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2With many slides for DQN from David Silver and Ruslan Salakhutdinov and some
vision slides from Gianni Di Caro and images from Stanford CS231n,
http://cs231n.github.io/convolutional-networks/
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Generalization

Want to be able use reinforcement learning to tackle self-driving cars,
Atari, consumer marketing, healthcare, education

Most of these domains have enormous state and/or action spaces

Requires representations (of models / state-action values / values /
policies) that can generalize across states and/or actions

Represent a (state-action/state) value function with a parameterized
function instead of a table
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Recall: The Benefit of Deep Neural Network Approximators

Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state
Linear VFA often work well given the right set of features
But can require carefully hand designing that feature set
An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features
Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can’t typically scale well to enormous spaces and datasets
Alternative: use deep neural networks

Uses distributed representations instead of local representations
Universal function approximator
Can potentially need exponentially less nodes/parameters (compared to
a shallow net) to represent the same function

Last time discussed basic feedforward deep networks
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Generalization

Using function approximation to help scale up to making decisions in
really large domains

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning 39 Winter 2018 36 / 67



Deep Reinforcement Learning

Use deep neural networks to represent

Value function
Policy
Model

Optimize loss function by stochastic gradient descent (SGD)
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Deep Q-Networks (DQNs)

Represent value function by Q-network with weights w

q̂(s, a,w) ≈ q(s, a) (1)
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Recall: Action-Value Function Approximation with an
Oracle

q̂π(s, a,w) ≈ qπ

Minimize the mean-squared error between the true action-value
function qπ(s, a) and the approximate action-value function:

J(w) = Eπ[(qπ(s, a)− q̂π(s, a,w))2] (2)

Use stochastic gradient descent to find a local minimum

−1

2
5W J(w) = E [(qπ(s, a)− q̂π(s, a,w))5w q̂π(s, a,w)] (3)

∆(w) = −1

2
α5w J(w) (4)

Stochastic gradient descent (SGD) samples the gradient
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Recall: Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − q̂(st , at ,w))5w q̂(st , at ,w) (5)

For SARSA instead use a TD target r + γq̂(s ′, a′,w) which leverages
the current function approximation value

∆w = α(r + γq̂(s ′, a′,w)− q̂(s, a,w))5w q̂(s, a,w) (6)

For Q-learning instead use a TD target r + γmaxa q̂(s ′, a′,w) which
leverages the max of the current function approximation value

∆w = α(r + γmax
a′

q̂(s ′, a′,w)− q̂(s, a,w))5w q̂(s, a,w) (7)
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Using these ideas to do Deep RL in Atari
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
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Q-Learning with Value Function Approximation

Minimize MSE loss by stochastic gradient descent

Converges to optimal q using table lookup representation

But Q-learning with VFA can diverge

Two of the issues causing problems:

Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses both of these challenges by

Experience replay
Fixed Q-targets
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DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D
from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ q̂(s ′, a′,w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

q̂(s ′, a′,w)− q̂(s, a,w))∇w q̂(s, a,w) (8)
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Can treat the target as a scalar, but the weights will get updated on
the next round, changing the target value
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DQNs: Fixed Q-Targets

To help improve stability, fix the target network weights used in the
target calculation for multiple updates

Use a different set of weights to compute target than is being updated

Let parameters w− be the set of weights used in the target, and w
be the weights that are being updated

Slight change to computation of target value:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ q̂(s ′, a′,w−)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

q̂(s ′, a′,w−)− q̂(s, a,w))∇w q̂(s, a,w) (10)
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQN Results in Atari
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317

Enduro 62 29 141 831 1006

River Raid 2345 1453 2868 4102 7447

Seaquest 656 275 1003 823 2894

Space
Invaders

301 302 373 826 1089

Replay is hugely important item Why? Beyond helping with
correlation between samples, what does replaying do?
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Deep RL

Success in Atari has lead to huge excitement in using deep neural
networks to do value function approximation in RL

Some immediate improvements (many others!)

Double DQN
Dueling DQN (best paper ICML 2016)
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Double DQN

Recall maximization bias challenge

Max of the estimated state-action values can be a biased estimate of
the max

Double Q-learning
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Recall: Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then

Q1(st , at)← Q1(st , at)+α(rt+Q1(st+1, arg max
a′

Q2(st+1, a
′))−Q1(st , at))

(11)

6: else

Q2(st , at)← Q2(st , at)+α(rt+Q2(st+1, arg max
a′

Q1(st+1, a
′))−Q2(st , at))

7: end if
8: t = t + 1
9: end loop

This was using a lookup table representation for the state-action value
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Double DQN

Extend this idea to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
q̂(arg max

a′
q̂(s ′, a′,w)︸ ︷︷ ︸

Action selection: w

,w−)−q̂(s, a,w)) (12)
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Double DQN
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Double DQN

Figure: van Hasselt, Guez, Silver, 2015
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Value & Advantage Function

Intuition: Features need to pay attention to determine value may be
different than those need to determine action benefit

E.g.

Game score may be relevant to predicting V (s)
But not necessarily in indicating relative action values

Advantage function (Baird 1993)

Aπ(s, a) = Qπ(s, a)− V π(s)
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Dueling DQN

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning 62 Winter 2018 59 / 67



Identifiability

Advantage function

Aπ(s, a) = Qπ(s, a)− V π(s)

Identifiable?
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Identifiability

Advantage function

Aπ(s, a) = Qπ(s, a)− V π(s)

Unidentifiable

Option 1: Force A(s, a) = 0 if a is action taken

q̂(s, a; w) = v̂(s; w) +

(
A(s, a; w)−max

a′∈A
A(s, a′; w)

)
Option 2: Use mean as baseline (more stable)

q̂(s, a; w) = v̂(s; w) +

(
A(s, a; w)− 1

|A|
∑
a′

A(s, a′; w)

)

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning 64 Winter 2018 61 / 67



V.S. DDQN with Prioritized Replay
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Practical Tips for DQN on Atari (from J. Schulman)

DQN is more reliable on some Atari tasks than others. Pong is a
reliable task: if it doesn’t achieve good scores, something is wrong

Large replay buffers improve robustness of DQN, and memory
efficiency is key

Use uint8 images, don’t duplicate data

Be patient. DQN converges slowly—for ATARI it’s often necessary to
wait for 10-40M frames (couple of hours to a day of training on GPU)
to see results significantly better than random policy

In our Stanford class: Debug implementation on small test
environment
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Practical Tips for DQN on Atari (from J. Schulman) cont.

Try Huber loss on Bellman error

L(x) =

{
x2

2 if |x | ≤ δ
δ|x | − δ2

2 otherwise
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Practical Tips for DQN on Atari (from J. Schulman) cont.

Try Huber loss on Bellman error

L(x) =

{
x2

2 if |x | ≤ δ
δ|x | − δ2

2 otherwise

Consider trying Double DQN—significant improvement from 3-line
change in Tensorflow.

To test out your data pre-processing, try your own skills at navigating
the environment based on processed frames

Always run at least two different seeds when experimenting

Learning rate scheduling is beneficial. Try high learning rates in initial
exploration period

Try non-standard exploration schedules
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Class Structure

Last time: Value function approximation and deep learning

This time: Convolutional neural networks and deep RL

Next time: Imitation learning

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning 70 Winter 2018 67 / 67


	Convolutional Neural Nets (CNNs)
	Deep Q Learning

