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History

• In 1995, Yann LeCun
and Yoshua Bengio
introduced the concept 
of convolutional neural 
networks.
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Convolution Properties

• Commutative:

f*g = g*f

• Associative:

(f*g)*h = f*(g*h)

• Homogeneous:

f*(g)=  f*g

• Additive (Distributive):

f*(g+h)= f*g+f*h

• Shift-Invariant

f*g(x-x0,y-yo)= (f*g) (x-x0,y-yo) 



ConvNet

• ConvNet architectures for images:
– fully-connected structure does not scale to large 

images
– the explicit assumption that the inputs are images
– allows us to encode certain properties into the 

architecture. 
– These then make the forward function more efficient 

to implement
– Vastly reduce the amount of parameters in the 

network.

• 3D volumes: neurons arranged in 3 dimensions: 
width, height, depth. 



Convnets

• every layer of a ConvNet
transforms one volume of 
activations to another through a 
differentiable function. 

Layers used to build ConvNets: 

• a stacked sequence of 
layers. 3 main types

• Convolutional Layer, 
Pooling Layer, and Fully-
Connected Layer



The replicated feature approach

• Use many different copies of the 
same feature detector with 
different positions.
– Could also replicate across scale and 

orientation (tricky and expensive)

– Replication greatly reduces the 
number of free parameters to be 
learned.

• Use several different feature types, 
each with its own map of 
replicated detectors.
– Allows each patch of image to be 

represented in several ways.

The red connections all 
have the same weight.



Backpropagation with weight constraints

• It’s easy to modify the 
backpropagation algorithm to 
incorporate linear constraints 
between the weights.

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy 
the constraints.

– So if the weights started off 
satisfying the constraints, they 
will continue to satisfy them.

To constrain : w1 = w2

we need : Dw1 = Dw2

compute :
¶E

¶w1

and
¶E

¶w2

use
¶E

¶w1

+
¶E

¶w2

for w1 and w2



What does replicating the feature detectors achieve?

• Equivariant activities: Replicated features do not make the 
neural activities invariant to translation. The activities are 
equivariant. 

• Invariant knowledge: If a feature is useful in some locations 
during training, detectors for that feature will be available in 
all locations during testing.

representation 

by active 

neurons

image

translated 

representation

translated      

image



Pooling the outputs of replicated feature 
detectors

• Get a small amount of translational invariance at each level 
by averaging four neighboring replicated detectors to give a 
single output to the next level.

– This reduces the number of inputs to the next layer of feature 
extraction, thus allowing us to have many more different feature 
maps.

– Taking the maximum of the four works slightly better.

• Problem: After several levels of pooling, we have lost 
information about the precise positions of things.

– This makes it impossible to use the precise spatial relationships 
between high-level parts for recognition.



Example Architecture for CIFAR-10

• [INPUT - CONV - RELU - POOL - FC]

• INPUT [32x32x3] : the raw pixel values of the image

• CONV will compute the output of neurons that are connected to 
local regions in the input. With 12 filters, the output volume is 
[32x32x12]

• RELU : apply an elementwise activation function, such as the 
max(0,x)

• POOL will perform a downsampling operation along the spatial 
dimensions (width, height), resulting in volume such as [16x16x12].

• FC layer will compute the class scores, resulting in volume of size 
[1x1x10], where each of the 10 numbers correspond to a class 
score, such as among the 10 categories of CIFAR-10



Convolution Layer

• The Conv layer is the core building block of a CNN
• The parameters consist of a set of learnable filters. 
• Every filter is small spatially (width and height), but extends through the 

full depth of the input volume, eg, 5x5x3
• During the forward pass, we slide (convolve) each filter across the width 

and height of the input volume and compute dot products between the 
entries of the filter and the input at any position. 

• produce a 2-dimensional activation map that gives the responses of that 
filter at every spatial position.

• Intuitively, the network will learn filters that activate when they see some 
type of visual feature

• A set of filters in each CONV layer
– each of them will produce a separate 2-dimensional activation map
– We will stack these activation maps along the depth dimension and produce 

the output volume.
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Convolution
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3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy
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32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail
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32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy



32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions

32

32

3

28

28

6

CONV,  

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  activation
functions

32

32

3

CONV,  

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,  

ReLU

….
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24

24

Convolutions: More detail
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Preview
[From recent Yann  

LeCun slides]

Convolutions: More detail

Andrej Karpathy



example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

elementwise multiplication and sum of  

a filter and the signal (image)

one filter =>
one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman



A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



• 7

• 7x7 input
(spatially)  
assume 3x3
filter

• 7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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• 7x7 input
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filter
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=> 5x5 output

• 7

• 7x7 input (spatially)  
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on  

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy



N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!
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In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy



Convolutions: More detail

Andrej Karpathy



Spatial arrangement

• Three hyperparameters control the size of the 
output volume

– Depth: no of filters, each learning to look for 
something different in the input.

– the stride with which we slide the filter.

– pad the input volume with zeros around the 
border. 



Spatial arrangement

• We compute the spatial size of the output 
volume as a function of 
– the input volume size (W)
– the receptive field size of the Conv Layer neurons (F)
– the stride with which they are applied (S)
– the amount of zero padding used (P) on the border. 

• The number of neurons that “fit” is given by 
(W−F+2P)/(S+1)
– For a 7x7 input and a 3x3 filter with stride 1 and pad 0 

we would get a 5x5 output.
– With stride 2 we would get a 3x3 output. 



• one spatial dimension (x-axis), one neuron with a receptive field 
size of F = 3, the input size is W = 5, and zero padding of P = 1

• Stride = 1, 2

• The Krizhevsky et al. architecture that won the ImageNet 2012  
• images of size [227x227x3]. 
• the first Convolutional Layer, used neurons with receptive field size F=11, 

stride S=4, no zero padding P=0 
• Since (227 - 11)/4 + 1 = 55, the Conv layer had a depth of K=96, 
• the Conv layer output volume had size [55x55x96]. 
• Each of the 55*55*96 neurons in this volume was connected to a region of 

size [11x11x3] in the input volume. 
• Moreover, all 96 neurons in each depth column are connected to the same 

[11x11x3] region of the input, 



Parameter Sharing
• Parameter sharing controls the number of parameters. 

• If there are 55*55*96 = 290,400 neurons in the first Conv Layer, and 
each has 11*11*3 = 363 weights and 1 bias. Together, this adds up 
to 290400 * 364 = 105,705,600 parameters on the first layer of the 
ConvNet alone.

• Reduce by parameter sharing

• now have only 96 unique set of weights (one for each depth slice), 
for a total of 96*11*11*3 = 34,848 unique weights, or 34,944 
parameters (+96 biases)

• During backpropagation, every neuron in the volume will compute 
the gradient for its weights, but these gradients will be added up 
across each depth slice and only update a single set of weights per 
slice.



• Example filters learned by Krizhevsky. 

• 96 filters each of size [11x11x3], each is 

shared by the 55*55 neurons in one depth 

slice. 



Summary of Conv Layer
• Accepts a volume of size W1×H1×D1

• Requires four hyperparameters:

– Number of filters K

– their spatial extent F

– the stride S

– the amount of zero padding P

• Produces a volume of size W2×H2×D2

– W2=(W1−F+2P)/S+1

– H2=(H1−F+2P)/S+1 

– D2=K

• With parameter sharing, it introduces F⋅F⋅D1 weights per filter, for a total 
of (F⋅F⋅D1)⋅K weights and K biases.

• In the output volume, the d-th depth slice (of size W2×H2) is the result of 
performing a valid convolution of the d-th filter over the input volume 
with a stride of S, and then offset by d-th bias.



Spatial Pooling

• Sum or max over non-overlapping / overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus



3. Spatial Pooling

• Sum or max over non-overlapping / overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Rob Fergus, figure from Andrej Karpathy



Pooling Layer
• Insertion of pooling layer:

– reduce the spatial size of the representation 

reduce the amount of parameters and computation in the network, and 
hence also control overfitting. 

• The Pooling Layer operates independently on every depth slice of 
the input and resizes it spatially, using the MAX operation. 

• The most common form is a pooling layer with filters of size 2x2 
applied with a stride of 2 -- downsamples every depth slice in the 
input by 2 along both width and height,

• MAX operation would in take a max over 4 numbers (little 2x2 
region in some depth slice). 

• The depth dimension remains unchanged. 



General pooling layer

• Accepts a volume of size W1×H1×D1
• Requires two hyperparameters:

– their spatial extent F
– the stride S

• Produces a volume of size W2×H2×D2 where:
– W2=(W1−F)/S+1
– H2=(H1−F)/S+1
– D2=D1

• Introduces zero parameters
• Other pooling functions: Average pooling, L2-

norm pooling



General pooling

• Backpropagation. the backward pass for a max(x, y) operation 
routes the gradient to the input that had the highest value in 
the forward pass.

• Hence, during the forward pass of a pooling layer you may 
keep track of the index of the max activation (sometimes also 
called the switches) so that gradient routing is efficient during 
backpropagation. 



Getting rid of pooling
1. Striving for Simplicity: The All Convolutional Net proposes to 

discard the pooling layer and have an architecture that only 
consists of repeated CONV layers. 

• To reduce the size of the representation they suggest using larger 
stride in CONV layer once in a while.

• Argument: 
– The purpose of pooling layers is to perform dimensionality reduction to 

widen subsequent convolutional layers' receptive fields.

– The same effect can be achieved by using a convolutional layer: using a 
stride of 2 also reduces the dimensionality of the output and widens the 
receptive field of higher layers.

• The resulting operation differs from a max-pooling layer in that 
– it cannot perform a true max operation

– it allows pooling across input channels. 

Springenberg, Jost Tobias, et al. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).



Getting Rod of Pooling 2
2. Very Deep Convolutional Networks for Large-Scale Image 

Recognition. 

• The core idea here is that hand-tuning layer kernel sizes to achieve 
optimal receptive fields (say, 5×5 or 7×7) can be replaced by simply 
stacking homogenous 3×3 layers. 

• The same effect of widening the receptive field is then achieved by 
layer composition rather than increasing the kernel size

– three stacked 3×3 have a 7×7 receptive field. 

– At the same time, the number of parameters is reduced: 

– a 7×7 layer has 81% more parameters than three stacked 3×3 layers.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale 
image recognition." arXiv preprint arXiv:1409.1556 (2014).



Fully-connected layer

• Neurons in a fully connected layer have full connections to all 

activations in the previous layer

• Their activations can hence be computed with a matrix 

multiplication followed by a bias offset. 

• Converting FC layers to CONV layers

• the only difference between FC and CONV layers is that the 

neurons in the CONV layer are connected only to a local 

region in the input, and that many of the neurons in a CONV 

volume share parameters. 

• However, the neurons in both layers still compute dot 

products, so their functional form is identical. 



Converting FC layers to CONV layers

• For any CONV layer there is an FC layer that implements the same forward 
function. 

• The weight matrix would be a large matrix that is mostly zero except for at 
certain blocks (due to local connectivity) where the weights in many of the 
blocks are equal (due to parameter sharing).

• Conversely, any FC layer can be converted to a CONV layer. 

• For example, an FC layer with K=4096 that is looking at some input volume 
of size 7×7×512 

• can be equivalently expressed as a CONV layer with F=7,P=0,S=1,K=4096. 

• In other words, we are setting the filter size to be exactly the size of the 
input volume, and hence the output will simply be 1×1×4096 since only a 
single depth column “fits” across the input volume, giving identical result 
as the initial FC layer.



ConvNet Architectures

Layer Patterns

• The most common architecture 

• stacks a few CONV-RELU layers, 

• follows them with POOL layers, 

• and repeats this pattern until the image has been merged spatially 
to a small size. 

• At some point, it is common to transition to fully-connected layers. 
The last fully-connected layer holds the output, such as the class 
scores. In other words, the most common ConvNet architecture 
follows the pattern:

INPUT -> [[CONV -> RELU]*N -> POOL?]*M ->[FC -> RELU]*K  -> FC

• N >= 0 (and usually N <= 3), M >= 0, K >= 0 



Prefer a stack of small filter CONV to one large receptive field CONV layer. 

three layers of 3x3 CONV vs a single CONV layer with 7x7 
receptive fields.

• The receptive field size is identical in spatial extent (7x7), but 
with several disadvantages. 
1. The neurons would be computing a linear function over the input, 

while the three stacks of CONV layers contain non-linearities that 
make their features more expressive. 

2. If we suppose that all the volumes have C channels, the single 7x7 
CONV layer would contain C×(7×7×C)=49C2 parameters,  while the 
three 3x3 CONV layers would contain 3×(C×(3×3×C))=27C2

parameters. 

• Intuitively, stacking CONV layers with tiny filters as opposed to 
having one CONV layer with big filters allows us to express 
more powerful features of the input, and with fewer 
parameters. 



Recent Departures

• The conventional paradigm of a linear list of layers 
has recently been challenged, in

1. Google’s Inception architectures 

2. current (state of the art) Residual Networks from 
Microsoft Research Asia. 

• Both of these feature more intricate and different 
connectivity structures.



Case Studies
• LeNet. The first successful applications of Convolutional Networks 

were developed by Yann LeCun in 1990’s. was used to read zip 
codes, digits, etc.

• AlexNet. popularized Convolutional Networks in Computer Vision, 
developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. 

• The AlexNet was submitted to the ImageNet ILSVRC challenge in 
2012 and significantly outperformed the second runner-up (top 5 
error of 16% compared to runner-up with 26% error). The Network 
had a very similar architecture to LeNet, but was deeper, bigger, 
and featured Convolutional Layers stacked on top of each other 

• ZF Net. The ILSVRC 2013 winner was a Convolutional Network from 
Matthew Zeiler and Rob Fergus. 

• An improvement on AlexNet by tweaking the architecture 
hyperparameters, -- expanding the size of the middle convolutional 
layers and making the stride and filter size on the first layer smaller.

http://www.image-net.org/challenges/LSVRC/2014/


Case Studies
• GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy

et al. from Google. 

• Its main contribution was the development of an Inception Module that 
dramatically reduced the number of parameters in the network (4M, compared to 
AlexNet with 60M). 

• Uses Average Pooling instead of Fully Connected layers at the top of the ConvNet

• There are also several followup versions to the GoogLeNet, most 
recently Inception-v4.

• VGGNet. The runner-up in ILSVRC 2014 was the network from Karen Simonyan and 
Andrew Zisserman. 

• Showed that the depth of the network is a critical component for good 
performance. Their final best network contains 16 CONV/FC layers 

• features an extremely homogeneous architecture that only performs 3x3 
convolutions and 2x2 pooling from the beginning to the end. 

• A downside: that it is more expensive to evaluate and uses a lot more memory and 
parameters (140M). Most of these parameters are in the first fully connected layer, 
and it was since found that these FC layers can be removed with no performance 
downgrade, significantly reducing the number of necessary parameters.

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261


LeNet
• Yann LeCun and his collaborators developed a really good 

recognizer for handwritten digits.

• This net was used for reading ~10% of the checks in North 
America.

• Demo at http://yann.lecun.com



The architecture of LeNet5



From hand-written digits to 3-D objects

• Recognizing real objects in color photographs 
downloaded from the web is much more complicated 
than recognizing hand-written digits:

– Hundred times as many classes (1000 vs 10)

– Hundred times as many pixels (256 x 256 color vs 28 x 28 
gray)

– Two dimensional image of three-dimensional scene.

– Cluttered scenes requiring segmentation

– Multiple objects in each image.

• Will the same type of convolutional neural network 
work?



The ILSVRC-2012 competition on ImageNet

• The dataset has 1.2 million high-resolution training images.

• The classification task:

– Get the “correct” class in your top 5 bets. There are 1000 
classes.

• The localization task:

– For each bet, put a box around the object. Your box must have 
at least 50% overlap with the correct box.

• Some of the best existing computer vision methods were  tried on 
this dataset by leading computer vision groups from Oxford, INRIA, 
XRCE, …

– Computer vision systems use complicated multi-stage systems.

– The early stages are typically hand-tuned by optimizing a few 
parameters.



Examples from the test set (with the 

network’s guesses)



A neural network for ImageNet

• Alex Krizhevsky (NIPS 2012) developed a very deep convolutional 
neural net of the type pioneered by Yann Le Cun. Its architecture
was:

– 7 hidden layers not counting some max pooling layers.

– The early layers were convolutional.

– The last two layers were globally connected.

– 650000 units, 60 million params

• The activation functions were:

– Rectified linear units in every hidden layer. These train much faster 
and are more expressive than logistic units.

– Competitive normalization to suppress hidden activities when nearby 
units have stronger activities. This helps with variations in intensity. 



Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm 

A Common Architecture: AlexNet



Error rates on the ILSVRC-2012 
competition

• University of Tokyo             

• Oxford University Computer Vision 
Group

• INRIA (French national research 
institute in CS) + XRCE (Xerox 
Research Center Europe)  

• University of Amsterdam

• 26.1%            
53.6%

• 26.9%            
50.0%

• 27.0%

• 29.5%     

• University of Toronto (Alex Krizhevsky) • 16.4%  34.1%
•

classification
classification
&localization





Tricks that significantly improve generalization

• Train on random 224x224 patches from the 256x256 
images to get more data. Also use left-right reflections of 
the images.

• At test time, combine the opinions from ten different patches: 
The four 224x224 corner patches plus the central 224x224 patch 
plus the reflections of those five patches. 

• Use “dropout” to regularize the weights in the 
globally connected layers (which contain most of 
the parameters). 

– half of the hidden units in a layer are randomly 
removed  for each training example. 



The hardware required for Alex’s net

• Uses a very efficient implementation of 
convolutional nets on two Nvidia GTX 580 Graphics 
Processor Units (over 1000 fast little cores)

– GPUs are very good for matrix-matrix multiplies.

– GPUs have very high bandwidth to memory.

– This allows him to train the network in a week.

– It also makes it quick to combine results from 10 patches 
at test time.

• We can spread a network over many cores if we can 
communicate the states fast enough.



[Zeiler and Fergus, 2013]

Case Study: ZFNet

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)  

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

Andrej Karpathy



Case Studies
• GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network 

from Szegedy et al. from Google. 
• Its main contribution was the development of an Inception Module that 

dramatically reduced the number of parameters in the network (4M, 
compared to AlexNet with 60M). 

• Uses Average Pooling instead of Fully Connected layers at the top of the 
ConvNet

• There are also several followup versions to the GoogLeNet, most 
recently Inception-v4.

• VGGNet. The runner-up in ILSVRC 2014 was the network from Karen 
Simonyan and Andrew Zisserman. 

• Showed that the depth of the network is a critical component for good 
performance. Their final best network contains 16 CONV/FC layers 

• and, apfeatures an extremely homogeneous architecture that only 
performs 3x3 convolutions and 2x2 pooling from the beginning to the end. 
Their pretrained model is available for plug and play use in Caffe. A 
downside of the VGGNet is that it is more expensive to evaluate and uses 
a lot more memory and parameters (140M). Most of these parameters are 
in the first fully connected layer, and it was since found that these FC 
layers can be removed with no performance downgrade, significantly 
reducing the number of necessary parameters.

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://www.robots.ox.ac.uk/~vgg/research/very_deep/


Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1  

and  2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy



[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy

Convolution
Pooling
Softmax
Other



GoogLeNet vs State of the art

GoogLeNet 

Zeiler-Fergus Architecture (1 tower)

Convolution
Pooling
Softmax
Other



Residual Network

Deep Residual Learning for Image Recognition

: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and 
Jian Sun



The deeper, the better

• The deeper network can cover more complex 
problems

– Receptive field size ↑

– Non-linearity ↑

• However, training the deeper network is more 
difficult because of vanishing/exploding 
gradients problem

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
82



Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy

https://www.youtube.com/watch?v=1PGLj-uKT1w


(slide from Kaiming He’s recent presentation)

Case Study: ResNet

Andrej Karpathy



• Escape from few layers

– ReLU for solving gradient vanishing problem

– Dropout …

• Escape from 10 layers

– Normalized initialization

– Intermediate normalization layers

• Escape from 100 layers

– Residual network



[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training  

on 8 GPU machine

at runtime: faster  

than a VGGNet!  

(even though it has  

8x more layers)

Case Study: ResNet

Andrej Karpathy



Plain Network

• Plain nets: stacking 3x3 conv layers

• 56-layer net has higher training error and test 
error than 20-layers net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
87



• ResNet. Residual Network developed by Kaiming He et al. was 
the winner of ILSVRC 2015. It features special skip 
connections and a heavy use of batch normalization. 

• The architecture is also missing fully connected layers at the 
end of the network. The reader is also referred to Kaiming’s
presentation (video, slides), and some recent 
experiments that reproduce these networks in Torch.

• ResNets are currently by far state of the art Convolutional 
Neural Network models and are the default choice for using 
ConvNets in practice (as of May 10, 2016). 

• More recent developments that tweak the original 
architecture from Kaiming He et al. Identity Mappings in Deep 
Residual Networks (published March 2016).

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
https://www.youtube.com/watch?v=1PGLj-uKT1w
http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
https://github.com/gcr/torch-residual-networks
https://arxiv.org/abs/1603.05027


Residual Network

• Naïve solution

– If extra layers are an 
identity mapping, then 
a training errors does  
not increase

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
89



Residual Network

• If extra layers are an identity
mapping, then training error 
does  not increase

• Adding layers makes smaller 
differences

• Optimal mappings are closer to 
an identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
90



Residual Network

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & 
Jian Sun. “Deep Residual Learning for Image 

Recognition”. arXiv 2015.

Residual block

• In traditional CNNs, H(x) 
would just be equal to F(x)

• Instead, we’re computing 
the term F(x), that you 
have to add to input  x. 

• Basically, the mini module 
is computing a “delta” or 
a slight change to the 
original input x to get a 
slightly altered 
representation

The authors believe that “it is easier 
to optimize the residual mapping 
than to optimize the original, 
unreferenced mapping”.



Residual Network
F(x) is a residual 
mapping w.r.t. identity



Residual Network

• Difference between an original image and a 
changed image 

Some 
Network

residual

Preserving base information

can treat perturbation 

93



Residual Network

• Deeper ResNets have lower training error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
94



Residual Network

• Residual block

– Very simple

– Parameter-free

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.

A naïve residual block “bottleneck” residual block
(for ResNet-50/101/152)

95



Network Design

• Basic design (VGG-style)
– All 3x3 conv (almost)

– Spatial size/2 => #filters x2

– Batch normalization

– Simple design, just deep

• Other remarks
– No max pooling (almost)

– No hidden fc

– No dropout 

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
96



• ResNet-152

– Use bottlenecks

– ResNet-152(11.3 
billion FLOPs) has 
lower complexity 
than VGG-16/19 
nets (15.3/19.6 
billion FLOPs)

Network Design

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
97



Results

• Deep Resnets can be trained without 
difficulties

• Deeper ResNets have lower training error, and 
also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
98



Results

• Deep Resnets can be trained without 
difficulties

• Deeper ResNets have lower training error, and 
also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
& Jian Sun. “Deep Residual Learning for 

Image Recognition”. arXiv 2015.
99



Practical matters



Training: Best practices

• Use mini-batch 
• Use regularization
• Use gradient checks
• Use cross-validation for your parameters
• Use RELU or leaky RELU or ELU, don’t use sigmoid
• Center (subtract mean from) your data
• To initialize, use “Xavier initialization” 

• initializing the weights in your network by drawing them 
from a distribution with zero mean and variance 
𝑉𝑎𝑟 𝑊 =  1 𝑛𝑖𝑛

• Learning rate: too high? Too low? 



Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons
• Allows individual neurons to independently be responsible for 
performance

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Data Augmentation (Jittering)

• Create virtual training samples

– Horizontal flip

– Random crop

– Color casting

– Geometric distortion

Deep Image [Wu et al. 2015]
Jia-bin Huang

http://arxiv.org/pdf/1501.02876v2.pdf


Transfer Learning

“You need a lot of a data if you want to  

train/use CNNs”

Andrej Karpathy



1. Train on  

ImageNet
2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of  

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Another option: use network as feature extractor, 

train SVM on extracted features for target task

Source: classification on ImageNet Target: some other task/data



more generic

more specific

Lecture 11 - 34

very similar  

dataset

very different  

dataset

very little data Use linear  

classifier on top  

layer

You’re in  

trouble… Try  

linear classifier  

from different  

stages

quite a lot of  

data

Finetune a few  

layers

Finetune a  

larger number of  

layers

Transfer Learning with CNNs

Andrej Karpathy



Simplest Way to Use CNNs
• Take model trained on, e.g., ImageNet 2012 

training set

• Easiest: Take outputs of e.g. 6th or 7th fully-
connected layer, and plug features from each 
layer into linear SVM
• Features are neuron activations at that level 

• Can train linear SVM for different tasks, not just 
one used to learn the deep net

• Better: fine-tune features and/or classifier on 
new dataset

• Classify test set of new dataset

Adapted from Lana Lazebnik



Packages

• Caffe and Caffe Model Zoo

• Torch

• Theano with Keras/Lasagne

• MatConvNet

• TensorFlow

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://torch.ch/
http://deeplearning.net/software/theano/
http://www.vlfeat.org/matconvnet/
https://www.tensorflow.org/


Learning Resources

• http://deeplearning.net/

• http://cs231n.stanford.edu

http://deeplearning.net/
http://cs231n.stanford.edu/syllabus.html


Things to remember
• Overview

– Neuroscience, perceptron, multi-layer neural 
networks

• Convolutional neural network (CNN)

– Convolution, nonlinearity, max pooling

• Training CNN

– Dropout; data augmentation; transfer learning

• Using CNNs for your own task

– Basic first step: try the pre-trained CaffeNet fc6-
fc8 layers as features 

Adapted from Jia-bin Huang


