
Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:

Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:

Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step
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The RL Problem

State

History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1,A1, ...,At−1,Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
The agent selects actions
The environment selects observations/rewards

State is the information used to determine what happens next

Formally, state is a function of the history:

St = f (Ht)
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The RL Problem

State

Environment State

observation

reward

action

At

Rt

Ot

St
eenvironment state

The environment state Se
t is

the environment’s private
representation

i.e. whatever data the
environment uses to pick the
next observation/reward

The environment state is not
usually visible to the agent

Even if Se
t is visible, it may

contain irrelevant
information
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The RL Problem

State

Agent State

observation

reward

action

At

Rt

Ot

St
aagent state

The agent state Sa
t is the

agent’s internal
representation

i.e. whatever information
the agent uses to pick the
next action

i.e. it is the information
used by reinforcement
learning algorithms

It can be any function of
history:

Sa
t = f (Ht)
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The RL Problem

State

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St ] = P[St+1 | S1, ...,St ]

“The future is independent of the past given the present”

H1:t → St → Ht+1:∞

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future

The environment state Se
t is Markov

The history Ht is Markov
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The RL Problem

State

Fully Observable Environments

state

reward

action

At

Rt

St

Full observability: agent directly
observes environment state

Ot = Sa
t = Se

t

Agent state = environment
state = information state

Formally, this is a Markov
decision process (MDP)

(Next lecture and the
majority of this course)
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The RL Problem

State

Partially Observable Environments

Partial observability: agent indirectly observes environment:

A robot with camera vision isn’t told its absolute location
A trading agent only observes current prices
A poker playing agent only observes public cards

Now agent state 6= environment state

Formally this is a partially observable Markov decision process
(POMDP)

Agent must construct its own state representation Sa
t , e.g.

Complete history: Sa
t = Ht

Beliefs of environment state: Sa
t = (P[Se

t = s1], ...,P[Se
t = sn])

Recurrent neural network: Sa
t = σ(Sa

t−1Ws + OtWo)
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Inside An RL Agent

Major Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent’s behaviour function
Value function: how good is each state and/or action
Model: agent’s representation of the environment
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Inside An RL Agent

Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: a = π(s)

Stochastic policy: π(a|s) = P[At = a|St = s]
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Inside An RL Agent

Value Function

Value function is a prediction of future reward

Used to evaluate the goodness/badness of states

And therefore to select between actions, e.g.

vπ(s) = Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
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Inside An RL Agent

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward, e.g.

Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]
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Inside An RL Agent

Categorizing RL agents (1)

Value Based

No Policy (Implicit)
Value Function

Policy Based

Policy
No Value Function

Actor Critic

Policy
Value Function
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Inside An RL Agent

Categorizing RL agents (2)

Model Free

Policy and/or Value Function
No Model

Model Based

Policy and/or Value Function
Model
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Problems within RL

Learning and Planning

Two fundamental problems in sequential decision making

Reinforcement Learning:

The environment is initially unknown
The agent interacts with the environment
The agent improves its policy

Planning:

A model of the environment is known
The agent performs computations with its model (without any
external interaction)
The agent improves its policy
a.k.a. deliberation, reasoning, introspection, pondering,
thought, search
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Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores
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Problems within RL

Atari Example: Planning

Rules of the game are known

Can query emulator

perfect model inside agent’s brain

If I take action a from state s:

what would the next state be?
what would the score be?

Plan ahead to find optimal policy

e.g. tree search

right left

right rightleft left
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Problems within RL

Exploration and Exploitation (1)

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy

From its experiences of the environment

Without losing too much reward along the way
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Problems within RL

Exploration and Exploitation (2)

Exploration finds more information about the environment

Exploitation exploits known information to maximise reward

It is usually important to explore as well as exploit
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Problems within RL

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant
Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert
Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location
Exploration Drill at a new location

Game Playing

Exploitation Play the move you believe is best
Exploration Play an experimental move
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Problems within RL

Prediction and Control

Prediction: evaluate the future

Given a policy

Control: optimise the future

Find the best policy
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Markov Processes

Markov Chains

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states S1, S2, ... with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple 〈S,P〉
S is a (finite) set of states

P is a state transition probability matrix,
Pss′ = P [St+1 = s ′ | St = s]
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Markov Reward Processes

MRP

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple 〈S,P,R, γ〉
S is a finite set of states

P is a state transition probability matrix,
Pss′ = P [St+1 = s ′ | St = s]

R is a reward function, Rs = E [Rt+1 | St = s]

γ is a discount factor, γ ∈ [0, 1]
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Markov Reward Processes

Return

Return

Definition

The return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards

The value of receiving reward R after k + 1 time-steps is γkR.

This values immediate reward above delayed reward.

γ close to 0 leads to ”myopic” evaluation
γ close to 1 leads to ”far-sighted” evaluation
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Markov Reward Processes

Value Function

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) = E [Gt | St = s]
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Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs

The value function can be decomposed into two parts:

immediate reward Rt+1

discounted value of successor state γv(St+1)

v(s) = E [Gt | St = s]

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + ...) | St = s]

= E [Rt+1 + γGt+1 | St = s]

= E [Rt+1 + γv(St+1) | St = s]
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Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs

The value function can be decomposed into two parts:

immediate reward Rt+1

discounted value of successor state γv(St+1)

v(s) = E [Gt | St = s]

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + ...) | St = s]

= E [Rt+1 + γGt+1 | St = s]

= E [Rt+1 + γv(St+1) | St = s]
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Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs (2)

v(s) = E [Rt+1 + γv(St+1) | St = s]

v(s) 7!s

v(s0) 7!s0
r

v(s) = Rs + γ
∑
s′∈S
Pss′v(s ′)
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Markov Reward Processes

Bellman Equation

Example: Bellman Equation for Student MRP

10-13 1.5 4.3

0-23

R = +10

0.5

0.5

0.2
0.8 0.6

0.4

0.9

0.1

R = +1

R = -1 R = 0

0.8

R = -2 R = -2 R = -2

0.2
0.4

0.4

1.0

4.3 = -2 + 0.6*10 + 0.4*0.8
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Markov Reward Processes

Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R+ γPv

where v is a column vector with one entry per state

v(1)
...

v(n)

 =

R1
...
Rn

+ γ

P11 . . . P1n
...
P11 . . . Pnn


v(1)

...
v(n)


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Markov Reward Processes

Bellman Equation

Solving the Bellman Equation

The Bellman equation is a linear equation

It can be solved directly:

v = R+ γPv
(I − γP) v = R

v = (I − γP)−1R

Computational complexity is O(n3) for n states

Direct solution only possible for small MRPs

There are many iterative methods for large MRPs, e.g.
Dynamic programming
Monte-Carlo evaluation
Temporal-Difference learning
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Markov Decision Processes

MDP

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple 〈S,A,P,R, γ〉
S is a finite set of states

A is a finite set of actions

P is a state transition probability matrix,
Pa
ss′ = P [St+1 = s ′ | St = s,At = a]

R is a reward function, Ra
s = E [Rt+1 | St = s,At = a]

γ is a discount factor γ ∈ [0, 1].
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Markov Decision Processes

MDP

Example: Student MDP

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0
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Markov Decision Processes

Policies

Policies (1)

Definition

A policy π is a distribution over actions given states,

π(a|s) = P [At = a | St = s]

A policy fully defines the behaviour of an agent

MDP policies depend on the current state (not the history)

i.e. Policies are stationary (time-independent),
At ∼ π(·|St),∀t > 0
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Markov Decision Processes

Policies

Policies (2)

Given an MDP M = 〈S,A,P,R, γ〉 and a policy π

The state sequence S1, S2, ... is a Markov process 〈S,Pπ〉
The state and reward sequence S1,R2,S2, ... is a Markov
reward process 〈S,Pπ,Rπ, γ〉
where

Pπs,s′ =
∑
a∈A

π(a|s)Pa
ss′

Rπs =
∑
a∈A

π(a|s)Ra
s
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Markov Decision Processes

Value Functions

Value Function

Definition

The state-value function vπ(s) of an MDP is the expected return
starting from state s, and then following policy π

vπ(s) = Eπ [Gt | St = s]

Definition

The action-value function qπ(s, a) is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ [Gt | St = s,At = a]
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Markov Decision Processes

Value Functions

Example: State-Value Function for Student MDP

-1.3 2.7 7.4

0-2.3

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

vπ(s) for π(a|s)=0.5, γ =1
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ [Rt+1 + γqπ(St+1,At+1) | St = s,At = a]
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for V π

v⇡(s) 7!s

q⇡(s, a) 7!a

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for Qπ

v⇡(s0) 7!s0

q⇡(s, a) 7!s, a

r

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′vπ(s ′)



Lecture 2: Markov Decision Processes

Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for vπ (2)

v⇡(s0) 7!s0

v⇡(s) 7!s

r

a

vπ(s) =
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa
ss′vπ(s ′)

)
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for qπ (2)

q⇡(s, a) 7!s, a

q⇡(s0, a0) 7!a0

r

s0

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′, a′)
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Markov Decision Processes

Bellman Expectation Equation

Example: Bellman Expectation Equation in Student MDP

-1.3 2.7 7.4

0-2.3

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

7.4 = 0.5 * (1 + 0.2* -1.3 + 0.4 * 2.7 + 0.4 * 7.4) 
+ 0.5 * 10
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed concisely
using the induced MRP,

vπ = Rπ + γPπvπ

with direct solution

vπ = (I − γPπ)−1Rπ
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Markov Decision Processes

Optimal Value Functions

Optimal Value Function

Definition

The optimal state-value function v∗(s) is the maximum value
function over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s, a) is the maximum
action-value function over all policies

q∗(s, a) = max
π

qπ(s, a)

The optimal value function specifies the best possible
performance in the MDP.
An MDP is “solved” when we know the optimal value fn.
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Markov Decision Processes

Optimal Value Functions

Example: Optimal Value Function for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

v*(s) for γ =1
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Markov Decision Processes

Optimal Value Functions

Example: Optimal Action-Value Function for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

q*(s,a) for γ =1

q* =5

q* =6

q* =6

q* =5

q* =8

q* = 0

q* =10

q* =8.4
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Markov Decision Processes

Optimal Value Functions

Optimal Policy

Define a partial ordering over policies

π ≥ π′ if vπ(s) ≥ vπ′(s),∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal
to all other policies, π∗ ≥ π,∀π
All optimal policies achieve the optimal value function,
vπ∗(s) = v∗(s)

All optimal policies achieve the optimal action-value function,
qπ∗(s, a) = q∗(s, a)
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Markov Decision Processes

Optimal Value Functions

Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

π∗(a|s) =

{
1 if a = argmax

a∈A
q∗(s, a)

0 otherwise

There is always a deterministic optimal policy for any MDP

If we know q∗(s, a), we immediately have the optimal policy
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Markov Decision Processes

Optimal Value Functions

Example: Optimal Policy for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

π*(a|s) for γ =1

q* =5

q* =6

q* =6

q* =5

q* =8

q* =0

q* =10

q* =8.4
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for v∗

The optimal value functions are recursively related by the Bellman
optimality equations:

v⇤(s) 7!s

q⇤(s, a) 7!a

v∗(s) = max
a

q∗(s, a)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q∗

q⇤(s, a) 7!s, a

v⇤(s
0) 7!s0

r

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′v∗(s

′)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for V ∗ (2)

v⇤(s
0) 7!s0

v⇤(s) 7!s

a

r

v∗(s) = max
a
Ra

s + γ
∑
s′∈S
Pa
ss′v∗(s

′)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q∗ (2)

q⇤(s
0, a0) 7!a0

r

q⇤(s, a) 7!s, a

s0

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′max

a′
q∗(s

′, a′)
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Markov Decision Processes

Bellman Optimality Equation

Example: Bellman Optimality Equation in Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

6 = max {-2 + 8,  -1 + 6}
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Markov Decision Processes

Bellman Optimality Equation

Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear

No closed form solution (in general)

Many iterative solution methods

Value Iteration
Policy Iteration
Q-learning
Sarsa
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