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Abstract This paper presents an analytical framework for

cascade formation considering both retweet and mention-

ing activities into account. We introduce two mention

strategies (a) random mention and (b) smart mention to

model the mention preferences of the users. The proposed

framework CM
F analytically computes the cascade size,

depicting tweet popularity and discovers the presence of a

critical retweet rate, under which mentioning in a tweet

significantly helps in cascade formation. We validate the

proposed framework with the help of Monte Carlo simu-

lation; we demonstrate the generality of the framework

taking both empirical and synthetic follower networks into

consideration. This framework proves the elegance of

smart mention strategy in boosting tweet popularity, spe-

cially in the low retweeting environment.

Keywords Multiplex network � Epidemic models �
Information diffusion � Twitter

1 Introduction

In recent times, Twitter has become one of the most

influential micro-blogging systems for spreading and

sharing breaking news, personal updates and spontaneous

ideas (González-Bailón et al. 2011). In Twitter, propaga-

tion of tweets or hashtags from one user to another occurs

mainly via two modalities: ‘‘retweeting’’ and ‘‘mention-

ing’’ (Kato et al. 2012). In case of retweet, information is

simply relayed to all the followers of the retweeting user.

However, mention utility allows to spread an information

far beyond the neighborhood and improves its visibility by

making it available to the appropriate set of users. Fur-

thermore, as mentions get listed in a separate tab, they gain

higher attention than regular posts. Admittedly, mention

utility has a potential to play a significant role in the cas-

cading behavior of tweets and hashtags. For instance, in

our dataset, we observe that the probability that a men-

tioned user retweets a post is on average 32% higher than

the one of a follower.

Retweet cascades play a central role in tweet popularity,

measured as the retweet count (Kupavskii et al. 2012;

Cheng et al. 2014). Figure 1 demonstrates the hetero-

geneity in tweet popularity in the ‘Algeria’ dataset (de-

scribed in the next section). This heterogeneity stems from

the fact that cascade formation in Twitter is a complex

process; the popularity of a tweet widely depends on the

interplay of two propagation modalities, retweet and

mention. Mentioning suitable users in a post may expose

the tweet to a larger population, hence mention strategy

surely plays an important role behind tweet popularity
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(Wang et al. 2013; Tang et al. 2014; Gong et al. 2015;

Pramanik et al. 2016). On the other side, social network of

followers is a dynamic communication medium that

facilitates the propagation of tweets. Precisely, the

retweeting activity of users, through the underlying fol-

lower network, relays the post to a new population. Study

shows that the retweet activity is heavily skewed across the

users (see inset of Fig. 1). Notably, retweeting a post

depends on its importance to the viewer; the importance

can be characterized as high contextual similarity, men-

tioning the right user in that post etc. In a nutshell, the

retweet rate and the underlying follower network may

appear as a decisive factor in the cascade formation. In this

context, investigating the role of retweet and mention

activities in promoting tweet propagation is an interesting

research question. Modeling the cascade formation process,

considering these two modalities into account, can be the

first step towards this direction.

The dynamics of the cascade formation in Twitter have

been studied in the light of the classical diffusion models

such as linear threshold (Granovetter 1978; Kempe et al.

2003) and independent cascade models (Goldenberg et al.

2001). Recently, the evolution of text mining in Twitter led

to deep analysis of the topical retweet cascades and virality

prediction (Cheng et al. 2014; Kwak et al. 2010; Suh et al.

2010). There exists stochastic models (epidemic models (Li

et al. 2013) and Markov chains (Dickens et al. 2012a)),

machine learning (Xu and Yang 2012; Gupta et al. 2012)

and point process-based models (Zhao et al. 2015; Bao

et al. 2015) to explain the retweeting activities and mod-

eling the cascade formation. However, all these endeavors

have only focused on the tweet propagation through

retweets; they failed to shed any light on the role of other

modalities, such as mentioning. Moreover, they lack the

proper understanding of the underlying dynamics, such as

retweet rate and formation of follower links, behind the

tweet diffusion.

Recently, diffusion in multiplex network has received

considerable attention where different modes of informa-

tion propagations coexist and contribute to the spreading

process (Boccaletti et al. 2014; Kivelä et al. 2014). Indeed,

multiplex network exhibits an excellent platform for

explaining tweet propagation through both retweet and

mentioning modalities. Several attempts have been made in

bits and pieces to investigate the epidemic outbreak across

multiple layers (Cozzo et al. 2013; Li et al. 2015), com-

peting epidemic propagations in multilayer networks

(Darabi Sahneh and Scoglio 2014), epidemic vs. awareness

propagation (Granell et al. 2013) etc. Notably, there exists

a subtle difference between the propagation of tweets via

retweet activity (where tweet propagates through the

underlying follower network) against the propagation via

mentioning activity (where propagation relies on the user’s

mention preferences). The absence of underlying network

in case of mention prohibits the direct adaptation of the

aforementioned multiplex epidemic models.

In this paper, we propose an analytical framework (CM
F )

to model the cascade formation, considering both retweet

and mentioning activities into account. We introduce a

‘generic’ mention strategy to model the mention prefer-

ences in a tweet, with two special cases—random and

smart mentioning. The key idea behind the CM
F model is the

multilayer representation of the tweet propagation, where

the tweet propagates via retweets in one layer and via

mentioned users in another layer. Our data study highlights

the importance of mentions on tweet popularity and clearly

demarcates the retweeting behavior of two different types

of users (a) normal followers (b) mentioned users in the

tweet (Sect. 2). We claim that the influence of mentioning

on cascade formation directly reflects in the (a) cascade

size, interpreted as retweet count and (b) critical retweet

rate for cascade formation. Subsequently, the proposed

model analytically computes the cascade size and reveals

the complementary effect of followers and mentioned users

in cascade formation; it derives the critical retweet rate

under which mentioning in a tweet significantly helps in

cascade formation (Sect. 3). We then develop a Monte

Carlo simulation platform for model analysis and valida-

tion (Sect. 4). Moreover, we establish the correctness of

this simulation platform from the empirical data and show

that the cascade size and critical retweet rate, computed

from the analytical model, exhibits a nice agreement with

simulation (Sect. 5). We also observe that proper men-

tioning proves to be more beneficial in propagating an

information in case of a less active retweeting environment

(which is commonly the case for Twitter). Furthermore, we

demonstrate the generality of the framework for both

empirical (Algeria, Egypt datasets) and synthetic (scale-
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Fig. 1 Retweet count distribution of all tweets in ‘Algeria’ dataset;

Inset depicts the retweet count distribution of all users in ‘Algeria’

dataset
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free, Kronecker) follower networks and study the influence

of mention strategies on cascade formation (Sect. 6).

2 Dataset and representation

In this section, we introduce the dataset and propose a

multiplex framework to demonstrate the flow of tweets.

Additionally, we perform few motivational experiments to

establish the importance of mention utility on the spread of

tweet.1

2.1 Dataset

Arab-Spring Movement was a wave of anti-government

demonstrations and protests which took place in a sub-

stantial number of middle-east countries in 2011. During

this events, Twitter was used extensively to propagate news

and opinions. We collected two publicly available tweet

datasets2 connected to these events—(1) ‘‘Algeria’’ Dataset

is a collection of around 60K tweets (tweet-ids) and 20K

users who posted them during the ‘Algeria movement’. We

also crawled the tweet content, user profile and the corre-

sponding follower network. (2) ‘‘Egypt’’ dataset is a col-

lection of around 2.6 million tweets (tweet-ids) posted

during ‘Egypt uprising’. We crawled the tweet content of

0.2 million posts and the profile details and follower net-

work of around 60K users who posted them.

2.2 Multiplex representation

For a given hashtag ‘#h’, the multiplex representation

contains two layers: the bottom one represents tweet

propagation via follow links, the top one via mention links

(Fig. 2). More precisely, all users who tweet ‘#h’ appear as

a node in the bottom (follow) layer. A directed link con-

nects user ‘A’ to ‘B’ if ‘A’ (re)tweets ‘#h’ before ‘B’

further retweets and ‘B’ is a follower of ‘A’. In the top

(mention) layer a directed link connects ‘C’ to ‘D’ if ‘C’

tweets ‘#h’ before ‘D’ further retweets and ‘C’ mentions

‘D’ in her post (‘D’ may or may not be a follower of ‘C’).

Any user can appear in both layers.

A closer look reveals that both layers are essentially

collections of directed acyclic graphs (DAG). We denote

the root of each DAG as an initiator since they are

responsible for initiating the spreading process. We can

identify two classes of initiators, the ‘true initiators’ and

the ‘dummy initiators’. A true initiator of ‘#h’ is a user

who is a root in a Follow or a Mention DAG but never

appears as non-root member of any DAG. These users

have actually started the spreading process (for ‘#h’) as a

result of some external influences. A dummy initiator is a

user who is a root in a follow DAG but a non-root

member of a mention DAG. Basically, a dummy initiator

gets the information from some other user via mention

and subsequently initiates the spreading process to its

followers.

2.3 Dissecting mentioning

We demonstrate the importance of mention utility from

three different perspectives; first, the boost it provides to

the tweet popularity, second, the higher attention a men-

tioned post receives for retweeting and finally, the distri-

bution of number of mentions in a tweet.

1. Boost in tweet popularity: In the multiplex represen-

tation, we measure the impact of mentioning on the

popularity of hashtags. Let us define the popularity of a

hashtag as the number of (re)tweets it receives. We

select few popular hashtags (tweets) for which we

estimate the popularity reduction by dropping men-

tions. In this estimation, first we find the dummy

initiators (set D) for a hashtag ‘#h’ and all the users

(set S) who only belong to the DAGs rooted by dummy

initiators. Obviously the retweet activity of the S [ D

users is dependent on the mention layer. If hashtag ‘#h’

is tweeted by total n users, then mention dependency of

‘#h’ can be measured as
ðjS[DjÞ

n
. Looking at the most

popular hashtags (tweets) in Fig. 3a, b we observe that

such hashtags (tweets) are heavily mention dependent.

2. Higher retweet rate: Mention utility improves the

tweet visibility by making it available to the appropri-

ate set of users. Since mentioned posts get enlisted in a

separate tab, they gain higher attention than regular

posts. Figure 4 demonstrates the fact that most of the

people tend to respond to mentioning with higher

propensity than the normal retweet. Hence, this result

exhibits the presence of two different retweet rates, one

for mentioned users (mean 0.048 for ‘Algeria’ dataset)

and another for normal followers (mean 0.006 for

‘Algeria’ dataset).

3. Frequency of mentions: Figure 5 shows that the

number of mentions per post exhibits a skewed

distribution. Almost 95% of the tweets are limited to

just one or two mentions whereas the average number

of mentions per tweet is limited to 2.

The aforementioned observations point to the key fea-

tures that highlight the importance of mentioning on

1 Notably, in this section, we perform experiments on both hashtags

and tweets. This is because both ‘hashtag’ and ‘tweet’ are commonly

used as an unit of information in Twitter and the propagation

dynamics can be assumed to be mostly identical for both of them.
2 http://dfreelon.org/2012/02/11/arab-spring-twitter-data-now-avail

able-sort-of/.
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cascade formation. Henceforth, we concentrate on the

following two indices to characterize mentioning, (a) cas-

cade size (b) critical retweet rate for cascade formation.

Cascade size captures the impact of mentioning on the

overall retweet count. On the other hand, interplay of

critical retweet rate for normal followers and mentioned

users reveal their complementary effect in cascade for-

mation. The analytical framework proposed in this paper

and the subsequent validations revolve around these two

indices.

3 Developing CM
F framework

In this section, we leverage on the multiplex network

representation and propose an analytical framework to

model the cascade formation considering both mention and

retweet activities. We introduce the mention strategies used

to develop the framework. As a direct outcome of the

framework, we compute the cascade size and critical

condition for the cascade formation for different mention-

ing scenarios.

3.1 Model description

The data study and representation proposed in Sect. 2.2

exhibit the diffusion of tweets following two modalities,

via retweets and mentioning. In order to develop CM
F to

model this dynamics, we rely on the SIR (Susceptible-In-

fected-Recovered) epidemic model where tweets spread

Fig. 2 Example of mention-follow multiplex
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Fig. 3 Mention dependency for tweets and hashtags in ‘Algeria’ and

‘Egypt’ datasets. a Popularities (number of times posted) of top 10

popular hashtags in ‘Algeria’ dataset with and without Mentions.

b Popularities (retweet counts) of top 10 popular tweets (containing

mentions) in ‘Egypt’ dataset with and without Mentions
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through both mention and follow links of the mention-

follow multiplex network (see Table 1). The infection of a

node v by tweet T is governed by three factors, (a) v has to

be exposed to T. A node v may be exposed to T by a node

u in two different modalities: if u posts T and v is a fol-

lower of u, or if v is not a follower of u but u mentions

v while posting T. This determines the structure of the

multiplex network (see Fig. 2) (b) v has to show interest in

T. The interest of v in T depends on whether it has been

exposed through mention or follow. (c) v must have a

suitable retweet (or activity) rate, i.e., even being exposed

to an interesting tweet, v can decide not to retweet it.

Initially, all the nodes are in the susceptible state. A

node v is said to be infected by a tweet T if it retweets T in

the next timestep. A user once infected gets recovered

instantaneously in the next timestep. In our system, we

assume the propagation of multiple posts (tweets) to be

independent of each other and consider the propagation of

only one tweet at a time which any node can tweet / retweet

only once (due to Twitter restrictions). If in case the same

tweet is posted multiple times, each of them is considered

separately as independent tweets. At time t, if a susceptible

user v on the top (mention) layer gets mentioned by an

infected user, it switches its state to mentioned-susceptible

(MS); rest of the susceptible nodes on the follow (bottom)

layer remain at the unmentioned-susceptible (US) state. In

the next timestep (t þ 1), both kinds of nodes are allowed

to retweet and switch to infected (I) state. However, there is

a possibility that at time t þ 1 one user v does not get

infected and hence switch back to susceptible (S) state.

This event enables v to be mentioned or unmentioned in the

next subsequent steps.

In Fig. 6a we explain the states of our proposed model

with an example. Suppose, getting influenced from some

external source, user 1 posts a tweet T and mentions users 4

and 5 in her tweet. As a result of this event, user 1 changes

her state to infected (I), users 2 and 3 become unmen-

tioned-susceptible (US) as they received the tweet only

from the follow link and users 4 and 5 become mentioned-

susceptible (MS). Among the unmentioned and mentioned-

susceptible users, only user 5 decides to retweet and

becomes infected (I) in the next timestep. Others return

back to their original susceptible (S) state. User 1 gets

transformed into a recovered (R) node who will not get

infected (retweet the same tweet T) anymore. We use the

Microscopic Markov Chain Approach (Arenas et al. 2010;

Granell et al. 2013) to mathematically represent our CM
F

model. The state transition equations are derived from the

scheme shown in Fig. 6b which describes the transition

probability of the states in the multiplex framework

(Fig. 6a).

3.2 Model parameters

Let A ¼ ðavzÞ be the adjacency matrix that describes the

follow network in a population of size N. For a user v, fv be

the follower count and av and bv denote the probabilities of

getting infected via mention and follow links, respec-

tively;3 a and b denote the respective average probabilities

over the population N. kT
v denotes the number of mentions

used by user v while posting tweet T whereas k is the

average number of mentions per tweet. On the follow layer,

each individual v has a certain probability of being in one

of the three states at time t, denoted by pS
vðtÞ, pI

vðtÞ and

pR
v ðtÞ, respectively. Similarly, on the mention layer, for

each susceptible individual v, the probabilities of being in

mentioned-susceptible (MS) and unmentioned-susceptible

(US) states are denoted by pM
v ðtÞ and 1� pM

v ðtÞ, respec-
tively. On the other hand, for the unmentioned (US) and

mentioned (MS) individuals, the probabilities of staying at

the susceptible state without being infected are expressed

as qUS
v ðtÞ and qMS

v ðtÞ. Figure 6a provides an overview of the

state transitions.

3.3 Mention strategies

We model mention strategies following which a user u can

be chosen for mentioning in a tweet. We introduce a

‘generic’ mention strategy where user u is chosen prefer-

entially to her ðfu � auÞh score where (h 2 ½0; 1�) is a tun-

able parameter, fu is the follower count and au is the

retweet rate of u. The intuition behind this strategy stems

from the fact that mentioning a person in a tweet can only

be beneficial if the mentioned user retweets the post and

enables the tweet to be exposed to a large population (via

followers). This motivates us to preferentially mention a

user u with high retweet rate au as well as a high follower

count fu. Notably, the extent of preference can be regulated

with parameter h as the mentioning strategy followed by

one individual may vary widely, from h ¼ 0 (‘random’

mention) to h ¼ 1 (‘smart’ mention). This immediately

leads to the following two special cases

3 As inspired from the datastudy (Sect. 2.3), we keep two separate

retweet rates for follow and mention.

Table 1 Mapping the terminologies of epidemic propagation and

tweet propagation

Epidemic propagation Tweet propagation

Susceptible Users yet to post any tweet or retweet

Getting infected Tweeting/retweeting a post

Infected individual User who tweets/retweets a post
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A. Random mention: The user u is chosen uniformly at

random from the set of all susceptible users.

B. Smart mention: The user u is chosen preferentially to

her fu � au score. Evidently, the main objective of the

‘smart’ strategy is to maximize the expected number of

users exposed to that tweet.

In an alternate interpretation, 0\h\1 captures the situa-

tion where one fraction of the population applies random

mention strategy, and the rest of the population relies on

the smart mention.

3.4 Analytical representation of CM
F framework

In this section, we analytically represent the framework and

compute the cascade size and critical condition of cascade

formation. For the sake of generality, we first consider the

‘generic’ mention strategy for computation, and subse-

quently derive the equations for the specific cases of

‘random’ and ‘smart’ mention strategies.

3.4.1 Computing the cascade size

We first estimate the cascade size following generic men-

tion strategy for a population of N users. Let the total

number of individuals infecting neighbors at time t be

denoted by I(t), that is, IðtÞ ¼
P

v pI
vðtÞ. The users to be

mentioned in a post are chosen following the generic

mention strategy. Thereby, the probability that a (suscep-

tible) individual v is in mentioned state at time t is

pM
v ðtÞ ¼ 1� 1� ðfvavÞh

P
v ðfvavÞh

" #kIðtÞ

ð1Þ

In order to keep the calculations tractable, we approximate

av as a; we note the error introduced due to this approxi-

mation in Sect. 5. Therefore

pM
v ðtÞ ¼ 1� 1� ðfvaÞh

P
v ðfvaÞh

" #kIðtÞ

ð2Þ

Subsequently,

pM
v ðtÞ ¼ 1� 1� f hvP

v f hv

� �kIðtÞ
ð3Þ

Using linear approximation, we obtain

pM
v ðtÞ � kIðtÞ f hvP

v f hv
ð4Þ

Since all susceptible users are either mentioned or

unmentioned, given an individual v at time t, the proba-

bility to be in the mentioned-susceptible state pMS
v ðtÞ is the

product of the probabilities of being mentioned and sus-

ceptible. The same applies for probability of being in the

unmentioned-susceptible state pUS
v ðtÞ. Hence,

pMS
v ðtÞ � kIðtÞ f hvP

v f hv
pS

vðtÞ

pUS
v ðtÞ � 1� kIðtÞ f hvP

v f hv

� �

pS
vðtÞ

ð5Þ

The transition probability for a susceptible individual v not

to be infected by any neighbor through a follow link is

rvðtÞ ¼ Pzð1� azvpI
zðtÞbÞ and the probability for v not to

be infected through mention link is ð1� aÞ. Hence the

transition probabilities for an individual v, at unmentioned-

susceptible (qUS
v ðtÞ) or mentioned-susceptible (qMS

v ðtÞ)
state, not to be in infected state are

qUS
v ðtÞ ¼ rvðtÞ

qMS
v ðtÞ ¼ rvðtÞð1� aÞ

ð6Þ

Fig. 6 Analytical representation of the CM
F model—an example in (a) and the schematic diagram in (b). a State transition in the multiplex

representation. b Transition probabilities of the states in the CM
F model.
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By using Eqs. 5 and 6, we can develop the Microscopic

Markov Chains for the epidemic spreading process for each

node v:

pS
vðt þ 1Þ ¼ pUS

v ðtÞqUS
v ðtÞ þ pMS

v ðtÞqMS
v ðtÞ ð7Þ

pI
vðt þ 1Þ ¼ pUS

v ðtÞ 1� qUS
v ðtÞ

� �
þ pMS

v ðtÞ 1� qMS
v ðtÞ

� �
� pI

vðtÞ
ð8Þ

pR
v ðt þ 1Þ ¼ pR

v ðtÞ þ pI
vðtÞ ð9Þ

Applying iterative numerical methods we calculate the

fraction of infected individuals at any point of time; this

eventually provides us the final cascade size. We denote

the total fraction of all individuals infected during the

diffusion process as RU .

3.4.2 Critical condition for epidemic outbreak

Epidemics are defined as outbreaks that infect a nonzero

fraction of the population in the limit of large-scale system.

Epidemic behavior is usually described as a phase transi-

tion from a regime without an outbreak to one with an

outbreak, with the parameters of the model (Newman

2002). In this subsection, we derive the critical values of

retweet rate a and b during this phase transition. Let us first

assume the existence of a critical point bg
c for fixed

parameters a and k, i.e., the epidemic will die out if b\bg
c .

The calculation of this critical point is performed by con-

sidering that when b ! bg
c , the probability of nodes being

infected pI
v � �v � 1. The smaller the probability of nodes

being infected, the faster the epidemic dies out.

Consequently, qUS
v � 1� b

P
z avz�z, qMS

v �
1� a� b

P
z avz�z. Inserting them in Eq. 8, we then obtain

�v ¼ pUS
v þ pMS

v

� �
b
X

z

avz�z þ apMS
v

¼ pS
vb
X

z

avz�z þ akIðtÞ pS
vf hvP
v fv

h

when pI
vðtÞ ! 0, then pS

vðtÞ ! 1, then we obtain

X

v

avz � 1� ak
f hv
hf hi

� �
dvz

b

� �

�v ¼ 0 ð10Þ

where hf hi is the average of follower-counts to the power h,
dvz are the elements of the identity matrix such that dvz ¼ 1

if v ¼ z; otherwise, dvz ¼ 0. We can rewrite the solution of

Eq. 10 into the form: A ¼ ð1� akf hv
hf hiÞ

IN

b where IN ¼ ðdvzÞ.
According to the Perron–Frobenius theorem (Pillai et al.

2005), the vector A is equal to the vector IN only if ð1�

akf hv
hf hiÞ

1
b is equal to the maximum eigenvalue of A denoted by

KmaxðAÞ. Hence,

b� KmaxðAÞ þ ak
f hv
hf hi ¼ 1 ð11Þ

Equation 11 is the key equation of our analysis which can

be used to derive critical values of both parameters a and b.
Considering that fv in range ½fmin; fmax�, the critical value bg

c

lies in range

1� ak f hmax

hf hi
KmaxðAÞ

;
1� ak f h

min

hf hi
KmaxðAÞ

0

@

1

A ð12Þ

Similarly, using the same equation, the ranges of critical

value ag
c can be determined as

1� bKmaxðAÞ
k f hmax

hf hi

;
1� bKmaxðAÞ

k
f h
min

hf hi

0

@

1

A ð13Þ

Note that, for b[ 1
KmaxðAÞ, ag

c does not exist and for

a[ hf hi
kf h

min

, bg
c does not exist.

Intuitive Justification of Eq. (11): Basically, the terms in

the left-hand side of Eq. 11 represents the contribution of

follow links and mention links on the total number of

infected users. The infection via follow links depends on

two factors—(1) the density of the follow network (rep-

resented by KmaxðAÞ) and (2) the probability of getting

infected via follow links, i.e., b. Similarly, the infection via

mention links depends on the average number of mentions

per tweet, i.e., k and the probability of getting infected via

mention links, i.e., a f hv
hf hi. For both the terms, if any of the

factor be 0, the contribution of that part will be nullified

regardless of how big the other factor is. For example, if b
is 0, even if KmaxðAÞ is very high, there will not be any

infection via follow links and vice versa.

3.5 Special case: random mention

Next, we deal with the specific case of random mention

strategy (h ¼ 0), leveraging on the aforementioned

framework.

3.5.1 Computing the cascade size

For random mention strategy, the users to be mentioned in

a post are chosen at random. Therefore, substituting h ¼ 0

in Eq. 4, the probability that a (susceptible) individual v is

in mentioned state at time t is
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pM
v ðtÞ ¼

kIðtÞ
N

ð14Þ

Similarly, from Eq. 5, the probabilities of being at men-

tioned-susceptible and unmentioned-susceptible states are

the following,

pMS
v ðtÞ ¼ pM

v ðtÞpS
vðtÞ ¼

kIðtÞ
N

pS
vðtÞ

pUS
v ðtÞ ¼ ð1� pM

v ðtÞÞpS
vðtÞ ¼

N � kIðtÞ
N

pS
vðtÞ

ð15Þ

We substitute pMS
v ðtÞ, pUS

v ðtÞ in Eqs. 7, 8 and 9 and

numerically calculate the final cascade size RU .

3.5.2 Critical condition for epidemic outbreak

The key equation Eq. 11 gets reduced to a much simpler

form (as h ¼ 0) for random mention, which is,

b� KmaxðAÞ þ ak ¼ 1 ð16Þ

Accordingly, the critical a and critical b can be derived as

ar
c ¼

1� bKmaxðAÞ
k

ð17Þ

br
c ¼

1� ak
KmaxðAÞ

ð18Þ

3.6 Special case: smart mention

In the following, we derive the cascade size and the critical

conditions for epidemic outbreak in case of smart mention

strategy (h ¼ 1). Evidently, unlike random mention, here

the probability of getting mentioned is not identical for all

the susceptible users.

3.6.1 Computing the cascade size

In smart mention, the probability that a susceptible node

v is mentioned at time t is (replacing h by 1 in Eq. 4),

pM
v ðtÞ � kIðtÞ fvP

v fv
ð19Þ

Hence, the probability that any individual v is at men-

tioned-susceptible state at time t, can be approximated as,

pMS
v ðtÞ � kIðtÞ fvP

v fv

pS
vðtÞ ð20Þ

Similarly, the probability of being at unmentioned-sus-

ceptible state at any point can be approximated as

pUS
v ðtÞ � 1� kIðtÞ fvP

v fv

� �

pS
vðtÞ ð21Þ

We substitute pMS
v ðtÞ, pUS

v ðtÞ in Eqs. 7, 8 and 9 and

numerically calculate the final cascade size RU .

3.6.2 Critical condition for epidemic outbreak

In case of smart mention, the key equation Eq. 11 takes the

following form,

b� KmaxðAÞ þ ak
fv

hf i ¼ 1 ð22Þ

where hf i is the average follower count. Considering that fv
is in range ½fmin; fmax�, the critical value bs

c thus in range

1� ak fmax

hf i
KmaxðAÞ

;
1� ak fmin

hf i
KmaxðAÞ

 !

ð23Þ

Similarly, the ranges of critical value as
c can be determined

as

1� bKmaxðAÞ
k fmax

hf i
;
1� bKmaxðAÞ

k fmin

hf i

 !

ð24Þ

Clearly, unlike random mention, here we provide upper

and lower bounds for the critical retweet rates.

4 Experimental setup

In this section, we develop the Monte Carlo simulation

setup to validate the CM
F model and describe the parameter

settings we adopt for different experiments. Additionally,

we introduce the empirical and synthetic follow networks

to prove the versatility of the framework.

4.1 Simulation setup and parameter settings

Initially, all the nodes are in the susceptible state. A node v

is said to be infected if it tweets/retweets in the next

timestep. Every Monte Carlo simulation result presented

here is an average of 500 simulations. Each simulation

starts with a single infected node and stops when no more

users can be infected. The model parameters used in the

simulation can be summarized as follows: for a node v

while posting a tweet T, we consider the number of men-

tions as kT
v and infection rate (probability of retweeting)

through mention and follow links as av and bv, respectively

(see Table 2).

In this paper, we primarily conduct two different kinds

of experiments (A) Correctness of simulation: evaluates the

correctness of the simulation from the empirical data

(Sect. 5.1) (B) Validation experiment: validates the ana-

lytical model with simulation (Sects. 5.2 and 5.3). We fix

the parameter values from the empirical observations
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reported in Sect. 2.3; however, the exact parameter setting

also depends on the kind of experiment (A and B) we

perform. Detail follows.

4.1.1 Number of mentions kT
v

In correctness experiment (A), we assign the kT
v directly

from the tweets posted in the empirical dataset. However,

for the validation experiments (B), we rely on the distri-

bution of number of mentions observed in Fig. 5 and assign

the values for kT
v accordingly.

4.1.2 Retweet rates av and bv

Following Cerchiello and Giudici (2016), we model the

retweet rate av and bv following two Poisson distributions

with mean l1 and l2, respectively for mentioned and

regular posts, normalized between [0,1]. Since in Fig. 4,

we empirically observe that in general av is greater than bv

for all users, here we keep l1 � l2. In the correctness

experiment (A), we assign the mean retweet rates l1 and l2
from the empirical dataset, as reported in Sect. 2.3. How-

ever, in the validation experiments (B), we vary the values

of l1 and l2 depending on the experiment, to reveal the

impact of retweet rates.

4.2 Follower networks

The follower network is a dynamic communication med-

ium which facilitates the tweet propagation. In order to

validate the generality of the analytical framework, we

implement a wide variety of follower networks; from

empirical to synthetic.

4.2.1 Empirical networks

We implement two real follower networks from ‘Algeria’

and ‘Egypt’ datasets. In the ‘Algeria’ network, we have

21,141 users and 19,802,923 directed follow links (avg.

indegree 1118.1 and avg. outdegree 772.1). The largest

strongly connected component of the network contains

71% of all users. Similarly, in the ‘Egypt’ network, there

are 59,776 users, 5,521,949 follow links (avg. indegree

116.5 and avg. outdegree 92.4) and its largest strongly

connected component consists of 74% of all users. The

indegree and outdegree distributions of both networks are

shown in Fig. 7.

4.2.2 Synthetic networks

We consider the following two synthetic graphs to model

the follower networks.

1. Scale-free Networks

Scale-free or power law network is a popular topology

to model the real social networks (Barabási and Albert

1999; Barabâsi et al. 2002; Dezs}o and Barabási 2002).

We generate power law degree distributions (pk 	 k�c)

with exponent (c) varying as 1.3, 1.8 and 2.3. To be

able to observe the effect of the exponent (c) on the

cascade size and critical retweet rates, we fix the total

number of nodes as 16384 and the total edge count

around 98,000 in all three networks so that the average

degrees of this networks get fixed around 6. It is not

very trivial to generate scale-free networks with same

average degree but different exponents. Here, we

utilize the generalized Barabasi–Albert’s method

(Barabási and Albert 1999) for generating this scale-

free networks. In this method, at each step a node

enters the network with a constant outdegree and gets

attached to existing nodes with probabilities propor-

tional to k þ k0 where k is the indegree of an existing

Table 2 Summarizing the

model parameters and their

corresponding interpretations

Model parameters Interpretation

Infection probability

(via mention) av

Probability that v retweets a tweet T after

being mentioned in it

Infection probability

(via follow) bv

Probability that v retweets a tweet T after receiving

it from a followee

kT
v

Number of users mentioned in tweet T of user v
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Fig. 7 Follower (indegree) and followee (outdegree) count distribu-

tions for ‘Egypt’ and ‘Algeria’ datasets
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node and k0 is a constant. By varying k0, we vary the

exponent of the obtained scale-free network.

2. Kronecker Networks

Recently Kronecker networks (Leskovec et al. 2010;

Leskovec and Faloutsos 2007) have attracted a huge

attention for modeling social networks (Gomez-ro-

driguez and Schlkopf 2011; Du et al. 2013) as they are

simple to generate, mathematically tractable, and

exhibit important social network characteristics such

as heavy-tailed degree and eigen-distributions, high

clustering, small diameter, and network densification

(Bodine-Baron et al. 2010). We generate the following

three types of Kronecker graphs (Gomez-rodriguez and

Schlkopf 2011; Du et al. 2013; Valera et al. 2014) with

the average degree fixed around 9 (by fixing the

number of nodes as 16,384 (214) and the number of

edges around 145,000):

(1) Core-periphery Kronecker network (Leskovec

et al. 2008) encodes a very commonly seen

core-periphery structure, in which the network

consists of a large and well-connected core and a

set of small peripheral communities loosely

connected to the core. We generate a core-

periphery Kronecker network with seed matrix

[0.9, 0.5; 0.5, 0.3].

(2) Hierarchical Kronecker network (Clauset et al.

2008) can be thought of as a structure which

encodes the organizational hierarchy. For

instance, in case of encoding the social links of

a university with the following hierarchy—

laboratories, departments and schools, hierarchi-

cal structure ensures the dense social links

within the people of the same laboratory,

whereas the density of links decays across

different laboratories, and further falls across

different departments and schools. One such

hierarchical Kronecker network is generated

with seed matrix [0.9, 0.1; 0.1, 0.9].

(3) Random Kronecker network (Erdös and Rényi

1959) is generated with seed matrix [0.5, 0.5;

0.5, 0.5]—This is just simple Erdos–Renyi

random network structure.

5 Evaluation of the framework

In this section, first we evaluate the correctness of the

simulation setup in the light of the empirical dataset. Next,

we rely on this simulation to validate the analytical

framework. This is important to note that while developing

the analytical model CM
F in Sect. 3, we simplified few

modeling assumptions through mean field approximation.

For instance, instead of considering individual retweet rates

av and bv for each user v, we introduced mean retweet rate

a and b in the model development. Similar assumption has

been made for the number of mentions k in a tweet. In the

validation experiment, we demonstrate the agreement

between simulation with analytical model, amidst the mean

field approximations. We concentrate on two different

indices—cascade size and critical retweet rates. In this

validation process, we consider both empirical and syn-

thetic follower networks and include both random and

smart mention strategies.

5.1 Correctness of the simulation setup

We implement the generic mention strategy and simulate

the model for each tweet on the follower network obtained

from the ‘‘Algeria’’ and ‘‘Egypt’’ datasets. In order to run

the simulation, we fix the model parameters av and bv from

empirical dataset following Sect. 4.1. Furthermore, we

simulate each tweet (say, T) diffusion by starting with the

same set of initiators (say, v) and keeping the same number

of mentions (kT
v ) as in the real data. We adjust h in the

setup to compute the total infected population and fix h
which results to the best agreement with empirical RU ,

estimated from the dataset. We consider the retweet counts

(RU) of the tweets containing mentions in the ‘‘Algeria’’

and ‘‘Egypt’’ datasets as the evaluation metric.

In Fig. 8, we observe a nice agreement between the

infected population and the real retweet count RU estimated

for both the ‘‘Algeria’’ and ‘‘Egypt’’ datasets. For most of

the tweets, we fix h � 0, indicating that in reality, random

mention strategy mostly gets followed. Nevertheless,

Fig. 8 demonstrates the fact that there is ample scope to

boost the retweet count RU by choosing the users to be

mentioned, smartly.
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Fig. 8 Matching ground truth tweet popularities with the simulation

setup (with same av, bv, k
T
v and initiator) and comparing with smart

mention strategy for ‘Algeria’ and ‘Egypt’ datasets
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5.2 Validation with cascade size RU

We have analytically estimated the cascade size RU in

Sect. 3. Here we first validate RU with the empirical net-

works, followed by the synthetic networks. As we know,

each simulation starts with a single infected node that is

randomly chosen among the individuals, while in the

analytical model, each individual v is initially infected with

probability pI
vð0Þ ¼ 1

N
(where N is the total number of

individuals). Each simulation stops when no susceptible

node gets infected and RU is the average number of

retweeting users during the simulations; while in the ana-

lytical calculations, RU ¼
P

pR
v ðtÞ when IðtÞ\10�7

(pI
vðtÞ; pR

v ðtÞ; IðtÞ are defined in Sect. 3).

5.2.1 Empirical follow network

In order to validate the cascade size RU , first we compare it

with the results obtained from the simulations on the

‘Egypt’ follower network. One can observe in Fig. 9 that

the analytical and simulation results are in good agreement

for both random and smart mentioning strategies. Impor-

tantly, in the low b region, a small increase in b results in

sharp hike in RU . This is due to the fact that an increase in

b lowers qUS
v ðtÞ and qMS

v ðtÞ in Eq. 6 which results in an

increase in the fraction of infected individuals pI
vðt þ 1Þ in

Eq. 8. However, in high b region, RU attains a saturation.

Side by side, the role of a to boost RU , also becomes

predominant in the low b region. Basically, as rvðtÞ is

higher (close to 1) in that regime, a little change in the

value of a impacts the value of qMS
v ðtÞ significantly (see

Eq. 6) which gets reflected in the fraction of infected

individuals pI
vðt þ 1Þ (see Eq. 8). We note that the analyt-

ically calculated RU upper-bounds simulations for a large

range of b. This is caused by the mean field theory which

assumes that events are independent (Youssef and Scoglio

2011).

5.2.2 Synthetic follow network

Next, we validate the cascade size on synthetic networks.

We use a random Kronecker network to realize the syn-

thetic follower network. We simulate both random and

smart mention strategies for validation. In Fig. 10a, we

show that the analytically estimated RU exhibits a good

agreement with simulation for random mention. However,

in case of smart mention (see Fig. 10b), even if the nature

of both the curves are same, the analytical estimations

seem to overshoot the simulation results a bit for the high

a–low b region. This is possibly due to the approximation

we make in Sect. 3.4 by assuming all av’s same as the

average a.

5.3 Validation with critical retweet rate

First we show the existence of the critical retweet rate for

cascade formation, by simulating the model on both

empirical and synthetic networks. Next, we validate this

rate with analytical results derived in Sect. 3.

5.3.1 Empirical follow network

We implement the follower network from the ‘Algeria’

dataset and simulate the Monte Carlo tweet propagation on

top of it. In Fig. 11, we show the presence of a critical a
(and b as well) beyond which the retweet count RU

increases sharply. Next, we validate the critical retweet rate

with the analytically computed threshold. In the inset of

Fig. 12, we show that for random mention, the analytically

(a)

(b)

Fig. 9 Comparison of analytical CM
F model and Monte Carlo

simulation w.r.t. RU for ‘Egypt’ network. a Random Mention.

b Smart Mention
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computed threshold (see Eq. 18) br
c shows a good agree-

ment with simulation. We observe that br
c decays with

increasing a. The intuition is, both the retweet rates com-

plement each other in cascade formation. In other words, if

a is high, then phase transition can occur with a lower b. In
smart mention, we observe (Fig. 12) that bs

c obtained from

the simulation lies within the analytically estimated bounds

(see Eq. 23). Similar to random mention, here also we

observe that bs
c decreases with increasing a. But, smart

mention attains bs
c ¼ 0 at a much lower value of a (0.03)

whereas br
c becomes 0 only after a becomes 0.4.

5.3.2 Synthetic follow network

Finally, we implement the synthetic follower networks

using scale-free and Kronecker graphs. Figure 13 demon-

strates the presence of a critical bc for cascade formation

for both random and smart mention. Next, we analytically

compute this critical rates using Eqs. 18 and 23, respec-

tively. The first step is to estimate the largest eigenvalue

KmaxðAÞ, of the network A, directly from the network

model parameters. In scale-free network pk 	 kc, the largest

eigenvalue can be approximated as the square root of the

maximum degree (Chung et al. 2003). Maximum degree of

the scale-free network can be estimated as N
1

c�1 (Boguñá

et al. 2004) where N is the number of nodes in the network.

Hence, the largest eigenvalue of the scale-free network is

approximated as
ffiffi
ð

p
N

1
c�1Þ. Similarly, in Kronecker net-

work, Kmax is approximated from the seed matrix following

(a)

(b)

Fig. 10 Comparison of analytical CM
F model and Monte Carlo

simulation w.r.t. RU for random Kronecker network. a Random

Mention. b Smart Mention
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Leskovec and Faloutsos (2007). In Table 3, we show the

agreement between this approximated eigenvalues and the

true eigenvalues computed directly from adjacency matrix

A; this approximation shows a nice agreement in terms of

computed bc as well.

Finally, in Fig. 14a, we plot the critical ac obtained from

Eq. 17 (random mention) and Eq. 24 (smart mention),

respectively, for scale-free networks and validated with

simulation. We observe a contrasting behavior for smart

and random mention; for random mention ar
c decreases

with increasing c whereas the opposite happens for smart

mention. Increase in c decreases the skewness of the degree
distribution (improves network homogeneity) which in turn

reduces the number of high degree nodes. Since smart

mention leverages on the high degree nodes, high c
penalizes the same by increasing the corresponding critical

retweet rate. In Kronecker network (see Fig. 14b), core-

periphery structure shows lower bc compared to random

and hierarchical structure for both smart and random

mention. This happens due to the strongly connected core

in the core-periphery Kronecker network.

6 Observations

This section studies the influence of mention strategies and

follower networks on the cascade formation.

6.1 Comparing smart versus random mention

(a) Impact of retweeting environment: Figures 9 and 10

shows that the impact of mentioning (a) on RU is

more significant in the low b regime. Naturally, in

Fig. 15, smart mention is also observed to be more

beneficial in low activity environment (low b).
However, increase in b reduces the gap of RU

between the two mention strategies. Essentially, as b
increases, mentioning (and hence, mention strate-

gies) becomes less important as most of the

Table 3 Estimating maximum

eigen values and critical b
thresholds for random mention

with a ¼ 0:3 and k ¼ 2 from

network’s structural parameters

Network Parameters kmax br
c using

Actual Estimated Actual kmax Estimated kmax

Kronecker Core-periphery 25.01 25.53 0.01 0.01

Random 9.71 9.05 0.06 0.06

Hierarchical 8.43 8.19 0.07 0.07

Scale-free exp ¼ �2:5 22.81 25.40 0.02 0.02

exp ¼ �3:0 12.13 11.31 0.05 0.05

exp ¼ �3:5 6.35 6.96 0.09 0.08

exp ¼ �4:0 4.58 5.04 0.12 0.11
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population starts getting infected due to only follow

links (retweeting).

(b) Retweets by mentioned users: We denote the average

fraction of all the retweets done by the mentioned

users as FM . This is basically the fraction of users

who has received the tweet via mention links and

retweeted it. We note that FM increases almost

linearly with a upto a point and then converges. In

the inset of Fig. 15, we observe that for same a,
retweet fraction by the mentioned users (FM) is

lower for higher b values. This is intuitive because if

b is high, more people retweet due to follow links

which in turn lowers the fraction FM .

(c) Impact of a on critical b: In Fig. 12, we observe that
smart mention attains critical b (bs

cÞ ¼ 0 for a much

lower a (a ¼ 0:03) than random mention (a ¼ 0:4).

Therefore, even a small value of a ([ 0:03), is able

to guarantee the epidemic outbreak (irrespective of b
values) in case of smart mention. This happens due

to the fact that in comparison to random mentioning,

smart mentioning strategy is able to optimally

mention suitable users who retweet and expose the

tweet content to a much wider population. Hence, in

case of smart mention, a larger fraction of the

infection spreads through the mention layer which

helps the retweet count to attain phase transition

even at a low value of a.
(d) Bounds on critical retweet rates for smart mention:

In Sect. 3.6, we provide the bounds on as
c and bs

c

for smart mention. This bounds can be further

improved if we assume that smart mention’s worst

case scenario is equivalent with random mention. In

fact, for same parameter values and network

configuration, critical retweet rates for smart men-

tion is always less than the critical retweet rates

estimated for random mention. This (intuitive)

assumption can be established from our simulation

results shown in Fig. 13. In that case, we can use

the critical retweet rates obtained for random

mention as the new (tighter) upper-bounds for

critical retweet rates for smart mention. Therefore,

the updated estimated ranges for critical a and b for

smart mention becomes

	 1� bKmaxðAÞ
k fmax

hf i
;
1� bKmaxðAÞ

k




ð25Þ

and

	 1� ak fmax

hf i
KmaxðAÞ

;
1� ak
KmaxðAÞ



ð26Þ

, respectively. We leave the analytical justification of

this assumption as future work.

6.2 Importance of follower network

Finally, we investigate the effect of network parameters on

the cascade properties. In scale-free networks (see

Fig. 16a), we observe that the cascade size RU increases

with c for random mention. In scale-free network, increase

in c makes the degree distribution more homogeneous,

benefiting random mention strategy. On the contrary, in

smart mention, two different regimes can be identified

depending on the b. In low b region (Fig. 16c), mentioning

plays a major role in cascade formation. Notably, increase

in c reduces the fraction of hub nodes in the network,

deteriorating the effectiveness of smart mention. This in

turn reduces RU . However, in high b region (Fig. 16b), the

tweet propagation mostly relies on the retweeting via fol-

low links (less importance to the mentions), hence RU

increases with c.
In Kronecker network, Fig. 17 illustrates that core-pe-

riphery structure exhibits superior performance against

hierarchical structure. Essentially in core-periphery struc-

ture, the core plays a pivotal role in propagating tweets

across the network. On the contrary, in hierarchical struc-

ture the propagation remains confined within a single

hierarchical tree like structure due to the poor interaction

across different modules.

7 Related work

The state of the art literature in this area can be summa-

rized in three different segments (a) First, modeling

information diffusion via retweets, next (b) recent

endeavors incorporating mentions in tweets and finally

(c) analytical attempts to model epidemics in multiplex

networks. The details follows.

7.1 Information propagation in Twitter

Diffusion on social network classically involves the fol-

lowing two propagation models—linear threshold (Gra-

novetter 1978) and independent cascade (Goldenberg et al.

2001). Linear threshold model associated a threshold with

each node; a node gets infected if the number of infected

neighbors exceeds that threshold. On the other hand, the

independent cascade model associates a fixed spreading

probability per graph edge and allows each node to attempt

infecting another node only once. Further studies (Galuba

et al. 2010; Dickens et al. 2012b) have generalized these

models. In continuation, Kwak et al. (2010) treated retweet

trees as communication channels of information diffusion

and analyzed the tweets of top trending topics in whereas

Lerman and Ghosh (2010) studied the distribution of

retweet cascades on Twitter. Side by side, popular
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epidemic like models such as Susceptible-Infected-Sus-

ceptible (SIS), Susceptible-Infected-Recovered (SIR) are

also explored to model information contagion in Twitter

(Li et al. 2013; Abdullah and Wu 2011; Jin et al. 2013).

With the advent of text mining, research in this domain

started progressing in two clearly distinguishable tracks.

On one hand, several studies have been carried out in

understanding the dynamics behind the popularity of

tweets. For example, Suh et al. (2010) and Malhotra et al.

(2012) investigated the role of content and contextual

features of tweets and identified factors that are signifi-

cantly associated with retweet rate and tweet popularity. In

similar line, Petrovic et al. (2011) developed an automated

system to predict the popularity of individual tweets. On

the other hand, several studies have been made on influ-

ence models (Chen et al. 2009; Bakshy et al. 2011) and

different recommendation systems have been proposed.

For example, Uysal and Croft (2011) proposed methods to

recommend useful tweets that users are really interested in

and more likely to retweet: given a tweet, they rank users

based on retweet probability. Subsequently, considering the

influential users in Twitter as potential information brokers,

researchers proposed models to identify them and maxi-

mize the information propagation (Borge-Holthoefer et al.

2012; Chen et al. 2009). Notably, all the aforementioned

models consider retweets as the only mode of tweet

propagation.

7.2 Mentioning activities in Twitter

Mentioning is mainly considered as a medium of sending

tweet to influential people so that the popularity of the

corresponding content increases. However, mentioning one

influential user does not ensure that she retweets the post.

This later part depends on several factors including infor-

mation content of the post, profile of the tweeting user, etc.

which are not considered while computing the influence.

This motivates the community for the development of

mention recommendation algorithms to identify the suit-

able users to mention. For instance, Wang et al. (2013)

proposed Whom-to-Mention heuristics that uses features

(such as user interest match, content-dependent user rela-

tionship and user influence) and trains a machine learned

ranking function to extract the best users to mention.

Similar recommendation heuristics can be found in Gong

et al. (2015); Zhou et al. (2015); Pramanik et al. (2016)

and Tang et al. (2014). However, most of these recom-

mendation heuristics are based on empirical observations

and lacks the analytical understanding of the role of men-

tions on tweet diffusion.

7.3 Epidemic models in multiplex networks

Diffusion of tweets via both follow and mention modalities

can be effectively modeled in the multiplex network

framework. Initially a few simplistic models such as Buono

et al. (2014); Zhao et al. (2014); Cozzo et al. (2013)
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analyzed the epidemics in multilayer networks which

started as a single contagion process spreading across

multiple layers. Subsequently, recent endeavors model the

simultaneous epidemic spread across the multiple layers of

the network. For example, Darabi Sahneh and Scoglio

(2014) proposed a simple extension of standard SIS

framework to model competitive spreading over a two-

layer network. The major contribution of this paper is

identifying and quantifying extinction, coexistence, and

absolute dominance of the competitive epidemic process

via defining survival thresholds and absolute dominance

thresholds. Guo et al. (2015) and Granell et al. (2013)

demonstrated the interplay between simultaneous spread of

an epidemic disease and awareness against it, in the

framework of multiplex networks. Utilizing a microscopic

Markov chain approach, they identified a phase transition

and allowed us to capture the evolution of the epidemic

threshold depending on the topological structure of the

multiplex and the interrelation with the awareness process.

However, the absence of network structure realizing

mentioning activities makes the aforesaid multiplex models

inadequate for Twitter.

8 Conclusion

In this paper, we have proposed a SIR-based analytical

framework CM
F to model the cascade formation in Twitter,

incorporating both retweet and mention activities. Our data

study has revealed that the influence of mention directly

impacts on the retweet count of a post and retweeting

behavior of users. We have introduced a ‘generic’ mention

strategy to model the mention preferences in a tweet, with

two special cases—random and smart mentioning. Subse-

quently, with the help of our proposed framework CM
F , we

have modeled the propagation of tweets on the mention-

follow multiplex network and analytically computed the

cascade size as well as the critical retweet rate for cascade

formation. In random mention, we have been able to obtain

the exact critical retweet rate; however for smart mention,

only the (upper and lower) bounds can be estimated from

the derived open form equations. A close inspection has

uncovered the complementary role of followers and men-

tioned users in cascade formation under different retweet-

ing environment b. Finally, we have validated the CM
F

framework with Monte Carlo simulation considering both

empirical and synthetic follow networks; we have verified

the correctness of the simulation setup in the light of real

datasets. Interestingly, in scale-free networks, the perfor-

mance of random mention improves with increasing power

law exponent c irrespective of the retweeting environment

b, whereas for smart mention, b plays an important role

along with the exponent c. In a nutshell, the proposed

framework may work as the first step toward developing a

model driven mention recommendation system.
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