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Background



Where are we...?

• We are now all proficient in understanding deep neural

networks and how to optimize them

• But... many research frontiers in deep learning involve

probabilistic models of the input pmodelpxq

• We are often interested in using probabilistic inference to

predict any of the variables in its environment, given any of

the other variables

*** 99% of the material today is heavily borrowed from the Deep

Learning textbook
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Latent variables

• Many probabilistic models have latent variables, h, with

pmodelpxq “ Ehpmodelpx|hq

• Latent variables are another way to represent the data

• Idea: distributed representations based on latent variables can

obtain all of the advantages of learning which we have seen

with deep networks
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Latent variables: a review

• Latent variables, as opposed to observable variables, are

variables that are not observed but instead inferred from

observed variables

• Latent variable models are used in: psychology, economics,

engineering, medicine, physics, ML/AI, bioinformatics, NLP,

management, and pretty much everywhere else
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Example of a latent variable

• In economics, we are often interested in measuring things such

as quality of life, morale, happiness, and other things

• These things cannot be directly measured!

• The idea is to link these latent variables to observable

variables

• For example, perhaps quality of life can be inferred from some

linear combination of wealth, employment, environment,

physical health, education, leisure time, etc...
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Linear Factor Models



Back to deep learning...

• As an introduction to probabilistic models with latent

variables, we start with one of the simplest classes: linear

factor models

• Warning: you may not be implementing any linear factor

models to solve state-of-the-art problems, but they provide a

nice building block for mixture models or deeper probabilistic

models

• Many of the approaches we discuss today are necessary to

build generative models that more advanced deep models

(keep coming to class!) models will expand upon
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Linear factor models

• Defined by the use of a stochastic, linear decoder that

generates x by adding noise to a linear transformation of h

• Allow us to discover explanatory factors that have a simple

joint distribution

• Simplicity of the linear decoder motivated these as some of

the first latent variable models
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Linear factor models (LFMs)

LFMs describe the data generation process as follows:

1. Sample the explanatory factors h from a distribution

h „ pphq

where pphq is a factorial distribution (i.e. pphq “
ś

i pphi q

2. Sample the real-valued observable variables given the factors:

x “Wh` b` noise

where the noise is typically Gaussian and diagonal
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LFMs illustrated
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Types of LFMs

• The directed graphical model on the previous slide describes

the LFM family, where we assume that observed x is obtained

by a linear combination of independent latent factors h, plus

some noise

• Different types of LFMs make different choices about the form

of the noise and of the prior pphq

• We will touch upon:

• Probabilistic PCA and factor analysis

• Independent component analysis (ICA)

• Slow feature analysis

• Sparse coding
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Factor analysis

• (Batholomew, 1987; Basilevsky, 1994)

• Here, the latent variable prior is just the unit variance

Gaussian:

h „ Nph; 0, Iq

• Observed values xi are assumed to be conditionally

independent given h

• That is, the noise is assumed to be drawn from a diagonal

covariance Gaussian distribution, with covariance matrix

ψ “ diagpσ21, ..., σ
2
nq

• The latent variables should capture the dependencies

between the observed variables xi

• Can show that x is a multivariate normal:

x „ Npx;b,WWT ` ψq
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Probabilistic PCA



From factor analysis to probabilistic PCA

• A slight modification to the factor analysis model allows us to

cast PCA in a probabilistic framework: make the conditional

variances σ2i equal to each other

• Now we have:

x „ Npx;b,WWT ` σ2Iq

• Equivalently:

x “Wh` b` σz

where z „ Npz; 0, Iq is Gaussian noise

• Can use an iterative EM algorithm to estimate W and σ2

(Tipping and Bishop (1999))
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Probabilistic PCA

• Probabilistic PCA takes advantage of the observation that

most variations in the data can be captured by the latent

variables, h, up to some small residual reconstruction error

σ2

• Tipping and Bishop (1999) showed that probabilistic PCA

becomes PCA as σ Ñ 0
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Relationship between PCA and probabilistic PCA

• As σ Ñ 0, the conditional expectation of h given x becomes

an orthogonal projection of x´ b onto the space spanned by

the d columns of W

• As σ Ñ 0, the density model defined by probabilistic PCA

becomes very sharp around the d dimensions spanned by the

columns of W

• This may cause the model to assign low likelihood to data if

the data does not actually cluster near a hyperplane
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Motivation behind probabilistic PCA

• In standard PCA, we assume linearity (bases of linear

combinations of the measurement-basis), that large variances

= import structure, and that principal components are

orthogonal

• Linearity is not always justifiable!

• Calculating the covariance matrix can be very expensive in

high-dimensional or big data settings

• De-correlation is not always the best approach (first and

second order statistics are not always sufficient for revealing

all dependencies in data, i.e. Gaussian data)
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More motivation behind probabilistic PCA

• May not have enough data for full-rank sample covariance

• Even if we do, computing it is OpNp2q

• EM-based PCA has OpkNPq complexity

• Can start to apply Bayesian inference

• pPCA defines a proper covariance structure, with parameters

estimable via the EM algorithm

• pPCA can be used as a constrained Gaussian density model

(classification, novelty direction, ...)
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Independent Component Analysis



Independent component analysis (ICA)

• One of the oldest representation learning algorithms

• Models linear factors by seeking to separate an observed signal

into underlying signals that are scaled and added together

• The underlying signals are intended to be fully independent

• D many variants
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ICA

• A variant from Pham et al trains parametric generative model

• The prior pphq is fixed

• The model deterministically generates x “Wh

• A nonlinear change of variables allows us to determine ppxq

• Learning the model proceeds by using maximum likelihood
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Motivation behind ICA

• By choosing pphq to be independent, can recover factors that

are as close as possible to independent

• Used to recover low-level signals that have been mixed

• Here, each data point xi is one sensor’s observation of the

mixed signals, and each hi is one estimate of the original

signals

• Example: we have n people speaking simultaneously in n

different microphones in different locations, ICA can detect

changes in the volume between each speaker as heard by each

microphone and separate the signals so that each hi contains

only one person speaking clearly
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Applications of ICA

• Optical imaging of neurons

• Neuronal spike sorting

• Facial recognition

• Removing artifacts (i.e. eye blinks) from EEG

(electroencephalography) data

• Predicting stock market prices

• Mobile phone communications
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More on ICA...

• Some variants add noise in the generation of x instead of

using a deterministic decoder

• Most aim to make elements of h “W´1x independent from

each other

• Restricting W to be orthogonal may reduce computational

cost

• ALL variants of ICA require pphq to be non-Gaussian

• Typical choice: pphi q “
d
dhi
σphi q

• Larger peaks near 0 may cause ICA to learn sparse features

• Not all variants are generative models (ICA often used as an

analysis tool for separating signals rather then generating data

or estimating its density)
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Generalizations of ICA: nonlinearity

• ICA can be generalized to a nonlinear generative model

(Hyvarinen and Pajunen (1999))

• Nonlinear independent components estimation (NICE)
(Dinh et al, 2014)

• Stacks a series of invertible transformations (encoder stages)

with the property of having the determinant of the Jacobian of

each transformation being easily computable

• Can compute the likelihood exactly

• Attempts to transform the data into a space where it has a

factorized marginal distribution, BUT is more likely to succeed

because of the nonlinear encoder

• Each encoder has a decoder that is its perfect inverse!
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Generalizations of ICA: relaxation of independence within sub-

groups

• Suppose we want to learn groups of features instead of

individuals features

• We may allow statistical dependence within groups but have it

discouraged between groups

• When the groups of related units are non-overlapping, this is

called independent subspace analysis

• Can assign spatial coordinates to hidden unit and form

overlapping groups of spatially neighboring units, encouraging

nearby units to learn similar features

• Applied to natural images, topographic ICA learns Gabor

filters (neighboring filters have similar orientation, location, or

frequency)
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Slow Feature Analysis



Slow feature analysis (SFA)

• SFA uses information from time signals to learn invariant

features (Wiskott and Sejnowski 2002)

• Motivated by the slowness principle

• Important characteristics of scenes change slowly compared to

individual measurements that make up the description of a

scene

• Example: a zebra moves from left to right across an image;

individual pixels change rapidly as the zebra’s stripes pass over,

but the feature that indicates whether a zebra is in the image

doesn’t change, and the image indicating the zebra’s position

changes very slowly

• Want to regularize our model to learn features that change

slowly over time
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The slowness principle

• Can apply the slowness principle to any differentiable model

trained with gradient descent

• To do so, add a cost function of the form

λ
ÿ

t

Lpf px t`1q, f px tqq

where λ is a hyperparameter that determines the strength of

the slowness regularization, t is the time index, f is the feature

extractor, and L is a loss function
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The slowness principle visualized
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Slow feature analysis

• SFA applies a linear feature extractor and can be trained in

closed form

• SFA is not quite a generative model - it defines a linear map
between input space and feature space

• Does not impose a prior over the feature space and thus

doesn’t impose a distribution ppxq on the input space
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The SFA algorithm

• Define f px; θq to be a linear transformation and solve the

optimization problem:

minθEtpf px
pt`1qqi ´ f pxptqqi q

2

subject to the constraints

Et f px
ptqqi “ 0

and

Etrf px
ptqq2i s “ 1

• The mean 0 constraint of the learned feature is necessary for

the solution to be unique

• The unit variance constraint is necessary to prevent the

solution where all features collapse to 0
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More SFA

• Learned features are ordered, with the first being the slowest

(similar to PCA)

• To learn multiple features, add the third constraint:

@i ă j ,Etrf px
ptqqi f pptqqj s “ 0

• The above constraint specifies that the features must be

linearly decorrelated from each other

• Without it, all of the learned features would capture the

slowest feature

• The SFA problem can be solved in closed form by a linear

algebra package
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Even more SFA...

• SFA is typically used to learn nonlinear features by applying a

nonlinear basis expansion to x before running SFA

• Linear SFA models can be composed to learn deep nonlinear

slow feature extractors

• For example, first learn a linear SFA extractor, apply a

nonlinear basis expansion to the output, and then learn

another linear SFA feature extractor on that expansion
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SFA is biologically plausible

• When trained on small patches of videos of natural scenes,

SFA with quadratic basis expansions learns features that are

similar to those of complex cells in the V1 cortex! (Berkes and

Wiskott, 2005)

• When trained on videos of random motion in 3-D computer

rendered environments, deep SFA learns features represented

by neurons in rat brains that are used for navigation (Franzius

et al, 2007)

s
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SFA Audio example
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SFA: closing thoughts

• So far, the slowness principle has not become the basis for any

state of the art applications

• Unclear what causes the limited performance

• The slowness prior might be too strong?

• Perhaps it is better to impose a prior that features should be

easy to predict from one time step to the next

• Object position is a useful feature regardless of its speed, but

the slowness principle encourages the model to ignore

positions of objects with high speeds
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Sparse Coding



Sparse coding (Olshausen and Field, 1996)

• A linear factor model that is used for unsupervised feature

learning and feature extraction

• ”Sparse coding” refers to the process of inferring the value of

h in this model

• Like most linear factor models, it uses a linear decoder plus

noise to obtain a reconstruction of x
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Sparse coding: model

• Sparse coding models assume that the linear factors have

Gaussian noise with isotropic precision β:

ppx|hq “ Npx;Wh` b,
1

β
Iq

• pphq is chosen to have sharp peaks near 0

• For example, the Laplace distribution (with sparsity coefficient

λ:

pphi q “ Laplacephi ; 0,
2

λ
q “

λ

4
e´

1
2
λ|hi |

and the Student-t prior:

pphi q9
1

p1`
h2i
ν q

ν`1
2
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Sparse coding: training

• Cannot train sparse coding with maximum likelihood

• Training alternates between encoding the data and training

the decoder to better reconstruct the data given the encoder

• Unlike PCA, the encoder with sparse coding is non-parametric

• The encoder solves the optimization problem in which we seek

the single most likely code value:

h˚ “ f pxq “ argmaxhpph|xq

• Adding the assumption of Gaussian noise and a Laplacian

prior, this becomes:

argmaxhpph|xq

“ argmaxhlogppph|xqq

“ argminhλ||h||1 ` β||x´Wh||22
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Sparse coding

• In principle, the non-parametric encoder in sparse coding can

minimize the combination of reconstruction error and log-prior

better than any parametric encoder

• There is no generalization error to the encoder

• When the inference problem is convex, the optimization

procedure will always find the optimal code

• Coates and Ng (2011) found that sparse coding features

generalize better for object recognition tasks than features of

a model based on a parametric encoder, such as a

linear-sigmoid autoencoder

• Goodfellow et al (2013d) showed that a variant of sparse

coding generalizes better than other feature extractors when

very few labels are available (20 or fewer per class)
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Sparse coding visualization
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Sparse coding reconstruction
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Disadvantages of sparse coding

• Non-parametric encoder requires greater time to compute h

given x because it requires running an iterative algorithm
• It is not straight-forward to back-propogate through the

non-parametric encoder
• Makes it difficult to pre-train a sparse coding model with an

unsupervised criterion and then fine-tune it using a supervised

criterion

• Often produce poor samples, even when the model is able to
reconstruct the data well and provide useful features for a
classifier

• Each feature may be learned well, but the factorial prior on the

hidden code causes the model to include random subsets of all

features

• Motivates the development of deeper model that impose a

non-factorial distribution on the deepest layer code, or more

sophisticated shallow models
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Manifold Learning



Manifold interpretation of PCA

• Linear factor models, including PCA and factor analysis, can

be interpreted as learning a manifold
• Probabilistic PCA can be viewed as defining a thin

pancake-shaped region of high probability
• A Gaussian distribution that is very narrow along some axes,

and wide along others
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Manifold interpretation of PCA

• PCA can be interpreted as aligning the pancake with a linear

manifold in higher-dimensional space

• This interpretation applies to any linear autoencoder that

learns matrices W and V with the goal of making the

reconstruction of x lie as close to x as possible

• Let the encoder be:

h “ f pxq “WT px ´ µq

• The encoder computes a low-dimensional representation of h

• The decoder computes the reconstruction as:

x̂ “ gphq “ b` Vh
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Manifold interpretation of PCA

• The choices of linear encoder and decoder that minimize the

reconstruction error:

E r||x´ x̂||2s

correspond to V “W and µ “ b “ E rxs

• The columns of W form an orthonormal basis that spans the

same subspace as the principal eigenvectors of the covariance

matrix, C

• In PCA, the columns of W are the eigenvectors, ordered by

the magnitude of their eigenvalues

• The eigenvalue λi of C corresponds to the variance of x in the

direction of eigenvector vpiq
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Other manifold learning methods

• Isomap

• Locally-linear embedding

• Spectral clustering

• t-SNE (t-distributed stochastic neighbor embedding)

• https://artsexperiments.withgoogle.com/tsnemap/

• https://distill.pub/2016/misread-tsne/

• Nonlinear PCA

• Diffusion maps

• Multidimensional scaling (MDS)

• Many more...

• http://colah.github.io/posts/2014-10-Visualizing-MNIST/
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Other factor analysis techniques

• Isomaps

• (Deep) canonical factor analysis

• Multiple factor analysis

• Common factor analysis

• Image factoring

• Alpha factoring

• Factor regression model
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Next steps...

• LFMs are some of the simplest generative models and some of

the simplest models that learn to represent data

• Akin to how linear regression models extend to deep

feed-forward networks, LFMs may be extended to

autoencoders and deep probabilistic models that perform the

same task but are much more powerful and flexible
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Questions?
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