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Background



Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning
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Example Through Diagram
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Changing the Objective

Today’s lecture: unsupervised learning with neural networks.
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Autoencoders



Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6



Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6



Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6



Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6



Not an Entirely New Idea
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Undercomplete Autoencoders

Undercomplete Autoeconders are defined to have a hidden layer

h, with smaller dimension than input layer.

• Network must model x in lower dim. space + map latent

space accurately back to input space.

• Encoder network: function that returns a useful, compressed

representation of input.

• If network has only linear transformations, encoder learns

PCA. With typical nonlinearities, network learns generalized,

more powerful version of PCA.
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Visualizing Undercomplete Autoencoders
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Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.
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How Constraints Correspond to Effective Manifold Learning

We need to impose additional constraints besides reconstruction

loss to learn manifolds.

• Data manifold Ñ concentrated high probability of being in

training set.

• Constraining complexity or imposing regularization promotes

learning a more defined ”surface” and the variations that

shape manifold.

• Ñ Autoencoders should only learn necessary variations to

reconstruct training examples.
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Visualizing Manifolds

Extract 2D manifold of data which exists in 3D:
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Regularized Autoencoders



Stochastic Autoencoders

Rethink the underlying idea of autoencoders. Instead of

encoding/decoding functions, we can see them as describing

encoding/decoding probability distributions like so:

pencoder ph|xq “ pmodelph|xq

pdecoder px|hq “ pmodelpx|hq

These distributions are called stochastic encoders and decoders

respectively.
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Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.
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Meaning of Generative

By assuming a prior over latent space, can pick values from

underlying probability distribution!
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Sparse Autoencoders

Sparse Autoencoders have modified loss function with sparsity

penalty on latent variables: Jpθq “ Lpx , gpf pxqq ` Ωphq

• L1 reg as example: Assume Laplacian prior on latent space

vars:

pmodelphi q “
λ

2
e´λ|hi |

The log likelihood becomes:

´ ln pmodelphq “ λ
ÿ

i

|hi | ` const. “ Ωphq
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Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17



Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17



Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17



Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17



Visualizing Variational Autoencoders

Latent space explicitly encodes distribution statistics! Typically

made to encode unit gaussian.
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K-L Divergence

Variational Autoencoder Loss also needs K-L divergence. Measures

difference between distributions

19



Denoising Autoencoders

Sparse autoencoders motivated by particular purpose (generative

modeling). Denoising autoencoders are useful for... denoising.

• For every input x, we apply corrupting function C p¨q to create

noisy version: x̃ “ C pxq.

• Loss function changes: Jpx, gpfpxqqq Ñ Jpx, gpfpx̃qqq.

• f, g will necessarily learn pdatapxq because learning identity

function will not give good loss.
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Visualizing Denoising Autoencoders

By having to remove noise, model must know difference between

noise and actual image.

21



Visualizing Denoising Autoencoders

The corrupting function C p¨q can corrupt in any direction Ñ

autoencoder must learn ”location” of data manifold and its

distribution pdatapxq.
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Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F
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Jacobian and Frobenius Norm

The Jacobian Matrix for vector-valued function f pxq:

J “

»

—

—

—

—

–

Bf1
Bx1

Bf1
Bx2

. . . Bf1
Bxn

Bf2
Bx1

Bf2
Bx2

. . . Bf2
Bxn

...
... . . .

...
Bfn
Bx1

Bfn
Bx2

. . . Bfn
Bxn

fi

ffi

ffi

ffi

ffi

fl

The Frobenius Norm for a matrix M:

||M||F “

d

ÿ

i ,j

M2
ij

24
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In-Depth Look at Contractive Autoencoders

Called contractive because they contract neighborhood of input

space into smaller, localized group in latent space.

• This contractive effect is designed to only occur locally.

• The Jacobian Matrix will see most of its eigenvalues drop

below 1 Ñ contracted directions

• But some directions will have eigenvalues (significantly) above

1 Ñ directions that explain most of the variance in data
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Example: MNIST in 2D manifold
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The Big Idea of Regularized Autoencoders

Previous slides underscore the central balance of regularized

autoencoders:

• Be sensitive to inputs (reconstruction loss) Ñ generate good

reconstructions of data drawn from data distribution

• Be insensitive to inputs (regularization penalty) Ñ learn

actual data distribution

27
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Connecting Denoising and Contractive Autoencoders

Alain and Bengio (2013) showed that denoising penalty on tiny

Gaussian noise is, in the limit, « contractive penalty on x, gpfpxqq.

• Denoising Autoencoders make reconstruction function resist

small, finite-sized perturbations in input.

• Contractive Autoencoders make feature encoding function

resist infinitesimal perturbations in input.
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Connecting Denoising and Contractive Autoencoders

Handling noise „ Contractive property

29



Representational Power, Layer Size and Depth

Deeper autoencoders tend to generalize better and train more

efficiently than shallow ones.

• Common strategy: greedily pre-train layers and stack them

• For contractive autoencoders, calculating Jacobian for deep

networks is expensive. Good idea to do layer-by-layer.
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Applications of Autoencoders

• Dimensionality Reduction: Make high-quality,

low-dimension representation of data

• Information Retrieval: Locate value in database which is
just autoencoded key.

• If you need binary for hash table, use sigmoid in final layer.
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Representation Learning



The Power of Representations

Representations are important: try long division with Roman

numerals

Other examples: Variables in algebra, cartesian grid for analytic

geometry, binary encodings for information theory, electronics
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Representations in Deep Learning

A good representation of data makes subsequent tasks easier -

more tractable, less expensive.

• Feedforward nets: Hidden layers make representation for

output layer (linear classifier)

• Conv nets: Maintain topology of input, convert into 3-D

convolutions, pooling, etc.

• Autoencoders: The entire mission of the architecture

33
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Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.
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Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35



Benefits of Distributed Representations

Distributed representation Ñ Data Manifold

Also: less dimensionality, faster training
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Representation Learning Techniques



Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.
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Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.
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Multi-Task Learning

Given two similar learning tasks and their labeled data: D1,D2.

D2 has few examples compared to D1.

• Idea: (Pre-)Train network on D1, then work D2.

• Hopefully, low-level features from D1 are useful for D2, and

fine-tuning is enough for D2.
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Transfer Learning

Inputs are similar, while labels are different between D1,D2.

Ex: Images of dogs or cats (D1). Then classify images as horse or

cow (D2).

• Low-level features of inputs, are same: lighting, animal

orientations, edges, faces.

• Labels are fundamentally different.

• Learning of D1 will establish latent space where dists. are

separated. Then adjust to assign D2 labels to transformed D2

by pre-trained network.
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Domain Adaptation

Labels are similar, while the inputs are different.

Ex: Speech-to-text system for person 1 (D1). Then train to also

work for person 2 (D2).

• For both, text must be valid English sentences, so labels are

similar.

• Speakers may have diff. pitch depth, accents, etc Ñdifferent

inputs.

• Training on D1 gives model power to map noise to English in

general. Just adjust to assign D2 input to D2 labels.
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More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.
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Isolating Causal Factors

Two desirable properties of representations. They often coincide:

• Disentangled Causes: for rep. ppxq, we want to know ppy|xq
i.e., does y cause x.

• If x, y correlated, then ppxq and ppy|xq will be strongly tied.

We want this relation to be clear, hence disentangled.

• Easy Modeling: representations that have sparse feature

vectors which imply independent features
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Ideal Latent Variables

Assume y is a causal factor of x and h represents all of those

factors.

• Joint distribution of model is: ppx,hq “ ppx|hqpphq

• Marginal probability of x is

ppxq “
ÿ

h

pphqppx|hq “ Ehppx|hq

Thus, best latent var h (w.r.t. p(x)) explains x from a causal

point of view.

• ppy |xq depends on ppxq, hence h being causal is valuable.
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The Real World

Real world data often has more causes than can/should be

encoded.

• Humans fail to detect changes in environment unimportant to

current task.

• Must establish learnable measures of saliency to attach to

features.

• Example: Autoencoders trained on images often fail to

register important small objects like ping pong balls.
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Failure of Traditional Loss Functions
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The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).
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Comparing Traditional to Adversarial
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Conclusion

• The crux of autoencoders is representation learning.

• The crux of deep learning is representation learning.

• The crux of intelligence is probably representation learning.
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Questions



Questions?
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