# Lecture 6: CNNs and Deep Q Learning <sup>2</sup>

#### Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

<sup>2</sup>With many slides for DQN from David Silver and Ruslan Salakhutdinov and some vision slides from Gianni Di Caro and images from Stanford CS231n, http://cs231n.github.io/convolutional-networks/

Emma Brunskill (CS234 Reinforcement Learn  $\,$  Lecture 6: CNNs and Deep Q Learning  $^3$ 

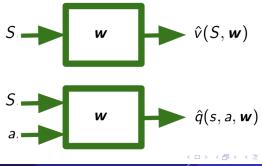
Winter 2018 1 / 67





# Generalization

- Want to be able use reinforcement learning to tackle self-driving cars, Atari, consumer marketing, healthcare, education
- Most of these domains have enormous state and/or action spaces
- Requires representations (of models / state-action values / values / policies) that can generalize across states and/or actions
- Represent a (state-action/state) value function with a parameterized function instead of a table



# Recall: The Benefit of Deep Neural Network Approximators

- Linear value function approximators assume value function is a weighted combination of a set of features, where each feature a function of the state
- Linear VFA often work well given the right set of features
- But can require carefully hand designing that feature set
- An alternative is to use a much richer function approximation class that is able to directly go from states without requiring an explicit specification of features
- Local representations including Kernel based approaches have some appealing properties (including convergence results under certain cases) but can't typically scale well to enormous spaces and datasets
- Alternative: use deep neural networks
  - Uses distributed representations instead of local representations
  - Universal function approximator
  - Can potentially need exponentially less nodes/parameters (compared to a shallow net) to represent the same function
- Last time discussed basic feedforward deep networks

• Using function approximation to help scale up to making decisions in really large domains

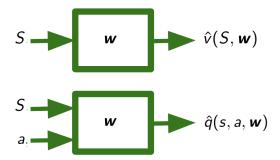


- Use deep neural networks to represent
  - Value function
  - Policy
  - Model
- Optimize loss function by stochastic gradient descent (SGD)

# Deep Q-Networks (DQNs)

• Represent value function by Q-network with weights  $\boldsymbol{w}$ 

$$\hat{q}(s, a, \boldsymbol{w}) \approx q(s, a)$$
 (1)



# Recall: Action-Value Function Approximation with an Oracle

- $\hat{q}^{\pi}(s, a, w) \approx q^{\pi}$
- Minimize the mean-squared error between the true action-value function q<sup>π</sup>(s, a) and the approximate action-value function:

$$J(w) = \mathbb{E}_{\pi}[(q^{\pi}(s, a) - \hat{q}^{\pi}(s, a, w))^2]$$
(2)

• Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2} \bigtriangledown_{W} J(w) = \mathbb{E} \left[ (q^{\pi}(s, a) - \hat{q}^{\pi}(s, a, w)) \bigtriangledown_{w} \hat{q}^{\pi}(s, a, w) \right] (3)$$
  
$$\Delta(w) = -\frac{1}{2} \alpha \bigtriangledown_{w} J(w)$$
(4)

Stochastic gradient descent (SGD) samples the gradient

## Recall: Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return  $G_t$  as a substitute target

$$\Delta w = \alpha (G_t - \hat{q}(s_t, a_t, w)) \bigtriangledown_w \hat{q}(s_t, a_t, w)$$
(5)

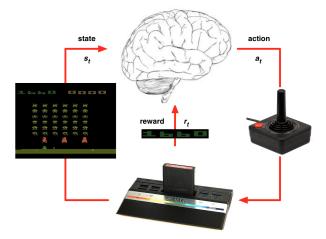
 For SARSA instead use a TD target r + γĝ(s', a', w) which leverages the current function approximation value

$$\Delta w = \alpha (r + \gamma \hat{q}(s', a', w) - \hat{q}(s, a, w)) \bigtriangledown_{w} \hat{q}(s, a, w)$$
(6)

• For Q-learning instead use a TD target  $r + \gamma \max_{a} \hat{q}(s', a', w)$  which leverages the max of the current function approximation value

$$\Delta w = \alpha (r + \gamma \max_{a'} \hat{q}(s', a', w) - \hat{q}(s, a, w)) \bigtriangledown_{w} \hat{q}(s, a, w)$$
(7)

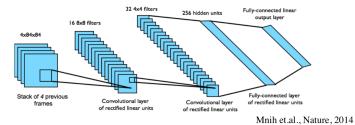
### Using these ideas to do Deep RL in Atari



Winter 2018 41 / 67

## DQNs in Atari

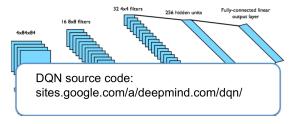
- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



• Network architecture and hyperparameters fixed across all games

# DQNs in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



Mnih et.al., Nature, 2014

#### • Network architecture and hyperparameters fixed across all games

- Minimize MSE loss by stochastic gradient descent
- Converges to optimal q using table lookup representation
- But Q-learning with VFA can diverge
- Two of the issues causing problems:
  - Correlations between samples
  - Non-stationary targets
- Deep Q-learning (DQN) addresses both of these challenges by
  - Experience replay
  - Fixed Q-targets

# DQNs: Experience Replay

• To help remove correlations, store dataset (called a **replay buffer**)  $\mathcal{D}$  from prior experience

$$\frac{\begin{array}{c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ \hline \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array}} \rightarrow s, a, r, s'$$

- To perform experience replay, repeat the following:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s:  $r + \gamma \max_{a'} \hat{q}(s', a', w)$
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{\boldsymbol{a}'} \hat{q}(\boldsymbol{s}', \boldsymbol{a}', \boldsymbol{w}) - \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})$$
(8)

## DQNs: Experience Replay

• To help remove correlations, store dataset  ${\cal D}$  from prior experience

- To perform experience replay, repeat the following:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s: r + γ max<sub>a</sub>, ĝ(s', a', w)
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{\boldsymbol{a}'} \hat{q}(\boldsymbol{s}', \boldsymbol{a}', \boldsymbol{w}) - \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})$$
(9)

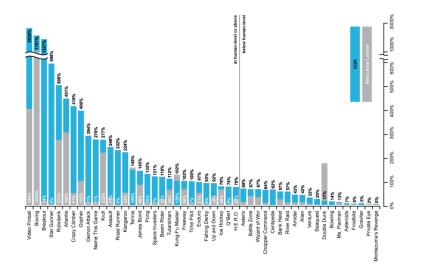
• Can treat the target as a scalar, but the weights will get updated on the next round, changing the target value

- To help improve stability, fix the **target network** weights used in the target calculation for multiple updates
- Use a different set of weights to compute target than is being updated
- Let parameters w<sup>-</sup> be the set of weights used in the target, and w be the weights that are being updated
- Slight change to computation of target value:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s:  $r + \gamma \max_{a'} \hat{q}(s', a', w^-)$
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{\boldsymbol{a}'} \hat{q}(\boldsymbol{s}', \boldsymbol{a}', \boldsymbol{w}^{-}) - \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})$$
(10)

- DQN uses experience replay and fixed Q-targets
- Store transition  $(s_t, a_t, r_{t+1}, s_{t+1})$  in replay memory  $\mathcal{D}$
- Sample random mini-batch of transitions (s, a, r, s') from  $\mathcal{D}$
- Compute Q-learning targets w.r.t. old, fixed parameters  $\boldsymbol{w}^-$
- Optimizes MSE between Q-network and Q-learning targets
- Uses stochastic gradient descent

## DQN Results in Atari



| Game       | Linear | Deep    | DQN w/  | DQN w/ | DQN w/replay |
|------------|--------|---------|---------|--------|--------------|
|            |        | Network | fixed Q | replay | and fixed Q  |
| Breakout   | 3      | 3       | 10      | 241    | 317          |
| Enduro     | 62     | 29      | 141     | 831    | 1006         |
| River Raid | 2345   | 1453    | 2868    | 4102   | 7447         |
| Seaquest   | 656    | 275     | 1003    | 823    | 2894         |
| Space      | 301    | 302     | 373     | 826    | 1089         |
| Invaders   | 301    | 302     | 515     | 020    | 1009         |

• Replay is **hugely** important item Why? Beyond helping with correlation between samples, what does replaying do?

- Success in Atari has lead to huge excitement in using deep neural networks to do value function approximation in RL
- Some immediate improvements (many others!)
  - Double DQN
  - Dueling DQN (best paper ICML 2016)

- Recall maximization bias challenge
  - Max of the estimated state-action values can be a biased estimate of the max
- Double Q-learning

## Recall: Double Q-Learning

- 1: Initialize  $Q_1(s, a)$  and  $Q_2(s, a)$ ,  $\forall s \in S, a \in A$  t = 0, initial state  $s_t = s_0$
- 2: **loop**
- 3: Select  $a_t$  using  $\epsilon$ -greedy  $\pi(s) = \arg \max_a Q_1(s_t, a) + Q_2(s_t, a)$
- 4: Observe  $(r_t, s_{t+1})$
- 5: if (with 0.5 probability) then

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha(r_t + Q_1(s_{t+1}, \arg\max_{a'} Q_2(s_{t+1}, a')) - Q_1(s_t, a_t))$$
(11)

6: **else** 

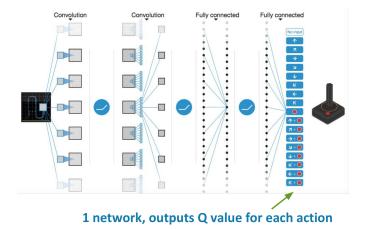
 $Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + Q_2(s_{t+1}, \arg \max_{a'} Q_1(s_{t+1}, a')) - Q_2(s_t, a_t))$ 

- 7: end if
- 8: t = t + 1
- 9: end loop

- Extend this idea to DQN
- Current Q-network w is used to select actions
- Older Q-network  $w^-$  is used to evaluate actions

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \, \widehat{\hat{q}}(\underset{a' \quad \boldsymbol{w} = \boldsymbol{\alpha}(\boldsymbol{r} + \gamma \, \widehat{\hat{q}}(\underset{a' \quad \boldsymbol{w} = \boldsymbol{\alpha}(\boldsymbol{s}', \boldsymbol{a}', \boldsymbol{w}), \boldsymbol{w}^{-})}_{\text{Action selection: } \boldsymbol{w}} - \widehat{q}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{w})) \qquad (12)$$

# Double DQN



## Double DQN

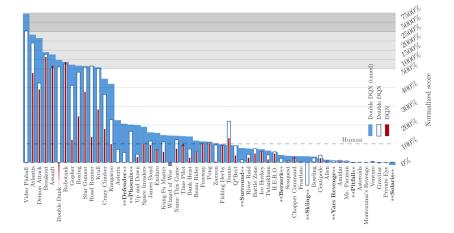


Figure: van Hasselt, Guez, Silver, 2015

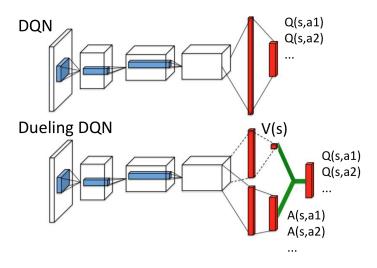
Winter 2018 57 / 67

• Intuition: Features need to pay attention to determine value may be different than those need to determine action benefit

• E.g.

- Game score may be relevant to predicting V(s)
- But not necessarily in indicating relative action values
- Advantage function (Baird 1993)

$$A^{\pi}(s,a)=Q^{\pi}(s,a)-V^{\pi}(s)$$



Wang et.al., ICML, 2016

• Advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

• Identifiable?

Advantage function

$$A^\pi(s,a)=Q^\pi(s,a)-V^\pi(s)$$

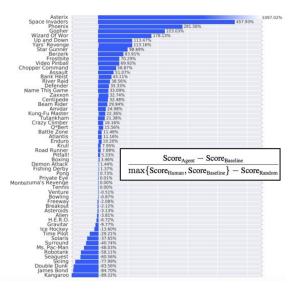
- Unidentifiable
- Option 1: Force A(s, a) = 0 if a is action taken

$$\hat{q}(s,a;oldsymbol{w}) = \hat{v}(s;oldsymbol{w}) + \left(A(s,a;oldsymbol{w}) - \max_{a'\in\mathcal{A}}A(s,a';oldsymbol{w})
ight)$$

• Option 2: Use mean as baseline (more stable)

$$\hat{q}(s,a;oldsymbol{w})=\hat{v}(s;oldsymbol{w})+\left(A(s,a;oldsymbol{w})-rac{1}{|\mathcal{A}|}\sum_{a'}A(s,a';oldsymbol{w})
ight)$$

## V.S. DDQN with Prioritized Replay

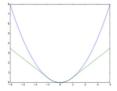


(日) (同) (三) (三)

# Practical Tips for DQN on Atari (from J. Schulman)

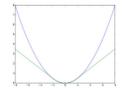
- DQN is more reliable on some Atari tasks than others. Pong is a reliable task: if it doesn't achieve good scores, something is wrong
- Large replay buffers improve robustness of DQN, and memory efficiency is key
  - Use uint8 images, don't duplicate data
- Be patient. DQN converges slowly—for ATARI it's often necessary to wait for 10-40M frames (couple of hours to a day of training on GPU) to see results significantly better than random policy
- In our Stanford class: Debug implementation on small test environment

• Try Huber loss on Bellman error  $L(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| \le \delta \\ \delta |x| - \frac{\delta^2}{2} & \text{otherwise} \end{cases}$ 



# Practical Tips for DQN on Atari (from J. Schulman) cont.

• Try Huber loss on Bellman error  $L(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| \le \delta \\ \delta |x| - \frac{\delta^2}{2} & \text{otherwise} \end{cases}$ 



- Consider trying Double DQN—significant improvement from 3-line change in Tensorflow.
- To test out your data pre-processing, try your own skills at navigating the environment based on processed frames
- Always run at least two different seeds when experimenting
- Learning rate scheduling is beneficial. Try high learning rates in initial exploration period
- Try non-standard exploration schedules





- Last time: Value function approximation and deep learning
- This time: Convolutional neural networks and deep RL
- Next time: Imitation learning