
Autoencoders and Representation Learning

Deep Learning Decal
Hosted by Machine Learning at Berkeley

1

Overview

Agenda

Background

Autoencoders

Regularized Autoencoders

Representation Learning

Representation Learning Techniques

Questions

2

Background

Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning

3

Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning

3

Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning

3

Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning

3

Review: Typical Neural Net Characteristics

So far, Deep Learning Models have things in common:

• Input Layer: (maybe vectorized), quantitative representation

• Hidden Layer(s): Apply transformations with nonlinearity

• Output Layer: Result for classification, regression, translation,

segmentation, etc.

• Models used for supervised learning

3

Example Through Diagram

4

Changing the Objective

Today’s lecture: unsupervised learning with neural networks.

5

Autoencoders

Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6

Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6

Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6

Autoencoders: Definition

Autoencoders are neural networks that are trained to copy their

inputs to their outputs.

• Usually constrained in particular ways to make this task more

difficult.

• Structure is almost always organized into encoder network, f,

and decoder network, g : model “ gpfpxqq

• Trained by gradient descent with reconstruction loss:

measures differences between input and output e.g. MSE :

Jpθq “ |gpfpxqq ´ x|2

6

Not an Entirely New Idea

7

Undercomplete Autoencoders

Undercomplete Autoeconders are defined to have a hidden layer

h, with smaller dimension than input layer.

• Network must model x in lower dim. space + map latent

space accurately back to input space.

• Encoder network: function that returns a useful, compressed

representation of input.

• If network has only linear transformations, encoder learns

PCA. With typical nonlinearities, network learns generalized,

more powerful version of PCA.

8

Undercomplete Autoencoders

Undercomplete Autoeconders are defined to have a hidden layer

h, with smaller dimension than input layer.

• Network must model x in lower dim. space + map latent

space accurately back to input space.

• Encoder network: function that returns a useful, compressed

representation of input.

• If network has only linear transformations, encoder learns

PCA. With typical nonlinearities, network learns generalized,

more powerful version of PCA.

8

Undercomplete Autoencoders

Undercomplete Autoeconders are defined to have a hidden layer

h, with smaller dimension than input layer.

• Network must model x in lower dim. space + map latent

space accurately back to input space.

• Encoder network: function that returns a useful, compressed

representation of input.

• If network has only linear transformations, encoder learns

PCA. With typical nonlinearities, network learns generalized,

more powerful version of PCA.

8

Undercomplete Autoencoders

Undercomplete Autoeconders are defined to have a hidden layer

h, with smaller dimension than input layer.

• Network must model x in lower dim. space + map latent

space accurately back to input space.

• Encoder network: function that returns a useful, compressed

representation of input.

• If network has only linear transformations, encoder learns

PCA. With typical nonlinearities, network learns generalized,

more powerful version of PCA.

8

Visualizing Undercomplete Autoencoders

9

Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.

10

Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.

10

Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.

10

Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.

10

Caveats and Dangers

Unless careful, autoencoders will not learn meaningful

representations.

• Reconstruction loss: indifferent to latent space

characteristics. (not true for PCA).

• Higher representational power gives flexibility for suboptimal

encodings.

• Pathological case: hidden layer is only one dimension, learns
index mappings: x piq Ñ i Ñ x piq

• Not very realistic, but completely plausible.

10

How Constraints Correspond to Effective Manifold Learning

We need to impose additional constraints besides reconstruction

loss to learn manifolds.

• Data manifold Ñ concentrated high probability of being in

training set.

• Constraining complexity or imposing regularization promotes

learning a more defined ”surface” and the variations that

shape manifold.

• Ñ Autoencoders should only learn necessary variations to

reconstruct training examples.

11

How Constraints Correspond to Effective Manifold Learning

We need to impose additional constraints besides reconstruction

loss to learn manifolds.

• Data manifold Ñ concentrated high probability of being in

training set.

• Constraining complexity or imposing regularization promotes

learning a more defined ”surface” and the variations that

shape manifold.

• Ñ Autoencoders should only learn necessary variations to

reconstruct training examples.

11

How Constraints Correspond to Effective Manifold Learning

We need to impose additional constraints besides reconstruction

loss to learn manifolds.

• Data manifold Ñ concentrated high probability of being in

training set.

• Constraining complexity or imposing regularization promotes

learning a more defined ”surface” and the variations that

shape manifold.

• Ñ Autoencoders should only learn necessary variations to

reconstruct training examples.

11

How Constraints Correspond to Effective Manifold Learning

We need to impose additional constraints besides reconstruction

loss to learn manifolds.

• Data manifold Ñ concentrated high probability of being in

training set.

• Constraining complexity or imposing regularization promotes

learning a more defined ”surface” and the variations that

shape manifold.

• Ñ Autoencoders should only learn necessary variations to

reconstruct training examples.

11

Visualizing Manifolds

Extract 2D manifold of data which exists in 3D:

12

Regularized Autoencoders

Stochastic Autoencoders

Rethink the underlying idea of autoencoders. Instead of

encoding/decoding functions, we can see them as describing

encoding/decoding probability distributions like so:

pencoder ph|xq “ pmodelph|xq

pdecoder px|hq “ pmodelpx|hq

These distributions are called stochastic encoders and decoders

respectively.

13

Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.

14

Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.

14

Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.

14

Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.

14

Distribution View of Autoencoders

Consider stochastic decoder gphq as a generative model and its

relationship to the joint distribution

pmodelpx,hq “ pmodelphq ¨ pmodelpx|hq

ln pmodelpx,hq “ ln pmodelphq ` ln pmodelpx|hq

• If h is given from encoding network, then we want most likely

x to output.

• Finding MLE of x,h « maximizing pmodelpx,hq

• pmodelphq is prior across latent space values. This term can

be regularizing.

14

Meaning of Generative

By assuming a prior over latent space, can pick values from

underlying probability distribution!

15

Sparse Autoencoders

Sparse Autoencoders have modified loss function with sparsity

penalty on latent variables: Jpθq “ Lpx , gpf pxqq ` Ωphq

• L1 reg as example: Assume Laplacian prior on latent space

vars:

pmodelphi q “
λ

2
e´λ|hi |

The log likelihood becomes:

´ ln pmodelphq “ λ
ÿ

i

|hi | ` const. “ Ωphq

16

Sparse Autoencoders

Sparse Autoencoders have modified loss function with sparsity

penalty on latent variables: Jpθq “ Lpx , gpf pxqq ` Ωphq

• L1 reg as example: Assume Laplacian prior on latent space

vars:

pmodelphi q “
λ

2
e´λ|hi |

The log likelihood becomes:

´ ln pmodelphq “ λ
ÿ

i

|hi | ` const. “ Ωphq

16

Sparse Autoencoders

Sparse Autoencoders have modified loss function with sparsity

penalty on latent variables: Jpθq “ Lpx , gpf pxqq ` Ωphq

• L1 reg as example: Assume Laplacian prior on latent space

vars:

pmodelphi q “
λ

2
e´λ|hi |

The log likelihood becomes:

´ ln pmodelphq “ λ
ÿ

i

|hi | ` const. “ Ωphq

16

Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17

Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17

Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17

Variational Autoencoders

Idea: Allocate space for storing parameters of probability

distribution.

• Latent space variables for mean, std dev of distribution

• Flow: Input Ñ encode to statistics vectors Ñ sample a latent

vector Ñ decode for reconstruction

• Loss: Reconstruction + K-L Divergence

17

Visualizing Variational Autoencoders

Latent space explicitly encodes distribution statistics! Typically

made to encode unit gaussian.

18

K-L Divergence

Variational Autoencoder Loss also needs K-L divergence. Measures

difference between distributions

19

Denoising Autoencoders

Sparse autoencoders motivated by particular purpose (generative

modeling). Denoising autoencoders are useful for... denoising.

• For every input x, we apply corrupting function C p¨q to create

noisy version: x̃ “ C pxq.

• Loss function changes: Jpx, gpfpxqqq Ñ Jpx, gpfpx̃qqq.

• f, g will necessarily learn pdatapxq because learning identity

function will not give good loss.

20

Denoising Autoencoders

Sparse autoencoders motivated by particular purpose (generative

modeling). Denoising autoencoders are useful for... denoising.

• For every input x, we apply corrupting function C p¨q to create

noisy version: x̃ “ C pxq.

• Loss function changes: Jpx, gpfpxqqq Ñ Jpx, gpfpx̃qqq.

• f, g will necessarily learn pdatapxq because learning identity

function will not give good loss.

20

Denoising Autoencoders

Sparse autoencoders motivated by particular purpose (generative

modeling). Denoising autoencoders are useful for... denoising.

• For every input x, we apply corrupting function C p¨q to create

noisy version: x̃ “ C pxq.

• Loss function changes: Jpx, gpfpxqqq Ñ Jpx, gpfpx̃qqq.

• f, g will necessarily learn pdatapxq because learning identity

function will not give good loss.

20

Denoising Autoencoders

Sparse autoencoders motivated by particular purpose (generative

modeling). Denoising autoencoders are useful for... denoising.

• For every input x, we apply corrupting function C p¨q to create

noisy version: x̃ “ C pxq.

• Loss function changes: Jpx, gpfpxqqq Ñ Jpx, gpfpx̃qqq.

• f, g will necessarily learn pdatapxq because learning identity

function will not give good loss.

20

Visualizing Denoising Autoencoders

By having to remove noise, model must know difference between

noise and actual image.

21

Visualizing Denoising Autoencoders

The corrupting function C p¨q can corrupt in any direction Ñ

autoencoder must learn ”location” of data manifold and its

distribution pdatapxq.

22

Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F

23

Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F

23

Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F

23

Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F

23

Contractive Autoencoders

Contractive Autoencoders are explicitly encouraged to learn a

manifold through their loss function.

Desirable property: Points close to each other in input space

maintain that property in the latent space.

• This will be true if fpxq “ h is continuous, has small

derivatives.

• We can use the Frobenius Norm of the Jacobian Matrix as

a regularization term:

Ωpf, xq “ λ

ˇ

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

ˇ

2

F

23

Jacobian and Frobenius Norm

The Jacobian Matrix for vector-valued function f pxq:

J “

»

—

—

—

—

–

Bf1
Bx1

Bf1
Bx2

. . . Bf1
Bxn

Bf2
Bx1

Bf2
Bx2

. . . Bf2
Bxn

...
... . . .

...
Bfn
Bx1

Bfn
Bx2

. . . Bfn
Bxn

fi

ffi

ffi

ffi

ffi

fl

The Frobenius Norm for a matrix M:

||M||F “

d

ÿ

i ,j

M2
ij

24

Jacobian and Frobenius Norm

The Jacobian Matrix for vector-valued function f pxq:

J “

»

—

—

—

—

–

Bf1
Bx1

Bf1
Bx2

. . . Bf1
Bxn

Bf2
Bx1

Bf2
Bx2

. . . Bf2
Bxn

...
... . . .

...
Bfn
Bx1

Bfn
Bx2

. . . Bfn
Bxn

fi

ffi

ffi

ffi

ffi

fl

The Frobenius Norm for a matrix M:

||M||F “

d

ÿ

i ,j

M2
ij

24

In-Depth Look at Contractive Autoencoders

Called contractive because they contract neighborhood of input

space into smaller, localized group in latent space.

• This contractive effect is designed to only occur locally.

• The Jacobian Matrix will see most of its eigenvalues drop

below 1 Ñ contracted directions

• But some directions will have eigenvalues (significantly) above

1 Ñ directions that explain most of the variance in data

25

In-Depth Look at Contractive Autoencoders

Called contractive because they contract neighborhood of input

space into smaller, localized group in latent space.

• This contractive effect is designed to only occur locally.

• The Jacobian Matrix will see most of its eigenvalues drop

below 1 Ñ contracted directions

• But some directions will have eigenvalues (significantly) above

1 Ñ directions that explain most of the variance in data

25

In-Depth Look at Contractive Autoencoders

Called contractive because they contract neighborhood of input

space into smaller, localized group in latent space.

• This contractive effect is designed to only occur locally.

• The Jacobian Matrix will see most of its eigenvalues drop

below 1 Ñ contracted directions

• But some directions will have eigenvalues (significantly) above

1 Ñ directions that explain most of the variance in data

25

In-Depth Look at Contractive Autoencoders

Called contractive because they contract neighborhood of input

space into smaller, localized group in latent space.

• This contractive effect is designed to only occur locally.

• The Jacobian Matrix will see most of its eigenvalues drop

below 1 Ñ contracted directions

• But some directions will have eigenvalues (significantly) above

1 Ñ directions that explain most of the variance in data

25

Example: MNIST in 2D manifold

26

The Big Idea of Regularized Autoencoders

Previous slides underscore the central balance of regularized

autoencoders:

• Be sensitive to inputs (reconstruction loss) Ñ generate good

reconstructions of data drawn from data distribution

• Be insensitive to inputs (regularization penalty) Ñ learn

actual data distribution

27

The Big Idea of Regularized Autoencoders

Previous slides underscore the central balance of regularized

autoencoders:

• Be sensitive to inputs (reconstruction loss) Ñ generate good

reconstructions of data drawn from data distribution

• Be insensitive to inputs (regularization penalty) Ñ learn

actual data distribution

27

The Big Idea of Regularized Autoencoders

Previous slides underscore the central balance of regularized

autoencoders:

• Be sensitive to inputs (reconstruction loss) Ñ generate good

reconstructions of data drawn from data distribution

• Be insensitive to inputs (regularization penalty) Ñ learn

actual data distribution

27

Connecting Denoising and Contractive Autoencoders

Alain and Bengio (2013) showed that denoising penalty on tiny

Gaussian noise is, in the limit, « contractive penalty on x, gpfpxqq.

• Denoising Autoencoders make reconstruction function resist

small, finite-sized perturbations in input.

• Contractive Autoencoders make feature encoding function

resist infinitesimal perturbations in input.

28

Connecting Denoising and Contractive Autoencoders

Alain and Bengio (2013) showed that denoising penalty on tiny

Gaussian noise is, in the limit, « contractive penalty on x, gpfpxqq.

• Denoising Autoencoders make reconstruction function resist

small, finite-sized perturbations in input.

• Contractive Autoencoders make feature encoding function

resist infinitesimal perturbations in input.

28

Connecting Denoising and Contractive Autoencoders

Alain and Bengio (2013) showed that denoising penalty on tiny

Gaussian noise is, in the limit, « contractive penalty on x, gpfpxqq.

• Denoising Autoencoders make reconstruction function resist

small, finite-sized perturbations in input.

• Contractive Autoencoders make feature encoding function

resist infinitesimal perturbations in input.

28

Connecting Denoising and Contractive Autoencoders

Handling noise „ Contractive property

29

Representational Power, Layer Size and Depth

Deeper autoencoders tend to generalize better and train more

efficiently than shallow ones.

• Common strategy: greedily pre-train layers and stack them

• For contractive autoencoders, calculating Jacobian for deep

networks is expensive. Good idea to do layer-by-layer.

30

Representational Power, Layer Size and Depth

Deeper autoencoders tend to generalize better and train more

efficiently than shallow ones.

• Common strategy: greedily pre-train layers and stack them

• For contractive autoencoders, calculating Jacobian for deep

networks is expensive. Good idea to do layer-by-layer.

30

Representational Power, Layer Size and Depth

Deeper autoencoders tend to generalize better and train more

efficiently than shallow ones.

• Common strategy: greedily pre-train layers and stack them

• For contractive autoencoders, calculating Jacobian for deep

networks is expensive. Good idea to do layer-by-layer.

30

Applications of Autoencoders

• Dimensionality Reduction: Make high-quality,

low-dimension representation of data

• Information Retrieval: Locate value in database which is
just autoencoded key.

• If you need binary for hash table, use sigmoid in final layer.

31

Applications of Autoencoders

• Dimensionality Reduction: Make high-quality,

low-dimension representation of data

• Information Retrieval: Locate value in database which is
just autoencoded key.

• If you need binary for hash table, use sigmoid in final layer.

31

Applications of Autoencoders

• Dimensionality Reduction: Make high-quality,

low-dimension representation of data

• Information Retrieval: Locate value in database which is
just autoencoded key.

• If you need binary for hash table, use sigmoid in final layer.

31

Representation Learning

The Power of Representations

Representations are important: try long division with Roman

numerals

Other examples: Variables in algebra, cartesian grid for analytic

geometry, binary encodings for information theory, electronics

32

The Power of Representations

Representations are important: try long division with Roman

numerals

Other examples: Variables in algebra, cartesian grid for analytic

geometry, binary encodings for information theory, electronics 32

Representations in Deep Learning

A good representation of data makes subsequent tasks easier -

more tractable, less expensive.

• Feedforward nets: Hidden layers make representation for

output layer (linear classifier)

• Conv nets: Maintain topology of input, convert into 3-D

convolutions, pooling, etc.

• Autoencoders: The entire mission of the architecture

33

Representations in Deep Learning

A good representation of data makes subsequent tasks easier -

more tractable, less expensive.

• Feedforward nets: Hidden layers make representation for

output layer (linear classifier)

• Conv nets: Maintain topology of input, convert into 3-D

convolutions, pooling, etc.

• Autoencoders: The entire mission of the architecture

33

Representations in Deep Learning

A good representation of data makes subsequent tasks easier -

more tractable, less expensive.

• Feedforward nets: Hidden layers make representation for

output layer (linear classifier)

• Conv nets: Maintain topology of input, convert into 3-D

convolutions, pooling, etc.

• Autoencoders: The entire mission of the architecture

33

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Symbolic Representations

Vector P Rn, each spot symbolizing exactly one category.

• Example: Bag-of-words (one-hot or n-grams) in NLP.

• All words / n-grams equally distant from one another.

• Representation does not capture features!

Fundamentally limited : „ Opnq possible representations.

34

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Distributed Representations

Have vector P Rn, each possible vector symbolizing one category.

• Example: Word embeddings in NLP.

• Can encode similarity and meaningful distance in embedding

space.

• Spots can encode features: number of legs vs. is a dog

Pretty much always preferred : „ Opknq possible representations,

where k is number of values a feature can take on.

35

Benefits of Distributed Representations

Distributed representation Ñ Data Manifold

Also: less dimensionality, faster training

36

Benefits of Distributed Representations

Distributed representation Ñ Data Manifold

Also: less dimensionality, faster training

36

Representation Learning Techniques

Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.

37

Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.

37

Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.

37

Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.

37

Greedy Layer-Wise Unsupervised Pretraining

Pivotal technique that allowed training of deep nets without

specialized properties (convolution, recurrence, etc.)

• Key Idea: Leverage representations learned for one task to

solve another.

• Train each layer of feedforward net greedily as a

representation learning alg. e.g. autoencoder.

• Continue stacking layers. Output of all prior layers is input for

next one.

• Fine tune, i.e. jointly train, all layers once each has learned

representations.

37

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

Greedy Layer-Wise Unsupervised Pretraining (Contd.)

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves

generalization, optimization. (Not well understood)

• Learning properties of input distribution can help in mapping

inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for

very complex functions shaped by input data distribution

• Useful when few labeled, many unlabeled examples -

semi-supervised learning

• Less effective for images - topology is already present.

38

39

Multi-Task Learning

Given two similar learning tasks and their labeled data: D1,D2.

D2 has few examples compared to D1.

• Idea: (Pre-)Train network on D1, then work D2.

• Hopefully, low-level features from D1 are useful for D2, and

fine-tuning is enough for D2.

40

Multi-Task Learning

Given two similar learning tasks and their labeled data: D1,D2.

D2 has few examples compared to D1.

• Idea: (Pre-)Train network on D1, then work D2.

• Hopefully, low-level features from D1 are useful for D2, and

fine-tuning is enough for D2.

40

Multi-Task Learning

Given two similar learning tasks and their labeled data: D1,D2.

D2 has few examples compared to D1.

• Idea: (Pre-)Train network on D1, then work D2.

• Hopefully, low-level features from D1 are useful for D2, and

fine-tuning is enough for D2.

40

Transfer Learning

Inputs are similar, while labels are different between D1,D2.

Ex: Images of dogs or cats (D1). Then classify images as horse or

cow (D2).

• Low-level features of inputs, are same: lighting, animal

orientations, edges, faces.

• Labels are fundamentally different.

• Learning of D1 will establish latent space where dists. are

separated. Then adjust to assign D2 labels to transformed D2

by pre-trained network.

41

Transfer Learning

Inputs are similar, while labels are different between D1,D2.

Ex: Images of dogs or cats (D1). Then classify images as horse or

cow (D2).

• Low-level features of inputs, are same: lighting, animal

orientations, edges, faces.

• Labels are fundamentally different.

• Learning of D1 will establish latent space where dists. are

separated. Then adjust to assign D2 labels to transformed D2

by pre-trained network.

41

Transfer Learning

Inputs are similar, while labels are different between D1,D2.

Ex: Images of dogs or cats (D1). Then classify images as horse or

cow (D2).

• Low-level features of inputs, are same: lighting, animal

orientations, edges, faces.

• Labels are fundamentally different.

• Learning of D1 will establish latent space where dists. are

separated. Then adjust to assign D2 labels to transformed D2

by pre-trained network.

41

Transfer Learning

Inputs are similar, while labels are different between D1,D2.

Ex: Images of dogs or cats (D1). Then classify images as horse or

cow (D2).

• Low-level features of inputs, are same: lighting, animal

orientations, edges, faces.

• Labels are fundamentally different.

• Learning of D1 will establish latent space where dists. are

separated. Then adjust to assign D2 labels to transformed D2

by pre-trained network.

41

Domain Adaptation

Labels are similar, while the inputs are different.

Ex: Speech-to-text system for person 1 (D1). Then train to also

work for person 2 (D2).

• For both, text must be valid English sentences, so labels are

similar.

• Speakers may have diff. pitch depth, accents, etc Ñdifferent

inputs.

• Training on D1 gives model power to map noise to English in

general. Just adjust to assign D2 input to D2 labels.

42

Domain Adaptation

Labels are similar, while the inputs are different.

Ex: Speech-to-text system for person 1 (D1). Then train to also

work for person 2 (D2).

• For both, text must be valid English sentences, so labels are

similar.

• Speakers may have diff. pitch depth, accents, etc Ñdifferent

inputs.

• Training on D1 gives model power to map noise to English in

general. Just adjust to assign D2 input to D2 labels.

42

Domain Adaptation

Labels are similar, while the inputs are different.

Ex: Speech-to-text system for person 1 (D1). Then train to also

work for person 2 (D2).

• For both, text must be valid English sentences, so labels are

similar.

• Speakers may have diff. pitch depth, accents, etc Ñdifferent

inputs.

• Training on D1 gives model power to map noise to English in

general. Just adjust to assign D2 input to D2 labels.

42

Domain Adaptation

Labels are similar, while the inputs are different.

Ex: Speech-to-text system for person 1 (D1). Then train to also

work for person 2 (D2).

• For both, text must be valid English sentences, so labels are

similar.

• Speakers may have diff. pitch depth, accents, etc Ñdifferent

inputs.

• Training on D1 gives model power to map noise to English in

general. Just adjust to assign D2 input to D2 labels.

42

43

More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.

44

More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.

44

More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.

44

More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.

44

More About Multi-Task Learning

So far: supervised, but also works with unsupervised and RL.

Deeper networks make significant impact in Multi-Task Learning.

• One-Shot Learning only uses one labeled example from D2.

Training from D1 gives clean separations in space and then

can infer whole cluster labels.

• Zero-Shot Learning is able to work with zero labeled training
examples. Learn ppy |x ,T q, T being a context variable

• For example: T is sentences: cats have four legs, pointy ears,

fur, etc. x is images, with y being label of cat or not.

44

Isolating Causal Factors

Two desirable properties of representations. They often coincide:

• Disentangled Causes: for rep. ppxq, we want to know ppy|xq
i.e., does y cause x.

• If x, y correlated, then ppxq and ppy|xq will be strongly tied.

We want this relation to be clear, hence disentangled.

• Easy Modeling: representations that have sparse feature

vectors which imply independent features

45

Isolating Causal Factors

Two desirable properties of representations. They often coincide:

• Disentangled Causes: for rep. ppxq, we want to know ppy|xq
i.e., does y cause x.

• If x, y correlated, then ppxq and ppy|xq will be strongly tied.

We want this relation to be clear, hence disentangled.

• Easy Modeling: representations that have sparse feature

vectors which imply independent features

45

Isolating Causal Factors

Two desirable properties of representations. They often coincide:

• Disentangled Causes: for rep. ppxq, we want to know ppy|xq
i.e., does y cause x.

• If x, y correlated, then ppxq and ppy|xq will be strongly tied.

We want this relation to be clear, hence disentangled.

• Easy Modeling: representations that have sparse feature

vectors which imply independent features

45

Isolating Causal Factors

Two desirable properties of representations. They often coincide:

• Disentangled Causes: for rep. ppxq, we want to know ppy|xq
i.e., does y cause x.

• If x, y correlated, then ppxq and ppy|xq will be strongly tied.

We want this relation to be clear, hence disentangled.

• Easy Modeling: representations that have sparse feature

vectors which imply independent features

45

Ideal Latent Variables

Assume y is a causal factor of x and h represents all of those

factors.

• Joint distribution of model is: ppx,hq “ ppx|hqpphq

• Marginal probability of x is

ppxq “
ÿ

h

pphqppx|hq “ Ehppx|hq

Thus, best latent var h (w.r.t. p(x)) explains x from a causal

point of view.

• ppy |xq depends on ppxq, hence h being causal is valuable.

46

Ideal Latent Variables

Assume y is a causal factor of x and h represents all of those

factors.

• Joint distribution of model is: ppx,hq “ ppx|hqpphq

• Marginal probability of x is

ppxq “
ÿ

h

pphqppx|hq “ Ehppx|hq

Thus, best latent var h (w.r.t. p(x)) explains x from a causal

point of view.

• ppy |xq depends on ppxq, hence h being causal is valuable.

46

Ideal Latent Variables

Assume y is a causal factor of x and h represents all of those

factors.

• Joint distribution of model is: ppx,hq “ ppx|hqpphq

• Marginal probability of x is

ppxq “
ÿ

h

pphqppx|hq “ Ehppx|hq

Thus, best latent var h (w.r.t. p(x)) explains x from a causal

point of view.

• ppy |xq depends on ppxq, hence h being causal is valuable.

46

Ideal Latent Variables

Assume y is a causal factor of x and h represents all of those

factors.

• Joint distribution of model is: ppx,hq “ ppx|hqpphq

• Marginal probability of x is

ppxq “
ÿ

h

pphqppx|hq “ Ehppx|hq

Thus, best latent var h (w.r.t. p(x)) explains x from a causal

point of view.

• ppy |xq depends on ppxq, hence h being causal is valuable.

46

The Real World

Real world data often has more causes than can/should be

encoded.

• Humans fail to detect changes in environment unimportant to

current task.

• Must establish learnable measures of saliency to attach to

features.

• Example: Autoencoders trained on images often fail to

register important small objects like ping pong balls.

47

The Real World

Real world data often has more causes than can/should be

encoded.

• Humans fail to detect changes in environment unimportant to

current task.

• Must establish learnable measures of saliency to attach to

features.

• Example: Autoencoders trained on images often fail to

register important small objects like ping pong balls.

47

The Real World

Real world data often has more causes than can/should be

encoded.

• Humans fail to detect changes in environment unimportant to

current task.

• Must establish learnable measures of saliency to attach to

features.

• Example: Autoencoders trained on images often fail to

register important small objects like ping pong balls.

47

The Real World

Real world data often has more causes than can/should be

encoded.

• Humans fail to detect changes in environment unimportant to

current task.

• Must establish learnable measures of saliency to attach to

features.

• Example: Autoencoders trained on images often fail to

register important small objects like ping pong balls.

47

Failure of Traditional Loss Functions

48

The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).

49

The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).

49

The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).

49

The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).

49

The Adversarial Approach to Saliency

MSE: salience presumably affects pixel intensity for large number

of pixels.

Adversarial: learn saliency by tricking a discriminator network

• Discriminator is trained to tell between ground truth and

generated data

• Discriminator can attach high saliency to small number of

pixels

• Framework of Generative Adversarial Networks (more later

in course).

49

Comparing Traditional to Adversarial

50

Conclusion

• The crux of autoencoders is representation learning.

• The crux of deep learning is representation learning.

• The crux of intelligence is probably representation learning.

51

Conclusion

• The crux of autoencoders is representation learning.

• The crux of deep learning is representation learning.

• The crux of intelligence is probably representation learning.

51

Conclusion

• The crux of autoencoders is representation learning.

• The crux of deep learning is representation learning.

• The crux of intelligence is probably representation learning.

51

Conclusion

• The crux of autoencoders is representation learning.

• The crux of deep learning is representation learning.

• The crux of intelligence is probably representation learning.

51

Questions

Questions?

52

	Background
	Autoencoders
	Regularized Autoencoders
	Representation Learning
	Representation Learning Techniques
	Questions

