

Autoencoders and Representation Learning

Deep Learning Decal

Hosted by Machine Learning at Berkeley

Agenda

Background

Autoencoders

Regularized Autoencoders

Representation Learning

Representation Learning Techniques

Questions

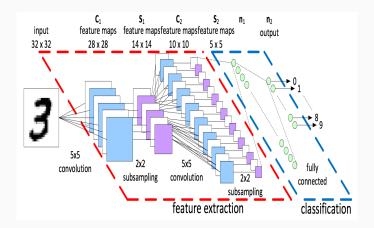
Background

• Input Layer: (maybe vectorized), quantitative representation

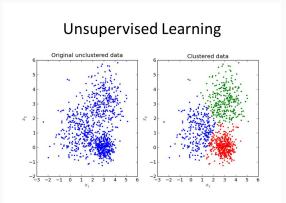
- Input Layer: (maybe vectorized), quantitative representation
- Hidden Layer(s): Apply transformations with nonlinearity

- Input Layer: (maybe vectorized), quantitative representation
- Hidden Layer(s): Apply transformations with nonlinearity
- Output Layer: Result for *classification*, *regression*, *translation*, *segmentation*, *etc*.

- Input Layer: (maybe vectorized), quantitative representation
- Hidden Layer(s): Apply transformations with nonlinearity
- Output Layer: Result for *classification*, *regression*, *translation*, *segmentation*, *etc*.
- Models used for supervised learning



Today's lecture: unsupervised learning with neural networks.



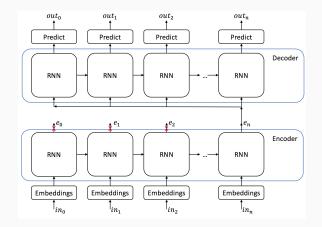
Autoencoders

• Usually constrained in particular ways to make this task more difficult.

- Usually constrained in particular ways to make this task more difficult.
- Structure is almost always organized into **encoder** network, **f**, and **decoder** network, \mathbf{g} : *model* = $\mathbf{g}(\mathbf{f}(\mathbf{x}))$

- Usually constrained in particular ways to make this task more difficult.
- Structure is almost always organized into encoder network, f, and decoder network, g:model = g(f(x))
- Trained by gradient descent with **reconstruction loss:** measures differences between input and output e.g. MSE : $J(\theta) = |\mathbf{g}(\mathbf{f}(\mathbf{x})) - \mathbf{x}|^2$

Not an Entirely New Idea



Undercomplete Autoeconders are defined to have a hidden layer \mathbf{h} , with smaller dimension than input layer.

$\label{eq:complete} \begin{array}{l} \textbf{Undercomplete Autoeconders} \text{ are defined to have a hidden layer} \\ \textbf{h}, \text{ with smaller dimension than input layer}. \end{array}$

• Network must model **x** in lower dim. space + map latent space accurately back to input space.

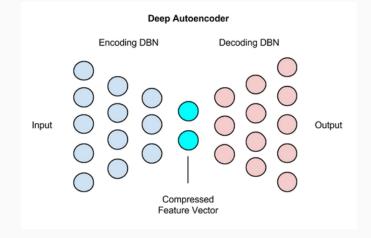
Undercomplete Autoeconders are defined to have a hidden layer **h**, with smaller dimension than input layer.

- Network must model **x** in lower dim. space + map latent space accurately back to input space.
- Encoder network: function that returns a useful, compressed representation of input.

Undercomplete Autoeconders are defined to have a hidden layer **h**, with smaller dimension than input layer.

- Network must model **x** in lower dim. space + map latent space accurately back to input space.
- Encoder network: function that returns a useful, compressed representation of input.
- If network has only linear transformations, encoder learns PCA. With typical nonlinearities, network learns generalized, more powerful version of PCA.

Visualizing Undercomplete Autoencoders



• Reconstruction loss: **indifferent to latent space** characteristics. (not true for PCA).

- Reconstruction loss: **indifferent to latent space** characteristics. (not true for PCA).
- Higher representational power gives flexibility for suboptimal encodings.

- Reconstruction loss: **indifferent to latent space** characteristics. (not true for PCA).
- Higher representational power gives flexibility for suboptimal encodings.
- Pathological case: hidden layer is only one dimension, learns index mappings: $x^{(i)} \to i \to x^{(i)}$

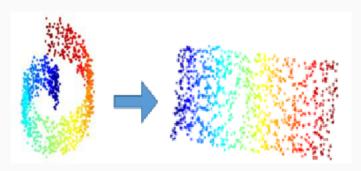
- Reconstruction loss: **indifferent to latent space** characteristics. (not true for PCA).
- Higher representational power gives flexibility for suboptimal encodings.
- Pathological case: hidden layer is only one dimension, learns index mappings: $x^{(i)} \to i \to x^{(i)}$
 - Not very realistic, but completely plausible.

 Data manifold → concentrated high probability of being in training set.

- Data manifold → concentrated high probability of being in training set.
- Constraining complexity or imposing regularization promotes learning a more defined "surface" and the variations that shape manifold.

- Data manifold → concentrated high probability of being in training set.
- Constraining complexity or imposing regularization promotes learning a more defined "surface" and the variations that shape manifold.
- → Autoencoders should only learn necessary variations to reconstruct training examples.

Extract 2D manifold of data which exists in 3D:



Regularized Autoencoders

Rethink the underlying idea of autoencoders. Instead of encoding/decoding **functions**, we can see them as describing encoding/decoding **probability distributions** like so:

$$\textit{p}_{\textit{encoder}}(\mathbf{h}|\mathbf{x}) = \textit{p}_{\textit{model}}(\mathbf{h}|\mathbf{x})$$

$$p_{decoder}(\mathbf{x}|\mathbf{h}) = p_{model}(\mathbf{x}|\mathbf{h})$$

These distributions are called **stochastic** encoders and decoders respectively.

Consider stochastic decoder $\mathbf{g}(\mathbf{h})$ as a **generative model** and its relationship to the joint distribution

Consider stochastic decoder $\mathbf{g}(\mathbf{h})$ as a **generative model** and its relationship to the joint distribution

$$p_{model}(\mathbf{x}, \mathbf{h}) = p_{model}(\mathbf{h}) \cdot p_{model}(\mathbf{x}|\mathbf{h})$$

$$\ln p_{model}(\mathbf{x}, \mathbf{h}) = \ln p_{model}(\mathbf{h}) + \ln p_{model}(\mathbf{x}|\mathbf{h})$$

Consider stochastic decoder $\mathbf{g}(\mathbf{h})$ as a generative model and its relationship to the joint distribution

$$p_{model}(\mathbf{x}, \mathbf{h}) = p_{model}(\mathbf{h}) \cdot p_{model}(\mathbf{x}|\mathbf{h})$$

n $p_{model}(\mathbf{x}, \mathbf{h}) = \ln p_{model}(\mathbf{h}) + \ln p_{model}(\mathbf{x}|\mathbf{h})$

 If h is given from encoding network, then we want most likely x to output.

Consider stochastic decoder $\mathbf{g}(\mathbf{h})$ as a **generative model** and its relationship to the joint distribution

$$p_{model}(\mathbf{x}, \mathbf{h}) = p_{model}(\mathbf{h}) \cdot p_{model}(\mathbf{x}|\mathbf{h})$$

n $p_{model}(\mathbf{x}, \mathbf{h}) = \ln p_{model}(\mathbf{h}) + \ln p_{model}(\mathbf{x}|\mathbf{h})$

- If h is given from encoding network, then we want most likely x to output.
- Finding MLE of $\mathbf{x}, \mathbf{h} \approx \text{maximizing } p_{model}(\mathbf{x}, \mathbf{h})$

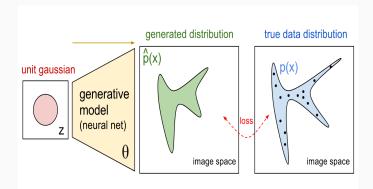
Consider stochastic decoder $\mathbf{g}(\mathbf{h})$ as a **generative model** and its relationship to the joint distribution

$$p_{model}(\mathbf{x}, \mathbf{h}) = p_{model}(\mathbf{h}) \cdot p_{model}(\mathbf{x}|\mathbf{h})$$

n $p_{model}(\mathbf{x}, \mathbf{h}) = \ln p_{model}(\mathbf{h}) + \ln p_{model}(\mathbf{x}|\mathbf{h})$

- If h is given from encoding network, then we want most likely x to output.
- Finding MLE of $\mathbf{x}, \mathbf{h} \approx \text{maximizing } p_{model}(\mathbf{x}, \mathbf{h})$
- *p_{model}*(h) is prior across latent space values. This term can be regularizing.

By assuming a prior over latent space, can pick values from underlying probability distribution!



Sparse Autoencoders have modified loss function with sparsity penalty on latent variables: $J(\theta) = L(x, g(f(x)) + \Omega(\mathbf{h}))$

Sparse Autoencoders have modified loss function with sparsity penalty on latent variables: $J(\theta) = L(x, g(f(x)) + \Omega(\mathbf{h}))$

• L1 reg as example: Assume Laplacian prior on latent space vars:

$$p_{model}(h_i) = rac{\lambda}{2} e^{-\lambda |h_i|}$$

Sparse Autoencoders have modified loss function with sparsity penalty on latent variables: $J(\theta) = L(x, g(f(x)) + \Omega(\mathbf{h}))$

• L1 reg as example: Assume Laplacian prior on latent space vars:

$$p_{model}(h_i) = rac{\lambda}{2} e^{-\lambda |h_i|}$$

The log likelihood becomes:

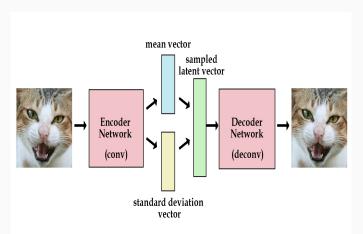
$$-\ln p_{model}(\mathbf{h}) = \lambda \sum_{i} |h_i| + const. = \Omega(\mathbf{h})$$

• Latent space variables for mean, std dev of distribution

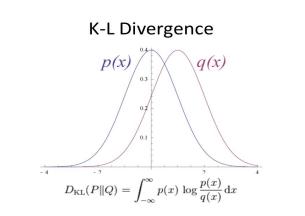
- Latent space variables for mean, std dev of distribution
- Flow: Input → encode to statistics vectors → sample a latent vector → decode for reconstruction

- Latent space variables for mean, std dev of distribution
- Flow: Input → encode to statistics vectors → sample a latent vector → decode for reconstruction
- Loss: Reconstruction + K-L Divergence

Latent space explicitly encodes distribution statistics! Typically made to encode unit gaussian.



Variational Autoencoder Loss also needs K-L divergence. Measures difference between distributions



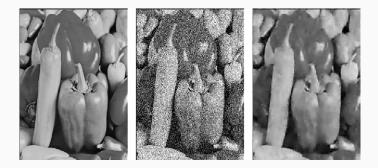
Taken from Wikipedia page 'Kullback-Liebler Divergence

• For every input **x**, we apply corrupting function $C(\cdot)$ to create noisy version: $\mathbf{\tilde{x}} = C(\mathbf{x})$.

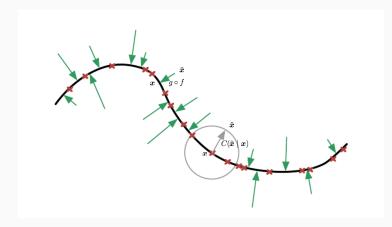
- For every input x, we apply corrupting function C(·) to create noisy version: x̃ = C(x).
- Loss function changes: $J(\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{x}))) \rightarrow J(\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{\tilde{x}}))).$

- For every input x, we apply corrupting function C(·) to create noisy version: x̃ = C(x).
- Loss function changes: $J(\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{x}))) \rightarrow J(\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{\tilde{x}}))).$
- f, g will necessarily learn p_{data}(x) because learning identity function will not give good loss.

By having to remove noise, model must know difference between noise and actual image.



The corrupting function $C(\cdot)$ can corrupt in any direction \rightarrow autoencoder must learn "location" of data manifold and its distribution $p_{data}(\mathbf{x})$.



Desirable property: Points close to each other in input space maintain that property in the latent space.

• This will be true if $\mathbf{f}(\mathbf{x}) = \mathbf{h}$ is continuous, has small derivatives.

- This will be true if $\mathbf{f}(\mathbf{x}) = \mathbf{h}$ is continuous, has small derivatives.
- We can use the **Frobenius Norm** of the **Jacobian Matrix** as a regularization term:

- This will be true if $\mathbf{f}(\mathbf{x}) = \mathbf{h}$ is continuous, has small derivatives.
- We can use the **Frobenius Norm** of the **Jacobian Matrix** as a regularization term:

- This will be true if $\mathbf{f}(\mathbf{x}) = \mathbf{h}$ is continuous, has small derivatives.
- We can use the **Frobenius Norm** of the **Jacobian Matrix** as a regularization term:

$$\Omega(\mathbf{f}, \mathbf{x}) = \lambda \left| \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right|_{F}^{2}$$

The Jacobian Matrix for vector-valued function f(x):

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

The Jacobian Matrix for vector-valued function f(x):

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

The Frobenius Norm for a matrix M:

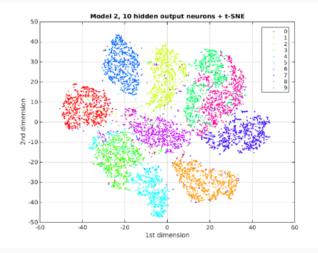
$$||M||_F = \sqrt{\sum_{i,j} M_{ij}^2}$$

• This contractive effect is designed to only occur locally.

- This contractive effect is designed to only occur locally.
- The Jacobian Matrix will see most of its eigenvalues drop below $1 \rightarrow$ contracted directions

- This contractive effect is designed to only occur locally.
- The Jacobian Matrix will see most of its eigenvalues drop below $1 \rightarrow$ contracted directions
- But some directions will have eigenvalues (significantly) above $1 \rightarrow$ directions that explain most of the variance in data

Example: MNIST in 2D manifold



Previous slides underscore the central balance of regularized autoencoders:

Previous slides underscore the central balance of regularized autoencoders:

• Be **sensitive** to inputs (reconstruction loss) → generate good reconstructions of data drawn from data distribution

Previous slides underscore the central balance of regularized autoencoders:

- Be **sensitive** to inputs (reconstruction loss) → generate good reconstructions of data drawn from data distribution
- Be **insensitive** to inputs (regularization penalty) \rightarrow learn actual data distribution

Alain and Bengio (2013) showed that denoising penalty on tiny Gaussian noise is, in the limit, \approx contractive penalty on $\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{x}))$.

Alain and Bengio (2013) showed that denoising penalty on tiny Gaussian noise is, in the limit, \approx contractive penalty on $\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{x}))$.

• Denoising Autoencoders make **reconstruction function** resist small, finite-sized perturbations in input.

Alain and Bengio (2013) showed that denoising penalty on tiny Gaussian noise is, in the limit, \approx contractive penalty on $\mathbf{x}, \mathbf{g}(\mathbf{f}(\mathbf{x}))$.

- Denoising Autoencoders make **reconstruction function** resist small, finite-sized perturbations in input.
- Contractive Autoencoders make **feature encoding function** resist infinitesimal perturbations in input.

Handling noise \sim Contractive property

Deeper autoencoders tend to generalize better and train more efficiently than shallow ones.

Deeper autoencoders tend to generalize better and train more efficiently than shallow ones.

• Common strategy: greedily pre-train layers and stack them

Deeper autoencoders tend to generalize better and train more efficiently than shallow ones.

- Common strategy: greedily pre-train layers and stack them
- For contractive autoencoders, calculating Jacobian for deep networks is expensive. Good idea to do layer-by-layer.

• Dimensionality Reduction: Make high-quality, low-dimension representation of data

- **Dimensionality Reduction:** Make high-quality, low-dimension representation of data
- Information Retrieval: Locate value in database which is just autoencoded key.

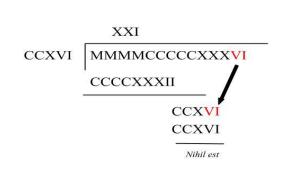
- **Dimensionality Reduction:** Make high-quality, low-dimension representation of data
- Information Retrieval: Locate value in database which is just autoencoded key.
 - If you need binary for hash table, use sigmoid in final layer.

Representation Learning

Representations are important: try long division with Roman numerals

32

Representations are important: try long division with Roman numerals



Other examples: **Variables** in algebra, **cartesian grid** for analytic geometry, **binary encodings** for information theory, electronics

A good representation of data makes subsequent tasks easier - **more tractable, less expensive.**

• Feedforward nets: Hidden layers make representation for output layer (linear classifier)

A good representation of data makes subsequent tasks easier - **more tractable, less expensive.**

- Feedforward nets: Hidden layers make representation for output layer (linear classifier)
- Conv nets: Maintain topology of input, convert into 3-D convolutions, pooling, etc.

A good representation of data makes subsequent tasks easier - **more tractable, less expensive.**

- Feedforward nets: Hidden layers make representation for output layer (linear classifier)
- Conv nets: Maintain topology of input, convert into 3-D convolutions, pooling, etc.
- Autoencoders: The entire mission of the architecture

• Example: Bag-of-words (one-hot or *n*-grams) in NLP.

- Example: Bag-of-words (one-hot or *n*-grams) in NLP.
- $\bullet\,$ All words / n-grams equally distant from one another.

- Example: Bag-of-words (one-hot or *n*-grams) in NLP.
- All words / n-grams equally distant from one another.
- Representation does not capture features!

- Example: Bag-of-words (one-hot or *n*-grams) in NLP.
- All words / n-grams equally distant from one another.
- Representation does not capture features!

- Example: Bag-of-words (one-hot or *n*-grams) in NLP.
- All words / n-grams equally distant from one another.
- Representation does not capture features!

Fundamentally limited: $\sim O(n)$ possible representations.

• Example: Word embeddings in NLP.

- Example: Word embeddings in NLP.
- Can encode similarity and meaningful distance in embedding space.

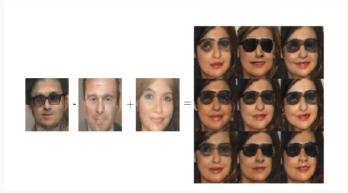
- Example: Word embeddings in NLP.
- Can encode similarity and meaningful distance in embedding space.
- Spots can encode features: *number of legs* vs. *is a dog*

- Example: Word embeddings in NLP.
- Can encode similarity and meaningful distance in embedding space.
- Spots can encode features: *number of legs* vs. *is a dog*

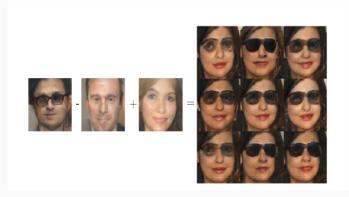
- Example: Word embeddings in NLP.
- Can encode similarity and meaningful distance in embedding space.
- Spots can encode features: number of legs vs. is a dog

Pretty much always preferred: $\sim O(k^n)$ possible representations, where k is number of values a feature can take on.

Distributed representation \rightarrow Data Manifold



Distributed representation \rightarrow Data Manifold



Also: less dimensionality, faster training

Representation Learning Techniques

• Key Idea: Leverage representations learned for one task to solve another.

- Key Idea: Leverage representations learned for one task to solve another.
- Train **each layer** of feedforward net **greedily** as a representation learning alg. e.g. autoencoder.

- Key Idea: Leverage representations learned for one task to solve another.
- Train **each layer** of feedforward net **greedily** as a representation learning alg. e.g. autoencoder.
- Continue stacking layers. Output of all prior layers is input for next one.

- Key Idea: Leverage representations learned for one task to solve another.
- Train **each layer** of feedforward net **greedily** as a representation learning alg. e.g. autoencoder.
- Continue stacking layers. Output of all prior layers is input for next one.
- Fine tune, i.e. jointly train, all layers once each has learned representations.

Works on two assumptions:

Works on two assumptions:

• Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)

Works on two assumptions:

- Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)
- Learning properties of input distribution can help in mapping inputs to outputs. (Better understood)

- Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)
- Learning properties of input distribution can help in mapping inputs to outputs. (Better understood)

- Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)
- Learning properties of input distribution can help in mapping inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

• Effective for word embeddings - replaces one-hot. Also for very complex functions shaped by input data distribution

- Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)
- Learning properties of input distribution can help in mapping inputs to outputs. (Better understood)

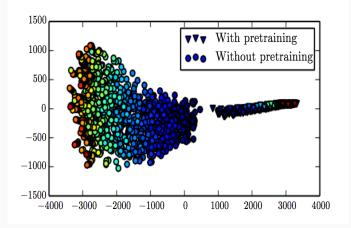
Sometimes helpful, sometimes not:

- Effective for word embeddings replaces one-hot. Also for very complex functions shaped by input data distribution
- Useful when few labeled, many unlabeled examples semi-supervised learning

- Picking initial parameters has regularizing effect and improves generalization, optimization. (Not well understood)
- Learning properties of input distribution can help in mapping inputs to outputs. (Better understood)

Sometimes helpful, sometimes not:

- Effective for word embeddings replaces one-hot. Also for very complex functions shaped by input data distribution
- Useful when few labeled, many unlabeled examples semi-supervised learning
- Less effective for images topology is already present.



Given two similar learning tasks and their labeled data: D_1 , D_2 . D_2 has few examples compared to D_1 .

Given two similar learning tasks and their labeled data: D_1 , D_2 . D_2 has few examples compared to D_1 .

• Idea: (Pre-)Train network on D_1 , then work D_2 .

Given two similar learning tasks and their labeled data: D_1 , D_2 . D_2 has few examples compared to D_1 .

- Idea: (Pre-)Train network on D_1 , then work D_2 .
- Hopefully, **low-level** features from D_1 are useful for D_2 , and fine-tuning is enough for D_2 .

• Low-level features of **inputs**, are same: lighting, animal orientations, edges, faces.

- Low-level features of **inputs**, are same: lighting, animal orientations, edges, faces.
- Labels are fundamentally different.

- Low-level features of **inputs**, are same: lighting, animal orientations, edges, faces.
- Labels are fundamentally different.
- Learning of D_1 will establish latent space where dists. are separated. Then adjust to assign D_2 labels to transformed D_2 by pre-trained network.

Ex: Speech-to-text system for person 1 (D_1) . Then train to also work for person 2 (D_2) .

Ex: Speech-to-text system for person 1 (D_1). Then train to also work for person 2 (D_2).

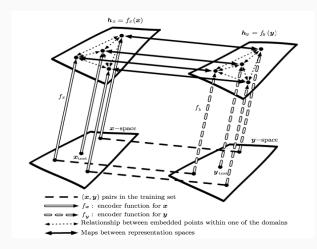
• For both, text must be valid English sentences, so labels are similar.

Ex: Speech-to-text system for person 1 (D_1). Then train to also work for person 2 (D_2).

- For both, text must be valid English sentences, so labels are similar.
- Speakers may have diff. pitch depth, accents, etc →different inputs.

Ex: Speech-to-text system for person 1 (D_1). Then train to also work for person 2 (D_2).

- For both, text must be valid English sentences, so labels are similar.
- Speakers may have diff. pitch depth, accents, etc →different inputs.
- Training on D₁ gives model power to map noise to English in general. Just adjust to assign D₂ input to D₂ labels.



• **One-Shot** Learning only uses one labeled example from D_2 . Training from D_1 gives clean separations in space and then can infer whole cluster labels.

- **One-Shot** Learning only uses one labeled example from D_2 . Training from D_1 gives clean separations in space and then can infer whole cluster labels.
- **Zero-Shot** Learning is able to work with zero labeled training examples. Learn p(y|x, T), T being a context variable

- **One-Shot** Learning only uses one labeled example from D_2 . Training from D_1 gives clean separations in space and then can infer whole cluster labels.
- **Zero-Shot** Learning is able to work with zero labeled training examples. Learn p(y|x, T), T being a context variable

- **One-Shot** Learning only uses one labeled example from D_2 . Training from D_1 gives clean separations in space and then can infer whole cluster labels.
- **Zero-Shot** Learning is able to work with zero labeled training examples. Learn p(y|x, T), T being a context variable
 - For example: *T* is sentences: cats have four legs, pointy ears, fur, etc. *x* is images, with *y* being label of cat or not.

• Disentangled Causes: for rep. $p(\mathbf{x})$, we want to know $p(\mathbf{y}|\mathbf{x})$ i.e., does \mathbf{y} cause \mathbf{x} .

- Disentangled Causes: for rep. $p(\mathbf{x})$, we want to know $p(\mathbf{y}|\mathbf{x})$ i.e., does \mathbf{y} cause \mathbf{x} .
 - If x, y correlated, then p(x) and p(y|x) will be strongly tied.
 We want this relation to be clear, hence disentangled.

- **Disentangled Causes:** for rep. $p(\mathbf{x})$, we want to know $p(\mathbf{y}|\mathbf{x})$ i.e., does \mathbf{y} cause \mathbf{x} .
 - If x, y correlated, then p(x) and p(y|x) will be strongly tied.
 We want this relation to be clear, hence disentangled.
- Easy Modeling: representations that have sparse feature vectors which imply independent features

Assume ${\boldsymbol y}$ is a causal factor of ${\boldsymbol x}$ and ${\boldsymbol h}$ represents all of those factors.

Assume ${\boldsymbol y}$ is a causal factor of ${\boldsymbol x}$ and ${\boldsymbol h}$ represents all of those factors.

• Joint distribution of model is: $p(\mathbf{x}, \mathbf{h}) = p(\mathbf{x}|\mathbf{h})p(\mathbf{h})$

Assume ${\bf y}$ is a causal factor of ${\bf x}$ and ${\bf h}$ represents all of those factors.

- Joint distribution of model is: $p(\mathbf{x}, \mathbf{h}) = p(\mathbf{x}|\mathbf{h})p(\mathbf{h})$
- Marginal probability of **x** is

$$p(\mathbf{x}) = \sum_{h} p(h) p(\mathbf{x}|h) = \mathbb{E}_{\mathbf{h}} p(\mathbf{x}|\mathbf{h})$$

Thus, best latent var h (w.r.t. p(x)) explains x from a **causal point of view.**

S ML@B

Assume ${\bf y}$ is a causal factor of ${\bf x}$ and ${\bf h}$ represents all of those factors.

- Joint distribution of model is: $p(\mathbf{x}, \mathbf{h}) = p(\mathbf{x}|\mathbf{h})p(\mathbf{h})$
- Marginal probability of x is

$$p(\mathbf{x}) = \sum_{h} p(h) p(\mathbf{x}|h) = \mathbb{E}_{\mathbf{h}} p(\mathbf{x}|\mathbf{h})$$

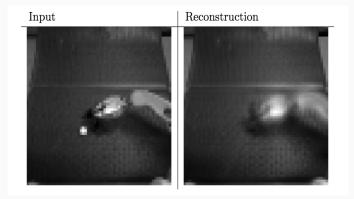
Thus, best latent var h (w.r.t. p(x)) explains x from a **causal point of view.**

• p(y|x) depends on p(x), hence *h* being causal is valuable.

• Humans fail to detect changes in environment unimportant to current task.

- Humans fail to detect changes in environment unimportant to current task.
- Must establish learnable measures of **saliency** to attach to features.

- Humans fail to detect changes in environment unimportant to current task.
- Must establish learnable measures of **saliency** to attach to features.
- Example: Autoencoders trained on images often fail to register important small objects like ping pong balls.



Adversarial: *learn* saliency by tricking a discriminator network

Adversarial: *learn* saliency by tricking a discriminator network

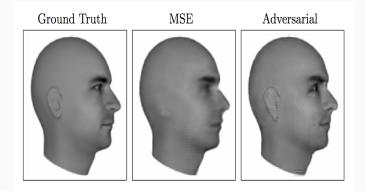
• Discriminator is trained to tell between ground truth and generated data

Adversarial: *learn* saliency by tricking a discriminator network

- Discriminator is trained to tell between ground truth and generated data
- Discriminator can attach high saliency to **small number** of pixels

Adversarial: *learn* saliency by tricking a discriminator network

- Discriminator is trained to tell between ground truth and generated data
- Discriminator can attach high saliency to **small number** of pixels
- Framework of **Generative Adversarial Networks** (more later in course).



Conclusion

• The crux of autoencoders is representation learning.

- The crux of autoencoders is representation learning.
- The crux of deep learning is representation learning.

- The crux of autoencoders is representation learning.
- The crux of deep learning is representation learning.
- The crux of intelligence is probably representation learning.

Questions

Questions?