Lecture 6: CNNs and Deep Q Learning °
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CS234 Reinforcement Learning.

Winter 2018

2With many slides for DQN from David Silver and Ruslan Salakhutdinov and some
vision slides from Gianni Di Caro and images from Stanford CS5231n,
http://cs231n.github.io/convolutional-networks/
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Generalization

@ Want to be able use reinforcement learning to tackle self-driving cars,
Atari, consumer marketing, healthcare, education

@ Most of these domains have enormous state and/or action spaces

@ Requires representations (of models / state-action values / values /
policies) that can generalize across states and/or actions

@ Represent a (state-action/state) value function with a parameterized
function instead of a table

S v(S,w)
S

G(s,a, w)
a.
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Recall: The Benefit of Deep Neural Network Approximators

@ Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state

@ Linear VFA often work well given the right set of features

@ But can require carefully hand designing that feature set

@ An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features

@ Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can't typically scale well to enormous spaces and datasets

o Alternative: use deep neural networks

o Uses distributed representations instead of local representations

e Universal function approximator

e Can potentially need exponentially less nodes/parameters (compared to
a shallow net) to represent the same function

@ Last time discussed basic feedforward deep networks
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Generalization

@ Using function approximation to help scale up to making decisions in
really large domains
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Deep Reinforcement Learning

@ Use deep neural networks to represent

o Value function
e Policy
e Model

@ Optimize loss function by stochastic gradient descent (SGD)

Emma Brunskill (C5234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning * Winter 2018 37/ 67



Deep Q-Networks (DQNs)

@ Represent value function by Q-network with weights w

G(s,a,w) ~q(s, a) (1)
S v(S,w)
S
4(s,a, w)
a.
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Recall: Action-Value Function Approximation with an

Oracle

o §7(s,a,w) ~ q"
@ Minimize the mean-squared error between the true action-value
function g™ (s, a) and the approximate action-value function:

J(w) = Ex[(q"(s,a) — 4" (s, a,w))?] (2)
@ Use stochastic gradient descent to find a local minimum

W Iw) = Bl (s.2) - 67 (s.2w) Vi 475, 2.0 (3)

Aw) = —3a 7y I(w) *)

@ Stochastic gradient descent (SGD) samples the gradient
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Recall: Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target

Aw = a(Gt - CAI(SH at, W)) Vw CAI(SU dt, W) (5)

@ For SARSA instead use a TD target r + v§(s’, a’, w) which leverages
the current function approximation value

Aw = a(r +~4(s’,a',w) — §(s,a,w)) Vw G(s, a, w) (6)

e For Q-learning instead use a TD target r + v max, §(s’, ', w) which
leverages the max of the current function approximation value

Aw = a(r+7 max G(s',d,w) —4(s,a,w)) Vw 4(s,a,w)  (7)
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Using these ideas to do Deep RL in Atari

state /" > I W ) action
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units

4xB4x84

[T

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Mnih et.al., Nature, 2014

@ Network architecture and hyperparameters fixed across all games
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End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer
16 8x8 filters
= %

DQN source code:
sites.google.com/a/deepmind.com/dgn/

Mnih et.al., Nature, 2014

@ Network architecture and hyperparameters fixed across all games
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Q-Learning with Value Function Approximation

Minimize MSE loss by stochastic gradient descent
Converges to optimal g using table lookup representation
But Q-learning with VFA can diverge

Two of the issues causing problems:
e Correlations between samples
o Non-stationary targets
Deep Q-learning (DQN) addresses both of these challenges by

e Experience replay
o Fixed Q-targets
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DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D
from prior experience

51,491, 12,52
/
52,d2,13,53 — s,a,n,s

53,43, 14,54

sl’a at) rt—i—la st+1

@ To perform experience replay, repeat the following:

o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v maxy (s, @', w)
o Use stochastic gradient descent to update the network weights

Aw = a(r +ymaxd(s', @, w) — 4(s, 3, w))Vui(s, 2, w)  (8)
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DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 2,52

52,4d2,13,53

S3,4d3, 14,54

sta ata rt—i—la st+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v max, §(s’,a’, w)
o Use stochastic gradient descent to update the network weights

Aw = a(r + I’TI?X C?(Slv alv W) - a(sv a, w))Vwa(s, a, W) (9)

@ Can treat the target as a scalar, but the weights will get updated on
the next round, changing the target value
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DQNs: Fixed Q-Targets

@ To help improve stability, fix the target network weights used in the
target calculation for multiple updates

@ Use a different set of weights to compute target than is being updated

@ Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated

@ Slight change to computation of target value:

o (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v maxy G(s',a’, w™)
o Use stochastic gradient descent to update the network weights

Aw = a(r +ymaxd(s',a', w™) — 4(s,a,w))Vid(s,a,w)  (10)

Emma Brunskill (C5234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning ° Winter 2018 47 / 67



DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s¢, at, re+1, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—
Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important item Why? Beyond helping with
correlation between samples, what does replaying do?
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@ Success in Atari has lead to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)

e Double DQN
o Dueling DQN (best paper ICML 2016)
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Double DQN

@ Recall maximization bias challenge

e Max of the estimated state-action values can be a biased estimate of
the max

@ Double Q-learning
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Recall: Double Q-Learning

1: Initialize Qi(s,a) and @x(s,a),Vs € S,a € At =0, initial state s; = sg
2: loop

3:  Select a; using e-greedy 7(s) = arg max, Q1(st, a) + Qa2(st, )

4:  Observe (rt, St+1)

5. if (with 0.5 probability) then

Q1(st,ar) + Qu(se,ar)+a(re+Qi(sey1,arg max Qa(5e11,2'))—Qu(se, ar))
(11)

6: else

Qx(st; ac) = Qa(st, at)+aritQa(se41, arg max Qu(se1, )= Qa(sts ar))

7. end if
8: t=t+1
9: end loop
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Double DQN

o Extend this idea to DQN
@ Current Q-network w is used to select actions
@ Older Q-network w™ is used to evaluate actions

Action evaluation: w—

-~

Aw = a(r + ’y;“](arg max §(s’,a,w),w™) —
a/

n

(s,a,w)) (12)

Action selection: w
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Double DQN
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Value & Advantage Function

@ Intuition: Features need to pay attention to determine value may be
different than those need to determine action benefit

o Eg.
e Game score may be relevant to predicting V/(s)
e But not necessarily in indicating relative action values

e Advantage function (Baird 1993)

A" (s,a) = Q" (s,a) — V™ (s)
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Dueling DQN

DQN Q(s,al)
@ Q(s,a2)
Dueling DQN gV
. Q(s,al)
S S
A(s,al)
A(s,a2)

Wang et.al., ICML, 2016
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|dentifiability

@ Advantage function
A" (s,a) = Q" (s,a) — V™ (s)

o |dentifiable?
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|dentifiability

@ Advantage function
A" (s,a) = Q" (s,a) — V™(s)

@ Unidentifiable
@ Option 1: Force A(s,a) = 0 if a is action taken

4(s, a w) = (s; w) + <A(s, a; w) — max A(s, w)>

@ Option 2: Use mean as baseline (more stable)

~ ~ 1 /
4(s,a;w) =V(s;w) + (A(s, aw)— A ZA(S, a’; w)>
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V.S. DDQN with Prioritized Replay

1097.02%
Space lnvadcrs 457.93%
nix 281.56%

Frostbite

Video Pinball
Chopper Con\man‘d
Bav\k Helsl

River Raid
Defender

Name 1‘m< Game
xx0n

CPI’\U ede

Beam Rider
midar

Kung-Fu Master
utankham

Crazy (I\mber

Battle ZO"E
Atlantis

Enduro

Krull

Road Runner

Pitfall!

oxing Scoresgen — SCOregageine

Demon Attack

msh-ng Demy

ng
vate Eye
Monbezumars Re;sr\qe

Max{SCOreyymans SCOMeRacetine } — SCOIRandom

Breakou
Asteroids
Alien

Gravitar
Ice Hockey
Time Pilot
aris
Surround

Seaquest

iing

Double Dunk

James Bond
Kangari

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learn Winter 2018 62



Practical Tips for DQN on Atari (from J. Schulman)

@ DQN is more reliable on some Atari tasks than others. Pong is a
reliable task: if it doesn't achieve good scores, something is wrong

o Large replay buffers improve robustness of DQN, and memory
efficiency is key

e Use uint8 images, don't duplicate data

o Be patient. DQN converges slowly—for ATARI it's often necessary to
wait for 10-40M frames (couple of hours to a day of training on GPU)
to see results significantly better than random policy

@ In our Stanford class: Debug implementation on small test
environment
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Practical Tips for DQN on Atari (from J. Schulman) cont.

@ Try Huber loss on Bellman error
2

L(x) = {X2 Tlx <9

o|x| — % otherwise
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Practical Tips for DQN on Atari (from J. Schulman) cont.

@ Try Huber loss on Bellman error
2

% if <
L(X):{2 2 I‘X|76

o|x| — % otherwise

@ Consider trying Double DQN—significant improvement from 3-line
change in Tensorflow.

@ To test out your data pre-processing, try your own skills at navigating
the environment based on processed frames

@ Always run at least two different seeds when experimenting

@ Learning rate scheduling is beneficial. Try high learning rates in initial
exploration period

@ Try non-standard exploration schedules

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning °° Winter 2018 65 / 67



Table of Contents

@ Convolutional Neural Nets (CNNs)

© Deep Q Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: CNNs and Deep Q Learning Winter 2018 66 / 67



Class Structure

@ Last time: Value function approximation and deep learning
@ This time: Convolutional neural networks and deep RL

o Next time: Imitation learning
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