

• Definition of Horizon:
• Number of time steps in each episode in a process
• Can be infinite
• Otherwise called finite Markov reward process

• Definition of Return G
t
(for a Markov reward process):

• Discounted sum of rewards from time step t to horizon
• G

t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +...

• Definition of State value function V(s) (for a MRP):
• Expected return from starting in state s
• V(s) = ᯛ [G

t
|s

t
= s]= ᯛ [r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +...| s

t
= s]

Discount Factor

• Mathematically convenient (avoid infinite returns and values)
• Humans often act as if there’s a discount factor < 1
• ᶕ=0: Only care about immediate reward
• ᶕ=1: Future reward is as beneficial as immediate reward
• If episode lengths are always finite, can use ᶕ=1

• Could estimate by simulation
• Markov property yields additional structure
• MRP value function satisfies:

Computing the Value of a Markov
Reward Process

Immediate
reward

Discounted sum of
future rewards

• For finite state MRP can express using matrices

Matrix Form of Bellman Eqn for
Markov Reward Processes

• For finite state MRP can express using matrices

Analytic Solution for Value of MRP

Matrix inverse,
~O(N3)

• Dynamic programming
• Initialize V

0
(s) = 0 for all s

• For k=1 until convergence
• For all s in S:

• Computational complexity: O(S2) for each t

Iterative Algorithm for Computing
Value of a MRP

Markov Decision Process (MDP)

• A Markov Decision Process is Markov Reward Process + actions
• Definition of MDP:

• S is a (finite) set of Markov states
• A is a (finite) set of actions
• P is dynamics / transition model for each action, that specifies

P(s
t+1

= s’|s
t
 = s, a

t
 = a)

• R is a reward function R(s
t
 = s,a

t
 = a)= ᯛ [r

t
 | s

t
 = s, a

t
 = a]*

• Discount factor ᶕ ∊ [0,1]
• MDP is a tuple: (S, A, P, R, ᶕ)

*Reward sometimes defined as a function of the current state, or as a function of the
state-action-next state. Most frequently in this class we will assume reward is a function of
state and action

MDP Policies

• Policy specifies what action to take in each
state

• Can be deterministic or stochastic
• For generality consider as a conditional

distribution: given a state specifies a
distribution over actions

• Policy π(a|s) = P(a
t
=a|s

t
=s)

Policy Evaluation for MDP

• MDP + π(a|s) = a Markov reward process

• Precisely it is a a MRP (S,Rπ,Pπ,ᶕ) where

• Implies we can use same techniques to evaluate
the value of a policy for a MDP as we could to
compute the value of a MRP

• Initialize V
0
(s) = 0 for all s

• For k=1 until convergence
• For all s in S:

• Just replaced dynamics and reward model

Slight Modification to Iterative Algorithm
for Computing Value of a MRP

• Initialize V
0
(s) = 0 for all s

• For k=1 until convergence
• For all s in S:

• Just replaced dynamics and reward model

Slight Modification to Iterative Algorithm
for Computing Value of a MRP

Bellman backup for
a particular policy

MDP Control

• Compute the optimal policy

• There exists a unique optimal value function
• Optimal policy for a MDP in an infinite horizon

problem (agent acts forever) is:
• Deterministic

• Stationary (does not depend on time step)

• Unique? Not necessarily, may be ties

Policy Search

• One option is searching to compute best policy
• Number of deterministic policies is |A||S|

• Policy iteration is generally more efficient than
enumeration

New Definition: State-Action Value Q

• State-action value of a policy

•
•

• Take action a, then follow policy

Policy Iteration (PI)

1. i=0; Initialize π
0
(s) randomly for all states s

2. While i == 0 or |π
i
-π

i-1
| > 0

• Policy evaluation of π
i

• i=i+1

• Policy improvement

Use a L1 norm:
measures if the
policy changed
for any state

Policy Improvement

Compute state-action value of a policy π
i

Note

Define new policy

Policy Iteration (PI)

1. i=0; Initialize π
0
(s) randomly for all states s

2. While i == 0 or |π
i
-π

i-1
| > 0

• Policy evaluation: Compute value of π
i

• i=i+1

• Policy improvement:

Use a L1
norm:
measures if
the policy
changed for
any state

Delving Deeper Into Improvement

• So if take π
i+1

(s) then followed π
i
 forever,

• expected sum of rewards would be at least as good as
if we had always followed π

i

• But new proposed policy is to always follow π
i+1

 …

Monotonic Improvement in Policy

• Definition
•

• Proposition: Vπ’

>= Vπ with strict inequality if

π is suboptimal (where π’ is the new policy
we get from doing policy improvement)

Policy Iteration (PI)

1. i=0; Initialize π
0
(s) randomly for all states s

2. While i == 0 or |π
i
-π

i-1
| > 0

• Policy evaluation: Compute value of π
i

• i=i+1

• Policy improvement:

Use a L1
norm:
measures if
the policy
changed for
any state

Policy Iteration Can Take At Most |A|^|S|
Iterations* (Size of # Policies)

1. i=0; Initialize π
0
(s) randomly for all states s

2. Converged = 0;

3. While i == 0 or |π
i
-π

i-1
| > 0

• i=i+1

• Policy evaluation: Compute

• Policy improvement:

 * For finite state and action spaces

MDP: Computing Optimal Policy and Optimal
Value

• Policy iteration computes optimal value and
policy

• Value iteration is another technique
• Idea: Maintain optimal value of starting in a state

s if have a finite number of steps k left in the
episode

• Iterate to consider longer and longer episodes

Bellman Equation and Bellman Backup Operators

• Bellman equation
• The value function for a policy must satisfy
•

• Bellman backup operator

• Applied to a value function

• Returns a new value function

• Improves the value if possible

• BV yields a value function over all s

Value Iteration (VI)

1. Initialize V
0
(s)=0 for all states s

2. Set k=1

3. Loop until [finite horizon, convergence]
• For each state s

• View as Bellman backup on value function

• Bellman backup operator for a particular policy

• To do policy evaluation, repeatedly apply
operator until V stops changing

Looking at Policy Iteration As Bellman Operations:
Policy Evaluation: Compute Fixed Point of Bπ

• Bellman backup operator for a particular policy

• To do policy improvement

Looking at Policy Iteration As Bellman Operations:
Policy Improvement, Slight Variant of Bellman

Going Back to Value Iteration (VI)

1. Initialize V
0
(s)=0 for all states s

2. Set k=1

3. Loop until [finite horizon, convergence]
• For each state s

• Doing a Bellman backup on value function

Contraction Operator

• Let O be an operator

• If

• Then O is a contraction operator

Will Value Iteration Converge?

• Yes, if discount factor γ < 1 or end up in a
terminal state with probability 1

• Bellman backup is a contraction if discount
factor, γ < 1

• If apply it to two different value functions,
distance between value functions shrinks after
apply Bellman equation to each

Bellman Backup is a Contraction on V (γ<1)

|| V-V’|| = Infinity norm (find max difference over all states, e.g. max(s) |V(s) – V’(s) |

Note: even if all inequalities are equalities, this still is a contraction as long as the discount factor is < 1

Value vs Policy Iteration

• Value iteration:
• Compute optimal value if horizon=k

• Note this can be used to compute optimal policy if
horizon = k

• Increment k

• Policy iteration:
• Compute infinite horizon value of a policy
• Use to select another (better) policy
• Closely related to a very popular method in RL:

policy gradient

What You Should Know

• Define MP, MRP, MDP, Bellman operator,
contraction, model, Q-value, policy

• Be able to implement
• Value iteration & policy iteration

• Contrast benefits and weaknesses of policy
evaluation approaches

• Be able to prove contraction properties
• Limitations of presented approaches and

Markov assumptions
• Which policy evaluation methods require Markov

assumption?

This Lecture: Policy Evaluation

• Estimating the expected return of a particular
policy if don’t have access to true MDP models

• Dynamic programming
• Monte Carlo policy evaluation

• Policy evaluation when don’t have a model of how
the world work

• Given on-policy samples
• Given off-policy samples

• Temporal Difference (TD)
• Metrics to evaluate and compare algorithms

Recall

• Definition of return G
t
for a MDP under policy π:

• Discounted sum of rewards from time step t to horizon when
following policy π(a|s)

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +...

• Definition of state value function Vπ(s) for policy π:
• Expected return from starting in state s under policy π
• Vπ(s) = ᯛπ [G

t
|s

t
= s]= ᯛ π[r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +...| s

t
= s]

• Definition of state-action value function Qπ(s,a) for policy π:
• Expected return from starting in state s, taking action a, and then

following policy π
• Qπ(s,a) = ᯛπ [G

t
|s

t
= s, a

t
= a]= ᯛ π[r

t
+ ᶕr

t+1
+ ᶕ2r

t+2
+...| s

t
= s, a

t
= a]

• Initialize V
0
(s) = 0 for all s

• For k=1 until convergence
• For all s in S:

Dynamic Programming for Policy Evaluation

• Initialize V
0
(s) = 0 for all s

• For k=1 until convergence
• For all s in S:

Dynamic Programming for Policy Evaluation

Bellman backup for
a particular policy

• Initialize V
0
(s) = 0 for all s

• For i=1 until convergence*
• For all s in S:

• In finite horizon case, is exact value of
k-horizon value of state s under policy π

• In infinite horizon case, is an estimate of
infinite horizon value of state s
• Vπ(s) = ᯛπ [G

t
|s

t
= s] ≅ ᯛ π[r

t
 + ᶕV

i-1
|s

t
= s]

Dynamic Programming for Policy π
Value Evaluation

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

State

ActionActionsAction

 s

States

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

Action

 s

State

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

Action

States

Actions

 s

State

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

Action

= Expectation

States

Actions

 s

State

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

Action

= Expectation

States

Actions

DP computes this, bootstrapping
the rest of the expected return by
the value estimate V

i-1

• Bootstrapping: Update for V uses an estimate

 s

State

Dynamic Programming Policy Evaluation
Vπ(s) ← ᯛ

 π[r
t
 + ᶕV

i-1
|s

t
= s]

Action

= Expectation

States

Actions

DP computes this, bootstrapping
the rest of the expected return by
the value estimate V

i-1

Know model P(s’|s,a):

reward and expectation
over next states
computed exactly

• Bootstrapping: Update for V uses an estimate

 s

Policy Evaluation: Vπ(s) = ᯛπ [G
t
|s

t
= s]

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Dynamic programming
• Vπ(s) ≅ ᯛ π[r

t
 + ᶕV

i-1
|s

t
= s]

• Requires model of MDP M
• Bootstraps future return using value estimate

• What if don’t know how the world works?
• Precisely, don’t know dynamics model P or reward model R

• Today: Policy evaluation without a model
• Given data and/or ability to interact in the environment
• Efficiently compute a good estimate of a policy π

This Lecture: Policy Evaluation

• Dynamic programming
• Monte Carlo policy evaluation

• Policy evaluation when don’t have a model of how
the world work

• Given on policy samples
• Given off policy samples

• Temporal Difference (TD)
• Axes to evaluate and compare algorithms

Monte Carlo (MC) Policy Evaluation

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛτ~π [G
t
|s

t
= s]

• Expectation over trajectories τ generated by following π

Monte Carlo (MC) Policy Evaluation

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛτ~π [G
t
|s

t
= s]

• Expectation over trajectories τ generated by following π

• Simple idea: Value = mean return
• If trajectories are all finite, sample a bunch of trajectories and

average returns
• By law of large numbers, average return converges to mean

Monte Carlo (MC) Policy Evaluation

• If trajectories are all finite, sample a bunch of trajectories and
average returns

• Does not require MDP dynamics / rewards
• No bootstrapping
• Does not assume state is Markov
• Can only be applied to episodic MDPs

• Averaging over returns from a complete episode
• Requires each episode to terminate

Monte Carlo (MC) On Policy Evaluation

• Aim: estimate Vπ(s) given episodes generated under policy π
• s

1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛπ [G
t
|s

t
= s]

• MC computes empirical mean return
• Often do this in an incremental fashion

• After each episode, update estimate of Vπ

First-Visit Monte Carlo (MC) On Policy
Evaluation

• After each episode i = s
i1

, a
i1

, r
i1

, s
i2

, a
i2

, r
i2

, …
• Define G

i,t
= r

i,t
 + ᶕr

i,t+1
 + ᶕ2r

i,t+2
 +... as return from time step t

onwards in i-th episode
• For each state s visited in episode i

• For first time t state s is visited in episode i
– Increment counter of total first visits N(s) = N(s) + 1
– Increment total return S(s) = S(s) + G

i,t
– Update estimate Vπ(s) = S(s) / N(s)

• By law of large numbers, as N(s) → ∞, Vπ(s) →ᯛπ [G
t
|s

t
= s]

Every-Visit Monte Carlo (MC) On Policy
Evaluation

• After each episode i = s
i1

, a
i1

, r
i1

, s
i2

, a
i2

, r
i2

, …
• Define G

i,t
=r

i,t
 + ᶕr

i,t+1
 + ᶕ2r

i,t+2
 +... as return from time step t

onwards in i-th episode
• For each state s visited in episode i

• For every time t state s is visited in episode i
– Increment counter of total visits N(s) = N(s) + 1
– Increment total return S(s) = S(s) + G

i,t
– Update estimate Vπ(s) = S(s) / N(s)

• As N(s) → ∞, Vπ(s) →ᯛπ [G
t
|s

t
= s]

Incremental Monte Carlo (MC)
On Policy Evaluation

• After each episode i = s
i1

, a
i1

, r
i1

, s
i2

, a
i2

, r
i2

, …
• Define G

i,t
= r

i,t
 + ᶕr

i,t+1
 + ᶕ2r

i,t+2
 +... as return from time step t

onwards in i-th episode
• For state s visited at time step t in episode i

• Increment counter of total visits N(s) = N(s) + 1
• Update estimate

Incremental Monte Carlo (MC)
On Policy Evaluation Running Mean

• After each episode i = s
i1

, a
i1

, r
i1

, s
i2

, a
i2

, r
i2

, …
• Define G

i,t
= r

i,t
 + ᶕr

i,t+1
 + ᶕ2r

i,t+2
 +... as return from time step t

onwards in i-th episode
• For state s visited at time step t in episode i

• Increment counter of total visits N(s) = N(s) + 1
• Update estimate

 t : identical to every visit MC

 : : forget older data, helpful for nonstationary domains

State

MC Policy Evaluation

Action

= Expectation

States

Actions

T

T = Terminal state

 s

State

Action

= Expectation

States

Actions

T

T = Terminal state

MC Policy Evaluation

MC updates the value estimate
using a sample of the return to
approximate an expectation

 s

Monte Carlo (MC) Off Policy
Evaluation

• Aim: estimate given episodes generated under policy π
1

• s
1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

1

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛπ [G
t
|s

t
= s]

• Have data from another policy
• If π

1
 is stochastic can often use it to estimate the value of an

alternate policy (formal conditions to follow)
• Again, no requirement for model nor that state is Markov

Returns

Behavior Policy New Policy

Returns

Monte Carlo (MC) Off Policy
Evaluation: Distribution Mismatch

• Distribution of episodes & resulting returns differs between
policies

Importance Sampling

Importance Sampling for Policy Evaluation

• Aim: estimate given episodes generated under policy π
2

• s
1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

2

• Have access to G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a

policy π
2

• Want
• Have data from another policy
• If π

2
 is stochastic can often use it to estimate the value of an

alternate policy (formal conditions to follow)
• Again, no requirement for model nor that state is Markov

Importance Sampling (IS) for Policy Evaluation

• Let h be a particular episode (history) of states, actions and rewards

Probability of a Particular Episode

• Let h be a particular episode (history) of states, actions and rewards

Importance Sampling (IS) for Policy Evaluation

• Let h be a particular episode (history) of states, actions and rewards

Importance Sampling for Policy
Evaluation

• Aim: estimate given episodes generated under policy π
2

• s
1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

2

• Have access to G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a

policy π
2

• Want
• IS = Monte Carlo estimate given off policy data
• Model-free method
• Does not require Markov assumption
• Under some assumptions, unbiased & consistent estimator of
• Can be used when agent is interacting with environment to

estimate value of policies different than agent’s control policy
• More later this quarter about batch learning

Monte Carlo (MC) Policy Evaluation
Summary

• Aim: estimate Vπ(s) given episodes generated under policy π
• s

1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

• G
t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛπ [G
t
|s

t
= s]

• Simple: Estimates expectation by empirical average (given
episodes sampled from policy of interest) or reweighted empirical
average (importance sampling)

• Updates value estimate by using a sample of return to
approximate the expectation

• No bootstrapping
• Converges to true value under some (generally mild) assumptions

Monte Carlo (MC) Policy Evaluation
Key Limitations

• Generally high variance estimator
• Reducing variance can require a lot of data

• Requires episodic settings
• Episode must end before data from that episode can be used

to update the value function

This Lecture: Policy Evaluation

• Dynamic programming
• Monte Carlo policy evaluation

• Policy evaluation when don’t have a model of how
the world work

• Given on policy samples
• Given off policy samples

• Temporal Difference (TD)
• Axes to evaluate and compare algorithms

Temporal Difference Learning

• “If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be
temporal-difference (TD) learning.” -- Sutton and Barto 2017

• Combination of Monte Carlo & dynamic programming methods
• Model-free
• Bootstraps and samples
• Can be used in episodic or infinite-horizon non-episodic settings

• Immediately updates estimate of V after each (s,a,r,s’) tuple

• Aim: estimate Vπ(s) given episodes generated under policy π
• G

t
= r

t
 + ᶕr

t+1
 + ᶕ2r

t+2
 +ᶕ3r

t+3
 +... in MDP M under a policy π

• Vπ(s) = ᯛπ [G
t
|s

t
= s]

• Recall Bellman operator (if know MDP models)

• In incremental every-visit MC, update estimate using 1 sample of
return (for the current ith episode)

• Insight: have an estimate of Vπ, use to estimate expected return

Temporal Difference Learning for
Estimating V

• Aim: estimate Vπ(s) given episodes generated under policy π
• s

1
, a

1
, r

1
, s

2
, a

2
, r

2
, … where the actions are sampled from π

• Simplest TD learning: update value towards estimated value

• TD error:

• Can immediately update value estimate after (s,a,r,s’) tuple
• Don’t need episodic setting

Temporal Difference [TD(0)] Learning

TD target

State

Action

= Expectation

States

Actions

T

T = Terminal state

Temporal Difference Policy Evaluation

TD updates the value estimate
using a sample of s

t+1
 to

approximate an expectation

 s TD updates the value estimate by
bootstrapping, uses estimate of V(s

t+1
)

This Lecture: Policy Evaluation

• Dynamic programming
• Monte Carlo policy evaluation

• Policy evaluation when don’t have a model of how
the world work

• Given on policy samples
• Given off policy samples

• Temporal Difference (TD)
• Axes to evaluate and compare algorithms

Some Important Properties to Evaluate
Policy Evaluation Algorithms

• Usable when no models of current domain
• DP: No MC: Yes TD: Yes

• Handles continuing (non-episodic) domains
• DP: Yes MC: No TD: Yes

• Handles Non-Markovian domains
• DP: No MC: Yes TD: No

• Converges to true value in limit*
• DP: Yes MC: Yes TD: Yes

• Unbiased estimate of value
• DP: NA MC: Yes TD: No

* For tabular representations of value function. More on this in later lectures

Some Important Properties to Evaluate
Model-free Policy Evaluation Algorithms

• Bias/variance characteristics
• Data efficiency
• Computational efficiency

Bias/Variance of Model-free Policy
Evaluation Algorithms

• Return G
t
 is an unbiased estimate of Vπ(s

t
)

• TD target is a biased estimate of Vπ(s
t
)

• But often much lower variance than a single return G
t

• Return function of multi-step seq. of random actions, states & rewards
• TD target only has one random action, reward and next state
• MC

• Unbiased
• High variance
• Consistent (converges to true) even with function approximation

• TD
• Some bias
• Lower variance
• TD(0) converges to true value with tabular representation
• TD(0) does not always converge with function approximation

Batch MC and TD

• Batch (Offline) solution for finite dataset
• Given set of K episodes
• Repeatedly sample an episode from K
• Apply MC or TD(0) to that episode

• What do MC and TD(0) converge to?

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 4 Winter 2018 2 / 40

Class Structure

Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)

This time: Control (making decisions) without a model of how the
world works

Next time: Value function approximation and Deep Q-learning

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 5 Winter 2018 3 / 40

Evaluation to Control

Last time: how good is a specific policy?

Given no access to the decision process model parameters
Instead have to estimate from data / experience

Today: how can we learn a good policy?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 6 Winter 2018 4 / 40

Recall: Reinforcement Learning Involves

Optimization

Delayed consequences

Exploration

Generalization

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 7 Winter 2018 5 / 40

Today: Learning to Control Involves

Optimization: Goal is to identify a policy with high expected rewards
(similar to Lecture 2 on computing an optimal policy given decision
process models)

Delayed consequences: May take many time steps to evaluate
whether an earlier decision was good or not

Exploration: Necessary to try different actions to learn what actions
can lead to high rewards

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 8 Winter 2018 6 / 40

Today: Model-free Control

Generalized policy improvement

Importance of exploration

Monte Carlo control

Model-free control with temporal difference (SARSA, Q-learning)

Maximization bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 9 Winter 2018 7 / 40

Model-free Control Examples

Many applications can be modeled as a MDP: Backgammon, Go,
Robot locomation, Helicopter flight, Robocup soccer, Autonomous
driving, Customer ad selection, Invasive species management, Patient
treatment

For many of these and other problems either:

MDP model is unknown but can be sampled
MDP model is known but it is computationally infeasible to use
directly, except through sampling

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 10 Winter 2018 8 / 40

On and Off-Policy Learning

On-policy learning

Direct experience
Learn to estimate and evaluate a policy from experience obtained from
following that policy

Off-policy learning

Learn to estimate and evaluate a policy using experience gathered from
following a different policy

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 11 Winter 2018 9 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 12 Winter 2018 10 / 40

Recall Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute V π

Policy improvement: update π

π′(s) = arg max
a

R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V π(s ′) = arg max
a

Qπ(s, a)

(1)

Now want to do the above two steps without access to the true
dynamics and reward models

Last lecture introduced methods for model-free policy evaluation

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 13 Winter 2018 11 / 40

Model-free Generalized Policy Improvement

Given an estimate Qπi (s, a) ∀s, a
Update new policy

πi+1(s) = arg max
a

Qπi (s, a) (2)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 14 Winter 2018 12 / 40

Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

May need to modify policy evaluation:

If π is deterministic, can’t compute Q(s, a) for any a 6= π(s)

How to interleave policy evaluation and improvement?

Policy improvement is now using an estimated Q

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 15 Winter 2018 13 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 16 Winter 2018 14 / 40

Policy Evaluation with Exploration

Want to compute a model-free estimate of Qπ

In general seems subtle

Need to try all (s, a) pairs but then follow π
Want to ensure resulting estimate Qπ is good enough so that policy
improvement is a monotonic operator

For certain classes of policies can ensure all (s,a) pairs are tried such
that asymptotically Qπ converges to the true value

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 17 Winter 2018 15 / 40

ε-greedy Policies

Simple idea to balance exploration and exploitation

Let |A| be the number of actions

Then an ε-greedy policy w.r.t. a state-action value Qπ(s, a) is
π(a|s) =

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 18 Winter 2018 16 / 40

Monotonic19 ε-greedy Policy Improvement

Theorem

For any ε-greedy policy πi , the ε-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V π

Qπ(s, πi+1(s)) =
∑
a∈A

πi+1(a|s)Q
πi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)

Therefore V πi+1 ≥ V pi (from the policy improvement theorem)
19The theorem assumes that Qπi has been computed exactly.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 20 Winter 2018 17 / 40

Monotonic21 ε-greedy Policy Improvement

Theorem

For any ε-greedy policy πi , the ε-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V π

Qπ(s, πi+1(s)) =
∑
a∈A

πi+1(a|s)Q
πi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)

= (ε/|A|)
∑
a∈A

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)
1− ε
1− ε

= (ε/|A|)
∑
a

Qπi (s, a) + (1− ε) max
a

Qπi (s, a)
∑
a

πi (a|s)− ε
|A|

1− ε

≥
ε

|A|

∑
a∈A

Qπi (s, a) + (1− ε)
∑
a

πi (a|s)− ε
|A|

1− ε
Qπi (s, a)

=
∑
a

πi (a|s)Q
πi (s, a) = Vπi (s)

Therefore V πi+1 ≥ V pi (from the policy improvement theorem)

21The theorem assumes that Qπi has been computed exactly.
Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 22 Winter 2018 18 / 40

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

lim
i→∞

Ni (s, a)→∞

Behavior policy converges to greedy policy

A simple GLIE strategy is ε-greedy where ε is reduced to 0 with the
following rate: εi = 1/i

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 23 Winter 2018 19 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 24 Winter 2018 20 / 40

Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s, a) = 0,Returns(s, a) = 0 ∀(s, a), Set ε = 1, k = 1
2: πk = ε-greedy(Q) // Create initial ε-greedy policy
3: loop
4: Sample k-th episode (sk1, ak1, rk1, sk2, . . . , sT) given πk
5: for t = 1, . . . ,T do
6: if First visit to (s, a) in episode k then
7: Append

∑T
j=t rkj to Returns(st , at)

8: Q(st , at) = average(Returns(st , at))
9: end if

10: end for
11: k = k + 1, ε = 1/k
12: πk = ε-greedy(Qπ) // Policy improvement
13: end loop

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 25 Winter 2018 21 / 40

GLIE Monte-Carlo Control

Theorem

GLIE Monte-Carlo control converges to the optimal state-action valuea

function Q(s, a)→ q(s, a)

av(s) and q(s, a) without any additional subscripts are used to indicate the
optimal state and state-action value function, respectively.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 26 Winter 2018 22 / 40

Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

What about TD methods?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 27 Winter 2018 23 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 28 Winter 2018 24 / 40

Model-free Policy Iteration with TD Methods

Use temporal difference methods for policy evaluation step

Initialize policy π

Repeat:

Policy evaluation: compute Qπ using temporal difference updating
with ε-greedy policy
Policy improvement: Same as Monte carlo policy improvement, set π
to ε-greedy (Qπ)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 29 Winter 2018 25 / 40

General Form of SARSA Algorithm

1: Set initial ε-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Update Q given (st , at , rt , st+1, at+1):

8: Perform policy improvement:

9: t = t + 1
10: end loop

What are the benefits to improving the policy after each step?
What are the benefits to updating the policy less frequently?Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 30 Winter 2018 26 / 40

Convergence Properties of SARSA

Theorem

Sarsa for finite-state and finite-action MDPs converges to the optimal
action-value, Q(s, a)→ q(s, a), under the following conditions:

1 The policy sequence πt(a|s) satisfies the condition of GLIE

2 The step-sizes αt satisfy the Robbins-Munro sequence such that

∞∑
t=1

αt = ∞

∞∑
t=1

α2
t < ∞

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 31 Winter 2018 27 / 40

Recall: Off Policy, Policy Evaluation

Given data from following a behavior policy πb can we estimate the
value V πe of an alternate policy πb?

Neat idea: can we learn about other ways to do things different than
what we actually did?

Discussed how to do this for Monte Carlo evaluation

Used Importance Sampling

First see how to do off policy evaluation with TD

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 32 Winter 2018 28 / 40

Importance Sampling for Off Policy TD (Policy Evaluation)

Recall the Temporal Difference (TD) algorithm which is used to
incremental model-free evaluation of a policy πb. Precisely, given a
state st , an action at sampled from πb(st) and the observed reward rt
and next state st+1, TD performs the following update:

V πb(st) = V πb(st) + α(rt + γV πb(st+1)− V πb(st)) (3)

Now want to use data generated from following πb to estimate the
value of different policy πe , V πe

Change TD target rt + γV (st+1) to weight target by single
importance sample ratio

New update:

V πe (st) = V πe (st) + α

[
πe(at |st)
πb(at |st)

(rt + γV πe (st+1)− V πe (st))

]
(4)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 33 Winter 2018 29 / 40

Importance Sampling for Off Policy TD Cont.

Off Policy TD Update:

V πe (st) = V πe (st) + α

[
πe(at |st)
πb(at |st)

(rt + γV πe (st+1)− V πe (st))

]
(5)

Significantly lower variance than MC IS. (Why?)

Does πb need to be the same at each time step?

What conditions on πb and πe are needed for off policy TD to
converge to V πe ?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 34 Winter 2018 30 / 40

Q-Learning: Learning the Optimal State-Action Value

Just saw how to use off policy TD to evaluate any particular policy πe

Can we estimate the value of the optimal policy π∗ without
knowledge of what π∗ is?

Yes! Q-learning

Does not require importance sampling

Key idea: Maintain state-action Q estimates and use to bootstrap–
use the value of the best future action

Recall Sarsa

Q(st , at)← Q(st , at) + α((rt + γQ(st+1, at+1))− Q(st , at)) (6)

Q-learning:

Q(st , at)← Q(st , at) + α((rt + γmax
a′

Q(st+1, a
′))− Q(st , at)) (7)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 35 Winter 2018 31 / 40

Off-Policy Control Using Q-learning

In the prior slide assumed there was some πb used to act

πb determines the actual rewards received

Now consider how to improve the behavior policy (policy
improvement)

Let behavior policy πb be ε-greedy with respect to (w.r.t.) current
estimate of the optimal q(s, a)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 36 Winter 2018 32 / 40

Q-Learning with ε-greedy Exploration

1: Initialize Q(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: Set πb to be ε-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Update Q given (st , at , rt , st+1):

7: Perform policy improvement: set πb to be ε-greedy w.r.t. Q
8: t = t + 1
9: end loop

What conditions are sufficient to ensure that Q-learning with ε-greedy
exploration converges to optimal q?
What conditions are sufficient to ensure that Q-learning with ε-greedy
exploration converges to optimal π∗?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 37 Winter 2018 33 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 38 Winter 2018 34 / 40

Maximization Bias39

Consider single-state MDP (|S | = 1) with 2 actions, and both actions
have 0-mean random rewards, (E(r |a = a1) = E(r |a = a2) = 0).

Then Q(s, a1) = Q(s, a2) = 0 = V (s)

Assume there are prior samples of taking action a1 and a2
Let Q̂(s, a1), Q̂(s, a2) be the finite sample estimate of Q

Assume using an unbiased estimator for Q: e.g.

Q̂(s, a1) = 1
n(s,a1)

∑n(s,a1)
i=1 ri (s, a1)

Let π̂ = arg maxa Q̂(s, a) be the greedy policy w.r.t. the estimated Q̂

Even though each estimate of the state-action values is unbiased, the
estimate of π̂’s value V̂ π̂ can be biased:

39Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 40 Winter 2018 35 / 40

Double Learning

The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning

Avoid using max of estimates as estimate of max of true values

Instead split samples and use to create two independent unbiased
estimates of Q1(s1, ai) and Q2(s1, ai) ∀a.

Use one estimate to select max action: a∗ = arg maxa Q1(s1, a)
Use other estimate to estimate value of a∗: Q2(s, a∗)
Yields unbiased estimate: E(Q2(s, a∗)) = Q(s, a∗)

Why does this yield an unbiased estimate of the max state-action
value?

If acting online, can alternate samples used to update Q1 and Q2,
using the other to select the action chosen

Next slides extend to full MDP case (with more than 1 state)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 41 Winter 2018 36 / 40

Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then
6: Q1(st , at)← Q1(st , at) + α
7: else
8: Q2(st , at)← Q2(st , at) + α
9: end if

10: t = t + 1
11: end loop

Compared to Q-learning, how does this change the: memory
requirements, computation requirements per step, amount of data
required?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 42 Winter 2018 37 / 40

Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

Due to the maximization bias, Q-learning spends much more time
selecting suboptimal actions than double Q-learning.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 43 Winter 2018 38 / 40

Table of Contents

1 Generalized Policy Iteration

2 Importance of Exploration

3 Monte Carlo Control

4 Temporal Difference Methods for Control

5 Maximization Bias

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 44 Winter 2018 39 / 40

Class Structure

Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)

This time: Control (making decisions) without a model of how the
world works

Next time: Value function approximation and Deep Q-learning

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 4: Model Free Control 45 Winter 2018 40 / 40

Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

The value function approximation structure for today closely follows much
of David Silver’s Lecture 6. For additional reading please see SB 2018
Sections 9.3, 9.6-9.7. The deep learning slides come almost exclusively
from Ruslan Salakhutdinov’s class, and Hugo Larochelle’s class (and with
thanks to Zico Kolter also for slide inspiration). The slides in my standard
style format in the deep learning section are my own.

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 1 / 48

Table of Contents

1 Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

4 Deep Learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 3 / 48

Class Structure

Last time: Control (making decisions) without a model of how the
world works

This time: Value function approximation and deep learning

Next time: Deep reinforcement learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 4 / 48

Last time: Model-Free Control

Last time: how to learn a good policy from experience

So far, have been assuming we can represent the value function or
state-action value function as a vector

Tabular representation

Many real world problems have enormous state and/or action spaces

Tabular representation is insu�cient

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 5 / 48

Table of Contents

1 Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

4 Deep Learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 8 / 48

Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized
function instead of a table

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 9 / 48

Motivation for VFA

Don’t want to have to explicitly store or learn for every single state a
Dynamics or reward model
Value
State-action value
Policy

Want more compact representation that generalizes across state or
states and actions

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 10 / 48

Benefits of Generalization

Reduce memory needed to store (P ,R)/V /Q/⇡

Reduce computation needed to compute (P ,R)/V /Q/⇡

Reduce experience needed to find a good P ,R/V /Q/⇡

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 11 / 48

Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized
function instead of a table

Which function approximator?

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 12 / 48

Function Approximators

Many possible function approximators including
Linear combinations of features
Neural networks
Decision trees
Nearest neighbors
Fourier / wavelet bases

In this class we will focus on function approximators that are
di↵erentiable (Why?)

Two very popular classes of di↵erentiable function approximators
Linear feature representations (Today)
Neural networks (Today and next lecture)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 13 / 48

Review: Gradient Descent

Consider a function J(w) that is a di↵erentiable function of a
parameter vector w

Goal is to find parameter w that minimizes J

The gradient of J(w) is

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 14 / 48

Table of Contents

1 Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

4 Deep Learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 15 / 48

Value Function Approximation for Policy Evaluation with
an Oracle

First consider if could query any state s and an oracle would return
the true value for v⇡(s)

The objective was to find the best approximate representation of v⇡

given a particular parameterized function

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 16 / 48

Stochastic Gradient Descent

Goal: Find the parameter vector w that minimizes the loss between a
true value function v⇡(s) and its approximation v̂ as represented with
a particular function class parameterized by w .

Generally use mean squared error and define the loss as

J(w) = ⇡[(v⇡(S)� v̂(S ,w))2] (1)

Can use gradient descent to find a local minimum

�w = �1

2
↵5w J(w) (2)

Stochastic gradient descent (SGD) samples the gradient:

Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 17 / 48

VFA Prediction Without An Oracle

Don’t actually have access to an oracle to tell true v⇡(S) for any
state s

Now consider how to do value function approximation for prediction /
evaluation / policy evaluation without a model

Note: policy evaluation without a model is sometimes also called
passive reinforcement learning with value function approximation

”passive” because not trying to learn the optimal decision policy

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 18 / 48

Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)
Following a fixed policy ⇡ (or had access to prior data)
Goal is to estimate V

⇡ and/or Q⇡

Maintained a look up table to store estimates V ⇡ and/or Q⇡

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

Now: in value function approximation, change the estimate
update step to include fitting the function approximator

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 19 / 48

Feature Vectors

Use a feature vector to represent a state

x(s) =

0

BB@

x

1

(s)
x

2

(s)
. . .
xn(s)

1

CCA (3)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 20 / 48

Linear Value Function Approximation for Prediction With
An Oracle

Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

v̂(S ,w) =
nX

j=1

xj(S)wj = x(S)T (w)

Objective function is

J(w) = ⇡[(v⇡(S)� v̂(S ,w))2]

Recall weight update is

�(w) = �1

2
↵5w J(w) (4)

Update is:

Update = step-size ⇥ prediction error ⇥ feature value

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 21 / 48

Monte Carlo Value Function Approximation

Return Gt is an unbiased but noisy sample of the true expected return
v⇡(St)

Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: < S

1

,G
1

>,< S

2

,G
2

>, . . . , < ST ,GT >
Susbstituting Gt(St) for the true v⇡(St) when fitting the function
approximator

Concretely when using linear VFA for policy evaluation

�w = ↵(Gt � v̂(St ,w))5w v̂(St ,w) (5)

= ↵(Gt � v̂(St ,w))x(St) (6)

Note: Gt may be a very noisy estimate of true return

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 22 / 48

MC Linear Value Function Approximation for Policy
Evaluation

1: Initialize w = 0,Returns(s) = 0 8(s, a), k = 1
2: loop
3: Sample k-th episode (sk1, ak1, rk1, sk2, . . . , sk,Lk) given ⇡
4: for t = 1, . . . , Lk do
5: if First visit to (s) in episode k then
6: Append

PLk
j=t rkj to Returns(st)

7: Update weights

8: end if
9: end for

10: k = k + 1
11: end loop

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 23 / 48

Recall: Temporal Di↵erence (TD(0)) Learning with a Look
up Table

Uses bootstrapping and sampling to approximate V

⇡

Updates V ⇡(s) after each transition (s, a, r , s 0):

V

⇡(s) = V

⇡(s) + ↵(r + �V ⇡(s 0)� V

⇡(s)) (7)

Target is r + �V ⇡(s 0), a biased estimate of the true value v

⇡(s)

Look up table represents value for each state with a separate table
entry

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 24 / 48

Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

Uses bootstrapping and sampling to approximate true v

⇡

Updates estimate V

⇡(s) after each transition (s, a, r , s 0):

V

⇡(s) = V

⇡(s) + ↵(r + �V ⇡(s 0)� V

⇡(s)) (8)

Target is r + �V ⇡(s 0), a biased estimate of of the true value v

⇡(s)

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

3 forms of approximation:

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 25 / 48

Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

Supervised learning on a di↵erent set of data pairs:
< S

1

, r
1

+ �v̂⇡(S
2

,w) >,< S

2

, r
2

+ �v̂(S
3

,w) >, . . .

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 26 / 48

Temporal Di↵erence (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + �v̂⇡(s 0), a biased and
approximated estimate of of the true value v

⇡(s)

Supervised learning on a di↵erent set of data pairs:
< S

1

, r
1

+ �v̂⇡(S
2

,w) >,< S

2

, r
2

+ �v̂(S
3

,w) >, . . .

In linear TD(0)

�w = ↵(r + �v̂⇡(s 0,w)� v̂

⇡(s,w))5w v̂

⇡(s,w) (9)

= ↵(r + �v̂⇡(s 0,w)� v̂

⇡(s,w))x(s) (10)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 27 / 48

Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation1

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡(s)� v̂⇡(s,w))2 (11)

where
d(s): stationary distribution of ⇡ in the true decision process
ˆv ,w⇡(s) = x(s)Tw , a linear value function approximation

1

Tsitsiklis and Van Roy. An Analysis of Temporal-Di↵erence Learning with Function

Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 28 / 48

Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation2

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡(s)� v̂⇡(s,w))2 (12)

where
d(s): stationary distribution of ⇡ in the true decision process
v̂

⇡(s) = x(s)Tw , a linear value function approximation

Monte Carlo policy evaluation with VFA converges to the weights
wMC which has the minimum mean squared error possible:

MSVE (wMC) = min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (13)

2

Tsitsiklis and Van Roy. An Analysis of Temporal-Di↵erence Learning with Function

Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 29 / 48

Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation3

Define the mean squared error of a linear value function
approximation for a particular policy ⇡ relative to the true value as

MSVE (w) =
X

s2S
d(s)(v⇡ ⇤ (s)� v̂⇡(s,w))2 (14)

where
d(s): stationary distribution of ⇡ in the true decision process
v̂

⇡(s) = x(s)Tw , a linear value function approximation

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the minimum mean squared error possible:

MSVE (wTD) =
1

1� �
min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (15)

3

ibed.

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 30 / 48

Summary: Convergence Guarantees for Linear Value
Function Approximation for Policy Evaluation4

Monte Carlo policy evaluation with VFA converges to the weights
wMC which has the minimum mean squared error possible:

MSVE (wMC) = min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (16)

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the minimum mean squared error possible:

MSVE (wTD) =
1

1� �
min
w

X

s2S
d(s)(v⇡ ⇤ (s)� v̂

⇡(s,w))2 (17)

Check your understanding: if the VFA is a tabular representation (one
feature for each state), what is the MSVE for MC and TD?

4

ibed.

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 31 / 48

Convergence Rates for Linear Value Function
Approximation for Policy Evaluation

Does TD or MC converge faster to a fixed point?

Not (to my knowledge) definitively understood

Practically TD learning often converges faster to its fixed value
function approximation point

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 32 / 48

Table of Contents

1 Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

4 Deep Learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 33 / 48

Control using Value Function Approximation

Use value function approximation to represent state-action values
q̂

⇡(s, a,w) ⇡ q

⇡

Interleave
Approximate policy evaluation using value function approximation
Perform ✏-greedy policy improvement

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 34 / 48

Action-Value Function Approximation with an Oracle

q̂

⇡(s, a,w) ⇡ q

⇡

Minimize the mean-squared error between the true action-value
function q

⇡(s, a) and the approximate action-value function:

J(w) = ⇡[(q
⇡(s, a)� q̂

⇡(s, a,w))2] (18)

Use stochastic gradient descent to find a local minimum

�1

2
5W J(w) = [(q⇡(s, a)� q̂

⇡(s, a,w))5w q̂

⇡(s, a,w)](19)

�(w) = �1

2
↵5w J(w) (20)

Stochastic gradient descent (SGD) samples the gradient

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 35 / 48

Linear State Action Value Function Approximation with an
Oracle

Use features to represent both the state and action

x(s, a) =

0

BB@

x

1

(s, a)
x

2

(s, a)
. . .

xn(s, a)

1

CCA (21)

Represent state-action value function with a weighted linear
combination of features

q̂(s, a,w) = x(s, a)Tw =
nX

j=1

xj(s, a)wj (22)

Stochastic gradient descent update:

5wJ(w) = 5w ⇡[(q
⇡(s, a)� q̂

⇡(s, a,w))2] (23)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 36 / 48

Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

�w = ↵(Gt � q̂(st , at ,w))5w q̂(st , at ,w) (24)

For SARSA instead use a TD target r + �q̂(s 0, a0,w) which leverages
the current function approximation value

�w = ↵(r + �q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (25)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 37 / 48

Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

�w = ↵(Gt � q̂(st , at ,w))5w q̂(st , at ,w) (26)

For SARSA instead use a TD target r + �q̂(s 0, a0,w) which leverages
the current function approximation value

�w = ↵(r + �q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (27)

For Q-learning instead use a TD target r + �maxa q̂(s 0, a0,w) which
leverages the max of the current function approximation value

�w = ↵(r + �max
a0

q̂(s 0, a0,w)� q̂(s, a,w))5w q̂(s, a,w) (28)

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 38 / 48

Convergence of TD Methods with VFA

TD with value function approximation is not following the gradient of
an objective function

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 39 / 48

Convergence of Control Methods with VFA

Algorithm Tabular Linear VFA Nonlinear VFA
Monte-Carlo Control

Sarsa
Q-learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 40 / 48

Table of Contents

1 Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

4 Deep Learning

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 41 / 48

Other Function Approximators

Linear value function approximators often work well given the right
set of features

But can require carefully hand designing that feature set

An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features

Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can’t typically scale well to enormous spaces and datasets

Alternative is to leverage huge recent success in using deep neural
networks

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 42 / 48

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 43 / 48

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 44 / 48

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 45 / 48

Deep Learning

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation Winter 2018 46 / 48

Feedforward Neural Networks
‣  Definition of Neural Networks

-  Forward propagation
-  Types of units
-  Capacity of neural networks

‣  How to train neural nets:
-  Loss function
-  Backpropagation with gradient descent

‣  More recent techniques:
-  Dropout
-  Batch normalization
-  Unsupervised Pre-training

Artificial Neuron
•  Neuron pre-activation (or input activation):

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

•  Neuron output activation:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

where
 are the weights (parameters)
 is the bias term
 is called the activation function

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

Single Hidden Layer Neural Net
•  Hidden layer pre-activation:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o(b

(2)

+w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o(b

(2)

+w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o

⇣
b

(2)

+w

(2)

>
x

⌘

1

•  Hidden layer activation:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 7, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o

⇣
b

(2)

+w

(2)

>
h

(1)

x

⌘

1

•  Output layer activation:

Output activation
function

Artificial Neuron

Bias only changes
the position of the
riff

Range is
determined
by

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

•  Output activation of the neuron:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

(from Pascal Vincent’s slides)

Single Hidden Layer Neural Net
•  Hidden layer pre-activation:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o(b

(2)

+w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o(b

(2)

+w

(2)

>
x)

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o

⇣
b

(2)

+w

(2)

>
x

⌘

1

•  Hidden layer activation:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 7, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W

(1)

i,j b

(1)

i xj h(x)i w

(2)

i b

(2)

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i +

P
j W

(1)

i,j xj

⌘

• f(x) = o

⇣
b

(2)

+w

(2)

>
h

(1)

x

⌘

1

•  Output layer activation:

Output activation
function

Activation Function
•  Sigmoid activation function:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1

1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

Ø  Squashes the neuron’s
output between 0 and 1

Ø  Always positive

Ø  Bounded

Ø  Strictly Increasing

Activation Function
•  Rectified linear (ReLU) activation function:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)

(b

(2)

+w

(2)

>
x)

1

Ø  Bounded below by 0
(always non-negative)

Ø  Tends to produce units
with sparse activities

Ø  Not upper bounded

Ø  Strictly increasing

Multilayer Neural Net
•  Consider a network with L hidden layers.

-  hidden layer activation
 from 1 to L:

-  layer pre-activation for k>0

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

(x) (h

(0)

(x) = x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

-  output layer activation (k=L+1):

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

(x) = x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation

46

Winter 2018 42 / 44

• 	Clustering,	Nearest	
Neighbors,	RBF	SVM,	local	

density	esFmators			

Learned	

prototypes	

Local	regions	
C1=1	

C1=0	

C2=1	

C2=1	C1=1	
C2=0	

C1=0	
C2=0	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	

Deep	models	

C2	C1	 C3	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

(Bengio, 2009, Foundations and
Trends in Machine Learning)

Local vs. Distributed Representations

• 	Clustering,	Nearest	
Neighbors,	RBF	SVM,	local	

density	esFmators			

Learned	

prototypes	

Local	regions	

C3=0	

C1=1	

C1=0	

C3=0	
C3=0	

C2=1	

C2=1	C1=1	
C2=0	

C1=0	
C2=0	
C3=0	

C1=1	
C2=1	
C3=1	

C1=0	
C2=1	
C3=1	

C1=0	
C2=0	
C3=1	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	

Deep	models	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

C2	C1	 C3	

Local vs. Distributed Representations

• 	Clustering,	Nearest	
Neighbors,	RBF	SVM,	local	

density	esFmators			

Learned	

prototypes	

Local	regions	

C3=0	

C1=1	

C1=0	

C3=0	
C3=0	

C2=1	

C2=1	C1=1	
C2=0	

C1=0	
C2=0	
C3=0	

C1=1	
C2=1	
C3=1	

C1=0	
C2=1	
C3=1	

C1=0	
C2=0	
C3=1	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	

Deep	models	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

C2	C1	 C3	

Local vs. Distributed Representations

• 	Clustering,	Nearest	
Neighbors,	RBF	SVM,	local	

density	esFmators			

Learned	

prototypes	

Local	regions	

C3=0	

C1=1	

C1=0	

C3=0	
C3=0	

C2=1	

C2=1	C1=1	
C2=0	

C1=0	
C2=0	
C3=0	

C1=1	
C2=1	
C3=1	

C1=0	
C2=1	
C3=1	

C1=0	
C2=0	
C3=1	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	

Deep	models	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

• 	Each	parameter	affects	many	
regions,	not	just	local.	

• 	#	of	regions	grows	(roughly)	
exponenFally	in	#	of	parameters.	

C2	C1	 C3	

Local vs. Distributed Representations

Capacity of Neural Nets
•  Consider a single layer neural network 2Réseaux de neurones

-1 1

-1

1

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

sortie k

entrée i

cachée j
biais

Input

Hidden

Output

bias

(from Pascal Vincent’s slides)

Capacity of Neural Nets
•  Consider a single layer neural network

(from Pascal Vincent’s slides)

Universal Approximation
•  Universal Approximation Theorem (Hornik, 1991):

-  “a single hidden layer neural network with a linear output
unit can approximate any continuous function arbitrarily well,
given enough hidden units’’

•  This applies for sigmoid, tanh and many other activation
functions.

•  However, this does not mean that there is learning algorithm that
can find the necessary parameter values.

Deep Networks vs Shallow

1 hidden layer neural networks are already a universal function
approximator

Implies the expressive power of deep networks are no larger than
shallow networks

There always exists a shallow network that can represent any function
representable by a deep (multi-layer) neural network

But there can be cases where deep networks may be exponentially
more compact than shallow networks in terms of number of nodes
required to represent a function

This has substantial implications for memory, computation and data
e�ciency

Empirically often deep networks outperform shallower alternatives

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation

47

Winter 2018 43 / 44

Deep Neural Networks

Today: a brief introduction to deep neural networks

Definitions

Power of deep neural networks
Neural networks / distributed representations vs kernel / local
representations
Universal function approximator
Deep neural networks vs shallow neural networks

How to train neural nets

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 5: Value Function Approximation

48

Winter 2018 44 / 44

Feedforward Neural Networks
‣  How neural networks predict f(x) given an input x:

-  Forward propagation
-  Types of units
-  Capacity of neural networks

‣  How to train neural nets:
-  Loss function
-  Backpropagation with gradient descent

‣  More recent techniques:
-  Dropout
-  Batch normalization
-  Unsupervised Pre-training

Training
•  Empirical Risk Minimization:

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t)
;✓), y(t)) + �⌦(✓)

5

Loss function Regularizer

•  Learning is cast as optimization.

Ø  For classification problems, we would like to minimize
classification error.

Ø  Loss function can sometimes be viewed as a surrogate for
what we want to optimize (e.g. upper bound)

Stochastic Gradient Descend
•  Perform updates after seeing each example:
-  Initialize:

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

-  For t=1:T
-  for each training example

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t)
;✓), y(t)) + �⌦(✓)

• l(f(x(t)
;✓), y(t))

• ⌦(✓)

• � = � 1
T

P
tr✓l(f(x

(t)
;✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | r
x

f(x) = 0}

• v

>r2
x

f(x)v > 0 8v

• v

>r2
x

f(x)v < 0 8v

• � = �r✓l(f(x
(t)
;✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

5

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t)
;✓), y(t)) + �⌦(✓)

• l(f(x(t)
;✓), y(t))

• ⌦(✓)

• � = � 1
T

P
tr✓l(f(x

(t)
;✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | r
x

f(x) = 0}

• v

>r2
x

f(x)v > 0 8v

• v

>r2
x

f(x)v < 0 8v

• � = �r✓l(f(x
(t)
;✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t)
;✓), y(t)) + �⌦(✓)

• l(f(x(t)
;✓), y(t))

• ⌦(✓)

• � = � 1
T

P
tr✓l(f(x

(t)
;✓), y(t))� �r✓⌦(✓)

• ✓ ✓ + ↵ �

• {x 2 Rd | r
x

f(x) = 0}

• v

>r2
x

f(x)v > 0 8v

• v

>r2
x

f(x)v < 0 8v

• � = �r✓l(f(x
(t)
;✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

Training epoch
=

Iteration of all examples

•  To train a neural net, we need:

Ø  Loss function:
Ø  A procedure to compute gradients:
Ø  Regularizer and its gradient: ,

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Computational Flow Graph
•  Forward propagation can be represented
as an acyclic flow graph

•  Forward propagation can be implemented
in a modular way:

Ø  Each box can be an object with an fprop
method, that computes the value of the
box given its children

Ø  Calling the fprop method of each box in
the right order yields forward propagation

•  Each object also has a bprop method

•  By calling bprop in the reverse order, we
obtain backpropagation

-  it computes the gradient of the loss with
respect to each child box.

Computational Flow Graph

Model Selection
•  Training Protocol:

-  Train your model on the Training Set

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

5

-  For model selection, use Validation Set

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

5

Ø  Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

-  Estimate generalization performance using the Test Set

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T)

)

•
p(x(1), . . . ,x(T)

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

5

•  Generalization is the behavior of the model on unseen
examples.

Early Stopping
•  To select the number of epochs, stop training when validation set
error increases (with some look ahead).

Mini-batch, Momentum
•  Make updates based on a mini-batch of examples (instead of a
single example):

Ø  the gradient is the average regularized loss for that mini-batch

Ø  can give a more accurate estimate of the gradient

Ø  can leverage matrix/matrix operations, which are more efficient

•  Momentum: Can use an exponential average of previous
gradients:

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k ||W(k)||2F

• r
W

(k)⌦(✓) = 2W

(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• r
W

(k)⌦(✓) = sign(W

(k)
)

• sign(W

(k)
)i,j = 1

W

(k)
i,j >0

� 1

W

(k)
i,j <0

• W

(k)
i,j U [�b, b] b =

p
6p

Hk+Hk�1
Hk h

(k)
(x)

• a

(3)
(x) = b

(3)
+W

(3)
h

(2)

• a

(2)
(x) = b

(2)
+W

(2)
h

(1)

• a

(1)
(x) = b

(1)
+W

(1)
x

• h

(3)
(x) = o(a

(3)
(x))

• h

(2)
(x) = g(a

(2)
(x))

• h

(1)
(x) = g(a

(1)
(x))

• b

(3)
b

(2)
b

(1)

• W

(3)
W

(2)
W

(1)
x f(x)

• @f(x)
@x ⇡ f(x+✏)�f(x�✏)

2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

•
P1

t=1 ↵t = 1

•
P1

t=1 ↵
2
t < 1 ↵t

• ↵t =
↵

1+�t

• ↵t =
↵
t�

0.5 < �  1 �

• r(t)
✓ = r✓l(f(x

(t)
), y(t)) + �r(t�1)

✓

4

Ø  can get pass plateaus more quickly, by ‘‘gaining momentum’’

past

Learning Distributed Representations
•  Deep learning is research on learning models with multilayer
representations

Ø  multilayer (feed-forward) neural networks

Ø  multilayer graphical model (deep belief network, deep Boltzmann

machine)

•  Each layer learns ‘‘distributed representation’’

Ø  Units in a layer are not mutually exclusive

•  each unit is a separate feature of the input

•  two units can be ‘‘active’’ at the same time

Ø  Units do not correspond to a partitioning (clustering) of the inputs

•  in clustering, an input can only belong to a single cluster

Inspiration from Visual Cortex

Feedforward Neural Networks
‣  How neural networks predict f(x) given an input x:

-  Forward propagation
-  Types of units
-  Capacity of neural networks

‣  How to train neural nets:
-  Loss function
-  Backpropagation with gradient descent

‣  More recent techniques:
-  Dropout
-  Batch normalization
-  Unsupervised Pre-training

Why Training is Hard
•  First hypothesis: Hard optimization
problem (underfitting)

Ø  vanishing gradient problem

Ø  saturated units block gradient

propagation

•  This is a well known problem in
recurrent neural networks

Why Training is Hard
•  First hypothesis (underfitting): better optimize

Ø  Use better optimization tools (e.g. batch-normalization, second

order methods, such as KFAC)

Ø  Use GPUs, distributed computing.

•  Second hypothesis (overfitting): use better regularization

Ø  Unsupervised pre-training

Ø  Stochastic drop-out training

•  For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Unsupervised Pre-training
•  Initialize hidden layers using unsupervised learning

Ø  Force network to represent latent structure of input distribution

Ø  Encourage hidden layers to encode that structure

Unsupervised Pre-training
•  Initialize hidden layers using unsupervised learning

Ø  This is a harder task than supervised learning (classification)

Ø  Hence we expect less overfitting

Autoencoders: Preview
•  Feed-forward neural network trained to reproduce its input at the
output layer

Autoencoders

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

b
x = o(

b
a(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

P
k(bxk � xk)

2
l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

1

Decoder

Autoencoders

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

b
x = o(

b
a(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

P
k(bxk � xk)

2
l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder

For binary units

Autoencoders: Preview
•  Loss function for binary inputs

Autoencoders

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

b
x = o(c+W

⇤
h(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

P
k(bxk � xk)

2
l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

1

Ø  Cross-entropy error function

Autoencoders

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

b
x = o(

b
a(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

1
2

P
k(bxk � xk)

2
l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rb
a(x(t))l(f(x

(t)
)) =

b
x

(t) � x

(t)

a(x

(t)
) (= b+Wx

(t)

h(x

(t)
) (= sigm(a(x

(t)
))

b
a(x

(t)
) (= c+W

>
h(x

(t)
)

b
x

(t) (= sigm(

b
a(x

(t)
))

rb
a(x(t))l(f(x

(t)
)) (=

b
x

(t) � x

(t)

r
c

l(f(x

(t)
)) (= rb

a(x(t))l(f(x
(t)
))

r
h(x(t))l(f(x

(t)
)) (= W

⇣
rb

a(x(t))l(f(x
(t)
))

⌘

r
a(x(t))l(f(x

(t)
)) (=

⇣
r

h(x(t))l(f(x
(t)
))

⌘
� [. . . , h(x

(t)
)j(1� h(x

(t)
)j), . . .]

r
b

l(f(x

(t)
)) (= r

a(x(t))l(f(x
(t)
))

r
W

l(f(x

(t)
)) (=

⇣
r

a(x(t))l(f(x
(t)
))

⌘
x

(t)>
+ h(x

(t)
)

⇣
rb

a(x(t))l(f(x
(t)
))

⌘>

• W

⇤
= W

>

1

•  Loss function for real-valued inputs

Ø  sum of squared differences

Ø  we use a linear activation function at the output

Autoencoders

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

b
x = o(c+W

⇤
h(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

P
k(bxk � xk)2

1

Pre-training
•  We will use a greedy, layer-wise procedure

Ø  Train one layer at a time with unsupervised criterion

Ø  Fix the parameters of previous hidden layers

Ø  Previous layers can be viewed as feature extraction

Fine-tuning
•  Once all layers are pre-trained

Ø  add output layer
Ø  train the whole network using

supervised learning

•  We call this last phase fine-tuning

Ø  all parameters are ‘‘tuned’’ for the
supervised task at hand

Ø  representation is adjusted to be more
discriminative

Why Training is Hard
•  First hypothesis (underfitting): better optimize

Ø  Use better optimization tools (e.g. batch-normalization, second

order methods, such as KFAC)

Ø  Use GPUs, distributed computing.

•  Second hypothesis (overfitting): use better regularization

Ø  Unsupervised pre-training

Ø  Stochastic drop-out training

•  For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Dropout
•  Key idea: Cripple neural network by removing hidden units
stochastically

Ø  each hidden unit is set to 0 with
probability 0.5

Ø  hidden units cannot co-adapt to
other units

Ø  hidden units must be more
generally useful

•  Could use a different dropout
probability, but 0.5 usually works well

Dropout
•  Use random binary masks m(k)

Ø  layer pre-activation for k>0

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

(x) (h

(0)

(x) = x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

Ø  hidden layer activation (k=1 to L):

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

Ø  Output activation (k=L+1)

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

this symbol may confuse some

Dropout at Test Time
•  At test time, we replace the masks by their expectation

Ø  This is simply the constant vector 0.5 if dropout probability is 0.5

Ø  For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

•  Can be combined with unsupervised pre-training

•  Beats regular backpropagation on many datasets

•  Ensemble: Can be viewed as a geometric average of exponential
number of networks.

Why Training is Hard
•  First hypothesis (underfitting): better optimize

Ø  Use better optimization tools (e.g. batch-normalization, second

order methods, such as KFAC)

Ø  Use GPUs, distributed computing.

•  Second hypothesis (overfitting): use better regularization

Ø  Unsupervised pre-training

Ø  Stochastic drop-out training

•  For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Batch Normalization
•  Normalizing the inputs will speed up training (Lecun et al. 1998)

Ø  could normalization be useful at the level of the hidden layers?

•  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2014)

Ø  each unit’s pre-activation is normalized (mean subtraction, stddev

division)

Ø  during training, mean and stddev is computed for each minibatch

Ø  backpropagation takes into account the normalization

Ø  at test time, the global mean / stddev is used

Batch Normalization

Learned linear transformation to adapt to non-linear
activation function (! and β are trained) and β are trained)

•  Why normalize the pre-activation?

Ø  can help keep the pre-activation in a non-saturating regime
(though the linear transform could cancel this
effect)

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Batch Normalization

•  Use the global mean and stddev at test time.

Ø  removes the stochasticity of the mean and stddev

Ø  requires a final phase where, from the first to the last hidden layer
•  propagate all training data to that layer
•  compute and store the global mean and stddev of each unit

Ø  for early stopping, could use a running average

	my1
	my2
	my3
	my4
	Generalized Policy Iteration
	Importance of Exploration
	Monte Carlo Control
	Temporal Difference Methods for Control
	Maximization Bias

	my5
	Introduction
	VFA for Prediction
	Control using Value Function Approximation
	Deep Learning

