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@ Generating perfect graphs by extension of a vertex

@ Generating a perfect graph by the extension at vertices with perfect
graphs

@ Proving PGT as in [Diel7; GGL95]
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IHEINNMEIN Walks and cycles

@ Transversal

@ Planarity
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@ Necessary conditions

€ Subdivisions and hemeomorphs

@ Sufficiency
@ High girth makes it easy
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@ Basics of planar embeddings
@ Another proof of Kuratowski's theorem

@ The Kuhn-Munkres theorem and the Hungarian algorithm
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G
Walks and cycles

(]

A subgraph of a graph G(V/, E) with edge set E and vertex set V is a

graph whose all edges and vertices are from E and V/, respectively.

e A spanning subgraph of the graph G(V/, E) is a subgraph of G(V, E)
that has all the vertices in V.

@ Given a graph G(V,E), and a set H C V, the induced subgraph
G(H, E’) is the maximal subgraph of G(V/, E) with the set of vertices
in H.

@ Every graph is its own induced subgraph.

@ A walk is just a finite sequence of vertices where consecutive vertices
are connected by an edge. So, vertices and edges can repeat. It is not
difficult to show by induction that any closed walk of odd length at
least three must contain an odd cycle. See Lemma 1.6.1 of [Sur10].
See Figure 1.
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IHEINNMEIN Walks and cycles

Walks and cycles (cont.)

Walk: a,b,c,d,e, f,g,h,b,i,a
Euler Tour: b,4,a,b,¢,d,b,¢, f,g,h,b
The vertex b has degree 6 and all the other vertices have degree 2

Figure: 1: Walks and cycles
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Ellepnlos
Bipartite graph cycles

@ We also note that a non-trivial graph is bipartite if and only if it has
no odd cycles (Theorem 1.6.4 of [Surl0]).

@ We can show the only if part by showing that every closed cycle
VoVviVva...vp = v will have an even size p.

o If V1 and V), are the two partites then without loss of generality let us
assume that pgp € V1. Then vi,v3,... € Vo and vg = vp, w2, ... € V1.
Thus p is even.

@ For the if-part, we assume that all cycles are even.

@ From an arbitrary vertex u € V, in the simply connected graph, we
define sets V4 (resp. V») of vertices of even (odd) distances from w.

@ Now, suppose we have an edge connecting v, w € V; then the
shortest path from v to u appended by the shortest path from u to w
and then the edge vw will form an odd cycle.
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Vertex and edge connectivity

e Edge connectivity \(G) of a graph is the minimum number of edges
whose removal results in a disconnected or trivial graph.

@ So, A(G) is at most the minimum degree 6(G) in a simple connected
graph G, because, by simply deleting as few as §(G) edges we can
disconnect the graph.

@ Disconnecting means creating at least two components.

@ A graph G on at least two vertices is k-edge-connected if any two
vertices are connected by at least k edge-disjoint paths, and
k-connected if any two vertices are connected by at least k
internally-disjoint paths.

@ So, for a k-edge-connected graph G, \(G) > k.

@ A graph on one vertex is defined to be both k-edge-connected and
k-connected for k = 0, 1, but not for kK > 2.
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Vertex and edge connectivity (cont.)

@ Thus every graph is 0-connected, a graph is 1-connected if and only if
it is connected.

e A graph G is m-connected if the vertex connectivity x(G) > m.

@ Also, since internally-disjoint paths are edge-disjoint, k-connected
graphs are k-edge-connected.

@ Do we need to delete more than §(G) vertices to disconnect a simple
connected graph?

@ The vertex connectivity x(G) of a graph G is the minimum number of
vertices whose removal results in a disconnected or trivial graph.

o We show that vertex connectivity k(G) is at most A(G). See
Theorem 3.3.1 in [Surl0].

@ For trivial or disconnected graphs both connectivities are zero.
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Vertex and edge connectivity (cont.)

e If G is connected but has a cut edge e then A\(G) =1, and
additionally if G = K> then x(G) = 1. Otherwise, at least one end of
e has degree at least 2 and thus will be a cut vertex yielding
k(G) =1.

e Now if A(G) > 2, then after removing some A\(G) — 1 edges we must
get a graph H that must have a cut edge, say e = uv.

@ Since uv survives as a cut edge, in the connected graph H, we can
now choose and delete one vertex (which is neither u nor v) from
each of the A(G) — 1 edges deleted.

o If the resulting graph is still connected then we can remove u or v
additionally, thus disconnecting G with at most \(G) vertex deletions.
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Vertex and edge connectivity (cont.)

@ Study exercise 1: Whitney’'s 1932 theorem on characterizing
2-connected graphs as those that have internally disjoint u, v-paths
for every pair {u, v} of vertices. (Theorem 3.2 from Bondy and
Murty's textbook [BM76].)

[Hint: Use induction on the length of the path or the non-trivial part,
where Theorem 2.3 [BM76] is used in the basis case. For the easier
part, since there are two internally disjoint paths between u and v,
dropping just one vertex cannot disconnect the graph. So, k(G) > 2
implying G is 2-connected.]

@ Study exercise 2: Whitney's 1932 theorem on characterizing
2-connected graphs as those that have an ear decomposition.

[See Definition 4.2.7 and Theorem 4.2.8 in [Wes00].]

@ Try Exercises 5.21 and 5.22 from [Har69].

@ Theorem 3.2 in [BM76] can be generalized to k-connected graphs as

a version of Menger's theorem as follows.
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Vertex and edge connectivity (cont.)

o A graph with at least k + 1 vertices (why k + 1?7) is k-connected if
and only if any pair of distinct vertices have at least k vertex disjoint
paths connecting them.

@ The edge version of Menger's theorem states that a graph is
k-edge-connected if and only if any pair of distinct vertices have at
least k edge disjoint paths connecting them.

@ Try exercises 3.2.1, 3.2.2, 3.2.3 and 3.2.4 from [BM76].
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Paths and connectivity in trees

@ Problem 6.24 in [Lov93] requires showing the existence of n — k
distinct paths of length k in a tree T with diameter 2k — 3.

@ We can take the longest path P of 2k — 2 vertices x1, X2, ..., Xok_5 in
T, and consider distinct paths of length k from x; to xx41, X2 to
Xk42, ---, and from xx_o to xpx_». These are k — 2 distinct paths in P.

@ We can also find n— (2k — 2) distinct paths in T of length k, starting
at each of the n — (2k — 2) vertices outside the diameter path P.
This makes a total of n — k paths.
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Connectivity of the complement graph

@ We know that undirected graphs have edges and therefore there may
exist paths connecting vertices.

@ In case there is no path connecting two arbitrary vertices u and v in
an undirected simple graph G, the complement graph G’ will contain
the edge {u, v} if u and v are not connected by an edge in G.

@ However, if there is an edge between v and v in G, then these two
vertices will not be directly connected in G’. Note that even in this
case, will the two vertices be connected by a path in G'?
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Connectivity of the complement ...

@ So, we ask whether the complement of a simple disconnected graph
must be connected.

@ Let G be a simple disconnected graph and u,v € V(G). If uand v
belong to different components of G, then clearly the edge uv € G/,
yielding a trivial path connecting the two vertices.

AN 2

Figure: 2: Connectivity of the complement graph
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Connectivity of the complement ... (cont.)

o If u and v belong to the same component of G but are not connected
by an edge then we have a similar trivial path between them in the
complement graph G’. If uv € G, choose a vertex w in any other
(disconnected) component of G. The edges uw and wv belong to G'.
See Figure 2.
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Degrees and connectivity

Degrees and connectivity

@ It is interesting to see what happens if both the degree of each vertex
as well as the girth of the graph, are both k > 3.

@ In this case we show that there would be at least 2k vertices in the
graph.

@ For a vertex v, let K be the set of k neighbours of v.

@ Take a vertex w € K.

o If x # v is a neighbour of w then x cannot be in the set K because
that would yield a triangle, contradicting the fact that the girth is
k> 3.

@ So, all the k — 1 neighhbours of w (other than v) are none of the
vertices in K.

o Therefore, we already have |K|+ 1+ (k — 1) = 2k vertices in the
graph.
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Girth four regular graphs

o If we have high vertex degrees then we will have at least a
proportionate number of edges even with bounded girth like four.

@ Suppose we have k-regular graph of girth four.
@ Let u have the set N(u) as its k neighbours.

@ With the same reasoning as in the case of large girth, we can say that
for v,w € N(u), vw is not an edge.

@ So, for one v € N(u), its k — 1 neighbours other than u are not in
N(u), already account for [{u}| + |N(u)| + k — 1 = 2k vertices.

@ Suppose above N(u) = {vi, vo, ..., vk }.
@ Then we have edges N(vi) = {u, wi, wo, ..., wi_1}.

@ We can connect each of vy, vs, ..., vk as well to N(v1) \ {u}, whereas
u is already connected to N(u).

@ This gives the complete bipartite graph with partites N(u) and N(v1).
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Degrees and connectivity

Distinct degrees

o If all the vertices have disinct degrees in a simple connected
undirected graph then these must be 0, 1, 2, ..., and n — 1,
respectively.

@ This implies that one vertex must be connected to all the n — 1 other
vertices, including the one with degree zero, a contradiction because
we assumed the graph was connected.
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Degrees and connectivity

High degree, longer path

@ When there is much connectivity, like if each vertex has at least k
neighbours, then we can also have long paths.

o If we take a maximal path starting at u, then all the k neighbours of
u must be on this path because we cannot extend this maximal path
by connecting a neighbour of u, thus requiring this maximal path to
be of length at least k.

@ See Proposition 1.2.28 in [Wes00].
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Connectivity with edges

@ Suppose we have an even graph. Can this graph have a cut edge?

o If it were so then dropping this edge would render two connected
components in the disconnected graph to have odd degrees.

@ However, no connected subgraph can have just a single odd degree
vertex.

o Adding edges can increase connectivity; in other words, an edge
added to a graph G(V/, E) may reduce the ¢(G), that is, the number
of connected components by at most 1.

@ So, by induction we can show that ¢(G) is lower bounded by
V[ - [E]
@ A graph with two edges has exactly |V| — 2 connected components.

A graph with one edge has exactly |V| — 1 components but a graph
with three edges may have |V| — 2 or |V| — 3 components.
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Degrees and connectivity

Degrees and independence

o If a(G) is the maximum size of an independent set in a simple graph
G(V, E) then each of the |V| — a(G) vertices have some edges
coming out, such that the sum of degrees of these vertices is at least
the number |E| of edges of G.

e Thus A(G)(]V| — a(G)) > |E|, where A(G) is the maximum degree
of a vertex in G.
@ Thus we have o(G) < |V| — %.

@ In a regular graph |E| = ¥|V|, whence a(G) < |2ﬂ
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Matchings and factors

e A matching M is an independent set of edges in a graph G(V, E)
[Diel7].

@ So, no vertex in the graph will be in more than one edge of a
matching.

@ A k-factor of G is a k-regular spanning subgraph of G.

@ So, a subgraph is a 1-factor if and only if it is a matching for the
entire set of vertices in the graph, or in other words, it is a perfect
matching.

@ Such perfectly matched graphs must therefore have an even number
of vertices.

@ Note that even non-bipartite graphs may have perfect matchings.
@ We can characterize general graphs that have a perfect matching by
Tutte's condition, as per Tutte's theorem (Theorem 3.3.3 in [Wes00]).
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Matching and factors

Berge's theorem

A matching M in a graph G is a maximum matching in G if and only

if G has no M-augmenting path. This is a result from 1957.

Let p denote the statement “M is a maximum matching”, and g
denote the statement “there is no M-augmenting path”.

Then the statement p if and only if g has two implications.

The if-part is ¢ = p, and the only-if partis p = gq.

To show the only-if part we show therefore that —p \V g holds or
p A —q does not hold.

Suppose a maximum matching M has an M-augmenting path.

Then we can demonstrate a larger matching, contradicting the
assumption that M is a maximum matching. This completes the
only-if part.

For the if-part we show —q V p holds or g A =p does not hold.
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Matching and factors

Berge's theorem (cont.)

@ So, to show the if-part we show the impossibility of M being not a
maximum matching as well as that there are no M-augmenting paths.

@ Assume that there is no M-augmenting path, but M is not a
maximum matching. We show that this is impossible as follows.

@ Let the maximum matching be M’ and F be the symmetric difference
betweem M and M'.

@ Since |M'| > |M]|, at least one component C of F must have more
edges from M'.

@ Since all cycles are of even length, and edges alternate between M
and M" in F, C must therefore be a path and not a cycle in F.

@ The two extreme edges in C must thus be from M’ yielding an
M-augmenting path.

@ This completes the proof of the if-part of Berge's theorem
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Matching and factors

Berge's theorem (cont.)

Now we formally state the definition of the symmetric difference of
two matchings and study its properties.

If M and M’ are matchings, then MAM' = (MU M)\ (M N M’).

We show that every component of this symmetric difference of is a
path or an even cycle.

At most one edge of M and at most one edge of M’ is incident on
any vertex v.

So maximum degree of any node in F is 2. So, components of F
must be paths or cycles.

Also, edges in a path or cycle will alternate between edges of M\ M’

and M"\ M.

So all cycles must be even.
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Matching and factors

Proof of Hall's theorem using alternating paths

@ For a bipartite graph G(X U Y, E), suppose the neighbourhood N(S)
of any subset of the partite X is at least as larger as S, then we must
show that there is a matching that covers the whole of X. This is
known as Hall's theorem. (See Theorem 3.1.11 in [Wes00])

@ Equivalently, we can establish sufficiency by demostrating the
contrapositive; if the maximum matching M fails to match a vertex
say u € X then we must demonstrate a subset S of X whose
neighbourhood N(S) is smaller than |S].

e Towards this goal, we find the vertex subsets S(resp., T) of
X(resp., Y) that are in M-alternating paths starting at the
unmatched vertex u of X. Here u € S and T = N(S).

@ The unmatched vertex u cannot reach out to opposite side vertices
outside M, as in that case u would match a vertex outside M and
create a matching larger than M.
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Matching and factors

Proof of Hall's theorem using alternating paths (cont.)

@ Suppose we show that M matches S\ {u} to T. Then we would have
shown that N(S) = T has only |S| — 1 elements, violating Hall's
condition (given that we had started with the assumption that the
maximum matching M failed to match u € X).

@ Now we show how M matches the whole of S\ {u} to T.

o Each vertex of S\ {u} must be reached from a vertex of T in some
M-alternating path via an edge of M.

@ Also, M being a maximum matching, by Berge's theorem we do not
have an M-augmenting path.

@ So, the whole of T is saturated.
@ Thus T = N(S), with M defining the bijective mapping.
@ Now as an application of Hall's theorem we can show that a k-regular

bipartite graph has a perfect matching i.e., a 1-factor.

Department of Computer Science and Engineering, [IT Kharagpur Sudebkumar Prasant Pal 30



\VEVLIT-AETCRETSIIIN A proof of Hall's theorem using induction

A proof of Hall's theorem using induction

For the bipartite graph G(AU B, E), the subsets we consider are

X C A, irrespective of whether N(X) is equal to or greater |X|, where
A is the set to be matched. Throughout N(X) is identical to Ng(X),
the neighbourhood set of X in G.

Hall's condition requires N(X) to be at least as big as X. So, clearly,
there are two cases, one of equality and one of strictly being greater.
We use induction to prove the hypothesis for matching the set A,
given that the hypothesis holds for matching smaller sets that are
subsets of A.

We assume that (i) N(X) is strictly larger than X for every X C A,
X # ¢, or (ii) there is at least one A; C A, such that N(A;) is of the
same size as that of A;, A1 # ¢. Naturally, for A we assume N(A) is
at least as big as A.

These two are mutually exclusive and exhaustive cases.
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\VEVLIT-AETCRETSIIIN A proof of Hall's theorem using induction

A proof of Hall's theorem using induction (cont.)

@ In either case, the induction hypothesis is that there is a matching
that covers any proper subset of A.

@ We need to show by using induction that there is a also a matching
that covers A.

@ In the first case we connect x € A to one of its adjacent vertices

y € B. Now see G; = G — x — y. We know that such a y exists.

Let X C A— {x}. Assume X # ¢. Why?

Clearly, X # A. Also, note that y may or may not be in N(X).

Since this case assumes |N(X)| > | X], so

NG, (X)| > N(X) —1 > |X], as (i) Ng,(X) will miss out y only if

y € N(X) = Ng(X), and (i) N(X) > | X].

@ So, by the induction hypothesis, there is a matching F; covering
A — {x} in Gz, which along with (x, y) gives the matching covering
the whole of Ain G.
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\VEVLIT-AETCRETSIIIN A proof of Hall's theorem using induction

A proof of Hall's theorem using induction (cont.)

In the second case, Ay C A, A1 # ¢, and |[N(A1)| = |A1].

So let G; be the subgraph of G induced by A; U N(A;), and let
Gy, =G — A1 — N(Ay).

Now in G, let X C A;y.

Then Ng, (X) = Ng(X) = N(X), and |[Ng, (X)| = |[N(X)| > |X].
This holds for every X C A;.

Thus by the induction hypothesis there is a matching F; in G; which
matches A; with N(A;).

In Gp, let X C A— A;.

Then [N, (X)| = [N(X U A1)| = [N(A1)| = [X U A1] = [N(A1)| =
(X U AL = [Ar] = |X].

So in Gp, by the induction hypothesis, we have a matching F; that
matches A — A; with certain vertices in B — N(A;).

F1 U F5 is the matching for A.
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_ Maschingand fecos LT -
Matching by augmenting paths in bipartite graphs

G(X, Y, E) has vertex partites X and Y, and edges E. Let M C E
be a matching in G.

We maintain S C X (initially S = U, where U is the set of
M-unsaturated vertices of X) and T C Y (initially ¢), and mark
vertices in S one by one, stopping when all vertices in S are marked.

An M-augmenting path from any unmarked x € S to a vertex

y € N(x), if xy ¢ M (and thus y is unsaturated) is xy itself !

If y is not unsaturated, and thus matched to w € X by M, then put
y in T, as y is reachable from x, and put w in S, as it is reached
from y.

Once all such edges sitting on x are explored thus, mark x, and
proceed iterating.

See Theorem 3.2.2 [Wes00] and Algorithm 3.2.1.

Note that M gets augmented until all vertices in S are marked.
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_ Maschingand fecos LT -
Matching by augmenting paths in bipartite graphs (cont.)

@ Two things now needed are to show are that on termination, M is the
maximum matching with the same number of edges as the set
R = T U(X\S), which is the (minimum) vertex cover.

@ When we have the augmenting path, we enhance the matching, else
we have already computed the maximum matching by Berge's
theorem, and must now have the minimum vertex cover, thereby
establishing the Konig-Egervary theorem.

@ To show that R is indeed a vertex cover, we may show that S has no
edges to vertices in Y\ T.

@ We know that each vertex of S\ U is matched by an edge of M to
some vertex in T, and no vertex of S has an edge of M into Y\ T.

@ Also, no non-M edges connect from S to Y \ T, as then we would
have augmented M, extending T, a contradiction.
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_ Maschingand fecos LT -
Matching by augmenting paths in bipartite graphs (cont.)

@ So, the vertex cover is only T from Y and the whole of X, leaving
out S from X, as not only S\ U but also all of U C S have been
marked as having an edge into T.

@ So, to cover edges from S, we include T in the vertex cover and to
cover the edges from U, the remaining vertices in X, we include X \ S
in the vertex cover.

@ Now T has only saturated vertices, and all vertices in T are matched
to an equal number of vertices in S.

@ The additional matching edges in M beyond the |T| already
mentioned are from S but not in U or those matched to T from S.
These are thus the remnants in X after dropping S.

@ This is thus a constructive proof of the Konig-Egervary theorem.
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Matching and factors Proof of Hall's theorem using the Konig-Egervary theorem [Diel7]

Proof of Hall's theorem using the Konig-Egervary theorem
[Diel7]

@ The theorem of Konig-Egervary is a well-known duality result stating
that the size of the maximum matching is the same as the size of the
minimum vertex cover in a bipartite graph.

@ Let A C A and B’ C B be the two mutually disjoint subsets of V
constituting the minimum vertex cover U for G(V, E).

o Consider A\ A" and B\ B'.

@ These sets do not induce any edges in G and therefore constitute a
maximum independent set, because A’ U B’ is the minimum vertex
cover.

e So, IN(A\ A)| < |B].

@ Now let us now assume that G does not have a matching for the
whole of A, implying |A'| + |B'| = |U| < |A|, or |A| — |A| > |B’'|, and
thus |[A\ A'| > |B’| > [N(A\ A)|.
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Matching and factors Proof of Hall's theorem using the Konig-Egervary theorem [Diel7]

Proof of Hall's theorem using the Konig-Egervary theorem
[Diel7] (cont.)

@ This establishes the contrapositive for the sufficiency condition for
Hall's theorem with the subset A\ A’ as witness.

@ Here, the strict inequality |U| < |A| holds because the maximum
matching size is the same as the size |U| of the minimum vertex cover
by the Konig-Egervary theorem, and at least one vertex in A is not
matched in any maximum matching.
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Matching and factors Proof of Hall's theorem using the Konig-Egervary theorem [Diel7]

Notations and definitions about independence and covering

@ For the sake of some notation, let us use
a(G) to denote the size of the maximum independent (stable) set in
a simple connected graph G(V, E),
B(G) to denote the size of the minimum vertex cover,
o/(G) for the size of the maximum matching, and
B'(G) for the size of the minimum edge cover.

@ We know that a(G) + 5(G) = |V/| = n for any graph.

o For bipartite graphs we know by the Konig-Egervary theorem that
B(G) = (G).

@ For general graphs 3(G) > o/(G) because we need to cover each
edge of a matching by at least one vertex.

@ We also know that for any graph, no edge can cover two vertices of
an independent set.
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Proof of Hall's theorem using the Konig-Egervary theorem [Diel7]
Notations and definitions about independence and covering
(cont.)

So, we can write §/(G) > «a(G).
o Further, note that by Gallai's theorem we know that
o/(G) + B'(G) = |V| = n for any connected graph.
e To show that a(G) + B(G) = |V| = n for any connected graph, we
argue as follows.

e If T is an independent set, then edges can have at most one endpoint
in T.

@ So each edge has at least one endpoint in V' '\ T, making it a vertex
cover.

@ Also, if V'\ T is a vertex cover, T will not have both endpoints of
any edge.

@ Study exercise: Proof of Gallai's theorem.
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Applications of Hall's theorem

We show using Hall's theorem that any simple undirected 2k-regular
bipartite graph has a 2-factor (cycle cover).

See Theorem 3.3.9 in [Wes00] and Theorem 7.2.8 in [Jun99].

The common property of a 2-factor and an Euler tour is that both
span the graph, albeit in different ways.

Whereas the 2-factor spans all the vertices in a subgraph where all
vertices use only two edges, the Euler tour spans all the edges, each
edge exactly once.

Let us assume that the simple undirected 2k-regular undirected
bipartite graph G is connected.

Let m be the number of its edges. Let vy be any vertex.

Then we have an Euler tour v, e1, e, ..., €m, Vmy = Vg, Where
€ = ViViy1.

So, e1 = Wvi, & = ViV, ..., €n = Vim—1Vm = Vm_1%0.
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Applications of Hall's theorem (cont.)

We replace each vertex v by two vertices v/ and v” and each edge
ej = VijViy1 is replaced by viv/", ;.
So, eq is replaced by vjvy', going from the left to right, and e, is

replaced by v{vY, going from right to left.

Due to the Euler tour, each original vertex v € V/, now has exactly k
edges going left to right (right to left) from v/, and exactly k edges
going right to left (left to right) from v if v is on the left (right) set.

The new graph is k-regular and has therefore a 1-factor; merging the
split vertices back gives the 2-factor for the original graph G.

This solution is from [Diel7].
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Gallai's theorem

Proof of Gallai's theorem

4

If we have a graph with no isolated vertices then we can show that
B(G) < |V[—a'(G).

The trick is that we can start with a maximum matching M and
generate an edge cover L of size |V| —|M|.

The edge cover L of size |V| — o/(G) is at least the size §/(G) of the
minimum edge cover.

How do we do this construction? We add to M one edge incident on
each vertex uncovered by M.

Since M covers 2a/(G) vertices, the new edges added are only

|V| — 24/(G) in number.

These edges along with the o/(G) edges of M form the edge cover L.

To complete the proof of Galai's theorem, we must now show
B'(G) > |V|— /(G), or equivalently, o/(G) > |V| — 5'(G).
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Gallai's theorem

Proof of Gallai's theorem (cont.)

@ We start with a minimum edge cover L of size 5'(G), and construct a
matching of size |V| — 8'(G), which has to naturally be of size no
more than o/(G).

@ This is so as L is a collection of k stars, with each star giving only
exactly one edge to the matching M.

@ The matching size is the number k = |V| — |L| = |V| — /(G) of stars
counted by the central vertices of the stars because all edges of L end
on peripheral vertices of their respective stars which number |V/| — k.

@ Why is L a collection of k stars?
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The Konig-Egervary theorem

Proving the Konig-Egervary theorem using Hall's theorem

o It is sufficient to show that for any minimum cardinality vertex cover
Q of G(X U Y, E), we can demonstrate a matching M of size
B(G) = |U. Why?

o (We know that 8(G) > o/(G). We need at least as many vertices as
the number of edges in the maximum matching in order to cover all
edges.)

@ Consider the partition of any minimum cardinality vertex cover Q@ into
R=QNXand T=QNY.

o Consider (edge-disjoint) subgraphs H and H’ induced by RU (Y \ T)
and TU(X\ R).

@ Using Hall's theorem we show that H has a matching for R into
Y \ T and H' has a matching for T into X \ R.

@ So, a matching of size |Q| from H and H’ for the whole of G can be
demonstrated.
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The Konig-Egervary theorem

Proving the Konig-Egervary theorem using Hall's theorem
(cont.)

@ Since RU T is a vertex cover for G, no edges exist between Y \ T
and X'\ R.

@ For any S C R, consider Ny(S) C Y\ T. Can the vertex cover
RUT be replaced by (R\ S)UNy(S)U T?

@ Since this can never shrink the minimum vertex cover Q, we have
Hall's condition |Ny(S)| > |S| for any S C R.

@ So, R matches into Y\ T by Hall's theorem. See [Wes00].

e Similarly we can show that T matches into X \ R.
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Proving the Konig-Egervary theorem using alternating
paths [Diel7]

It is enough to show that there is a vertex cover whose size equals the
size of the maximum matching in a bipartite graph.

So, given a maximum matching M, we pick exactly one vertex from
each edge of M and show that these vertices cover all edges of the
graph.

We do this using alternating paths [Diel7]; later we also do this using
the max-flow-min-cut theorem [GGL95].

So take the two partite sets as A and B with the maximum matching
M in bipartite graph G(AU B, E).

We define a set U as the collection of vertices of the edges of M, only
one vertex per edge of M as follows, and show that U is a vertex
cover.
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The Konig-Egervary theorem [Diei7]

Proving the Konig-Egervary theorem using alternating
paths [Diel7] (cont.)

@ So, for each M-alternating path, ending with a vertex in B in the
matching M, we take the end vertex in that path in U, which thus
belongs to an edge e of M, provided just one vertex is taken from the
edge e in M. For the remaining edges in M we take the vertex in A.

@ Since by Berge's theorem, the graph has no M-augmenting path,
each M-alternating path (starting at an M-unsaturated vertex in A)
will end at a vertex in B belonging to an edge of M.

@ Such a path could also contain just a single edge.

e We claim that U is a vertex cover. See [Diel7]. At least all edges of
M are covered as per the construction. Also, all other edges must be
shown to be covered by U.
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The Konig-Egervary theorem [Diei7]

Proving the Konig-Egervary theorem using alternating
paths [Diel7] (cont.)

For each M-unsaturated vertex u € A determine reachable vertices in
B where M-alternating paths starting at u end. Add these vertices to
U, and for other edges of M, add the ends in A on these edges of M
to U.

More formally, let ab € E be an edge with a€ Aand be B, ab¢ M.
As all edges in M have at least one vertex in U, as per the
construction/definition of U above, we now need to show that at
least one of aor bisin U.

Since ab is not in the maximum matching M, there must be an edge
a'b’ € M such that a = a’ or b = b’. Otherwise, we could add ab to
M getting a bigger matching.

But is it possible that a is unmatched? If so, then surely b = b/, as
a# &, and here ab is an alternating path of odd length unity, and so
the end of a’b’ € M, chosen for U was the vertex b’ = b.
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The Konig-Egervary theorem [Diei7]

Proving the Konig-Egervary theorem using alternating
paths [Diel7] (cont.)

@ So, now we assume that a is matched, thatis, a=a’ and b # b'.
Now if &/ = ais not in U, then surely b’ € U, and some
M-alternating path P ends in b'.

@ But then there is also an M-alternating path P’ ending in b as shown
here.

@ P may have b or may not have b.
@ In the first case P’ is Pb and in the other case P’ is Pb'a’b.

@ By the maximality of M, P’ is not an M-augmenting path. Therefore,
b must be matched, and was chosen for U from the edge of M
containing it.

@ So, ab is always covered by U.
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Extremal results

Large number of edges lead to subgraphs with
proportionate minimum vertex degree

@ We observe that if G is a graph on n vertices with more than (¢ —1)n
edges, where c is a positive integer, then G has a subgraph H of
minimum degree at least ¢ (Lemma 7.1, page 74 [GGL95]).

@ This is so as any minimal subgraph H with more than (¢ — 1)v(H)
edges has the necessary property of minimum vertex degree at least c.

o If H had a vertex v of degree at most ¢ — 1, then subgraph H \ {v}
would contradict the choice of H because in that case H \ {v}, and
not H would be the minimal subgraph with the required property.
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Extremal results

Extremal results: Spanning subgraphs of high vertex
degrees

@ In similar vein, we can show that every graph G has a bipartite
spanning subgraph B such that degreeg(v) > deg%ec(v) for all
vertices v (Lemma 7.2, page 74 [GGL95]).

@ We note that any bipartite spanning subgraph B(X, Y) with the

maximum number of edges has this property.

@ Suppose B had a vertex v of degree less than deg%ec(v), and without

loss of generality v € X, then the bipartite spanning subgraph with
bi-partition (X \ {v}, Y U {v}) would contradict the choice of B
because this modified graph would have more edges.

@ Such results may be required in the proofs of extremal properties
where the number of edges is only of some modest smaller
magnitude, serving a required purpose, even by restricting the class of
graphs under consideration to bipartite graphs of large degree.
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Extremal results

Extremal results: Spanning subgraphs of high vertex
degrees (cont.)

@ In the breadth-first search trees of bipartite graphs of large degree,
the sets reachable grow rapidly.
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Extremal results: Mantel's theorem

4

We can put some weights (non-negative) for the vertices of the graph
G(V, E), so that the weights add up to 1, trying to maximize the
sum over all edges of the products of weights assigned to its vertices.
If all the weights are just % then we have a sum ‘n£2‘ This may not be
the maximum though.

We can show the maximum is attained when we assign % to just two
vertices connected as an edge in G, whereby the maximum sum is
w<E

For a pair {k, I} of unconnected vertices, let x and y be the sum of
weights assigned to the neighbours of vertices k and | respectively,
where x > y. Let the weights assigned to vertices k and / be

respectively z, and z.

just %. So,

We note that moving a small weight e from vertex / to the vertex k,
will change the sum of products of weights of vertices joined by edges
to x(zx + €) + y(z1 — ) > xzx + yz.
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Bounding triangles in 2 graph
Bounding triangles in a graph

@ We show that the number of triangles in any simple graph of n

vertices and m edges is at least ‘;—’;’(m — ”T)

e For any edge xy there are at least d(x) + d(y) — n vertices adjacent
to both x and y. Why? The remaining n — 2 vertices cover at least
d(x) + d(y) — 2 edges. If ¢ is the number of triangles sitting on base
xy then n—2+c>d(x)+d(y) —2or c > d(x)+d(y) —n.

@ So, this is also a lower bound on the number of triangles sitting on xy.

@ However, due to counting thrice (once for each edge of every
triangle), we consider only a third of the sum of such lower bound
estimates over all edges as a lower bound for the number of triangles
in the graph.

e This estimate is a third of > (d(x))? — mn, which is at least a third
of n times the square of the average of vertex degrees minus mn by
the Cauchy-Schwartz inequality. Why?
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Bounding trangles in a graph
Bounding triangles in a graph (cont.)

@ So, the number of triangles is at least

3 @60+ dly) )

xy€E

= 2 () — mn)

xeV

> (o3 29y) — o)
xeV
1 2m
= 5(”(7)2 — mn)

@ Now consider adding the squares of the degrees of all vertices in a
triangle-free graph.

@ View this summation over all vertices as a sum over all edges xy € E.
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Bounding trangles in a graph
Bounding triangles in a graph (cont.)

e For each edge xy we simple need to add d(x) and d(y), that is
d(x) + d(y) < n, thereby adding d(x) for each vertex d(x) times.

@ So the summation is simply mn as we have m edges.
o However, (2m)? = (Z,cvd(x))? < nZ evd?(x) =
N,y ce(d(x) + d(y)) < mn?, yielding m < %2.
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Turan’s problem

@ The r = 2 case of avoiding a K,11 in a graph was attained with the
. 2
maximum number 7 of egdes by Kray,12)-

@ We generalize now to the case for avoiding K41 for r > 2, again
maximizing the number of edges in the n-vertex graph G

@ To construct such a graph G of n vertices, we must note that G
should have a K,, otherwise, we could add an edge and still not have
a Kr+1-

o Let A be the set of r vertices in some r-clique in G(V/, E).
@ Let B =V \ A be the set of the remaining n — r vertices.

@ Let T, , be the n-vertex graph that is maximal, r-partite and
balanced. Let e(Tj,, ) be its number of edges.

@ So, we have
El < (3) +(r=1)|Bl+e(B) < (3) + (r = 1)(n—r) + e(To—r.r).
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Turan's problem (cont.)

@ The r-clique A has (;) edges, each vertex in B can connect to at most
r — 1 vertices in A and by the induction hypothesis e(B) < e(Th_, ).
@ To complete the proof, we need to argue that the final sum above is

indeed e( T, ), which is easy to see; this part of establishing the
equality is independent of A and B.

@ Just drop r vertices, one from each partite.

@ Exactly n — r remaining vertices would each lose exactly r — 1
neighbours.

@ Question: Determine e( T, ,) in terms of n and r.

o Guessing e(Tp,) < 3(1 — 1)(n?), and by induction we claim that

e( Tn,r) < (g) + (r - 1)(” — r) + e(Tnfr,r) <
(5)+(r=1)(n—r)+ %(1 - %)(n —r)2.

@ Question What is the maximum number of triples in an n-vertex
3-uniform hypergraph without a tetrahedron?
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Turan's problem (cont.)

o If nis a multiple of r then (T, ,) = (1 — 1)(n?).

@ So, r =2 gives us Mantel's theorem bound for missing a K3. And
. .. 2
r = 3 gives us the bound for missing a tetrahedron or Ky as 5.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal

60



Extremal results A “Pigeonhole approach” to Turan's problem

A “Pigeonhole approach” to Turan's problem

Turan’s theorem in the “Pigeonhole principle mode” may be stated as
follows.

Let G(V, E) be a graph with n = mk vertices and more than
e= (’2() m? edges.

Then G must have a Kjy1.

We use induction on m to establish this result.

Suppose G has no Kyy1.

Then, the graph G; = G — V(H) has mk — k vertices which has no
more than k — 1 edges connecting to H, where H is a K in G.

So, Gi; must have more than
(5)(m)? — (k — 1)(mk — k) — (¥) = (¥)(m — 1)? edges.
This is so as the induced subgraph H had (/2‘) edges and each of the

surviving mk — k vertices in Gy can connect to at most k — 1 vertices
in H to make G.
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Extremal results A “Pigeonhole approach” to Turan's problem

A “Pigeonhole approach” to Turan's problem (cont.)

@ However, by the induction hypothesis, this means that G; with
k(m — 1) vertices, and (g)(m —1)? contains a Kk, 1, and hence, so
does G, a contradiction to our assumption that G has no Ky1.
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Erdos-Stone theorem

We will restate the result of Turan where we look for K,-free graphs
on n vertices, as stated in Theorem 9.3 in [PA11] for r > 2.

@ The number of edges in such a graph G would never exceed the
number of edges in T,_1(n), an (r — 1)-partite graph that is
balanced, complete and has no K,.

@ The equality here would hold if and only if G = T,_1(n).

o Each of the r — 1 partites has either [ 5] or | ] vertices in
Trfl(n)'

e Exercise 9.5 in [PA11] gives the exact number of edges in T,_1(n) as

(1 —L)(n* —s*) + (5), where s = n mod (r — 1). These are
quite dense graphs.

@ Turan's theorem implies that a graph G with more than e(T,_1(n))
edges would contain a K, as a subgraph.
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Erdos-Stone theorem

Erdos-Stone theorem (cont.)

@ More edges would be required so that a graph G contains an r-partite
complete subgraph K/, that has t vertices in each partite. Here
K! = T,(rt), and t is any fixed constant.

@ The Erdos-Stone theorem (Theorem 9.10 in [PA11]) states that K} is
contained in G if it has n > ng(r, t,€) vertices for any € > 0, and if
we have at least ”72(1 — L +¢) edges in G.

@ The number of edges is roughly just en? more than e(T,_1(n)).

e This is possible if G has d(x) > n(1 — -5 + €) for every vertex
x € V(G), under the same conditions. (See Lemma 9.11 in [PAL1]).

@ Clearly, € < %

@ The core idea is that pumping in so many edges into G would inflate
the degrees of a bunch of vertices to cross the bound on vertex
degrees required in Lemma 9.11, so that an induced subgraph of G
has a K.
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Erdos-Stone theorem

Erdos-Stone theorem (cont.)

@ The harder part to show is the inductive proof of Lemma 9.11 as
follows.

@ The induction is on r.

@ As we already know, the claim holds for r = 2, by the use of Corollary

9.7 to Lemma 9.6 and the Kovari, Sos, Turan result in Theorem 9.9
in [PA11], where en? edges are sufficient.

@ So, we can assume the claim holds for some r > 2 and using this
claim we show it holds for r + 1 as well.

o Set T =[%].

o If n> ny(r, T,e), then by the inductive hypothesis, K,” C G.

o We have to find vertices in V/(G) outside the K| that are adjacent to
at least t vertices in each partite of the KT

o Calling such vertices as regular, we need a sufficient number of them,
say R, so that we can form a K[ ;.
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Erdos-Stone theorem (cont.)

@ We can lower bound R by n% — rT, by estimating the number m

of missing or absent edges in G between the K, and the rest of G,
by using an easy upper bound on m based on vertex degree lower
bounds in the premise of Lemma 9.11, and a non-trivial lower bound
for m based on how the non-regular vertices miss out the adjacency of
at least T — t vertices in at least one partite of the K, .

@ Note that by choosing a sufficiently large n we can ensure the
required number R of regular vertices necessary to build the K}, ;, as
we state below.

o let G, i<i< (:)r denote the ith combination of t-subsets from
the r-partite sets V;, 1 < j < r, where each V; has T vertices.

@ Let wiy, 1 < k < t—1 be a regular vertex adjacent to all vertices in
. '’
G, 1<i<(,).
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Erdos-Stone theorem

Erdos-Stone theorem (cont.)

@ So, adding just one more regular vertex x would create a K},
because being regular, the vertex x must be adjacent to all vertices of
. r
some C;, 1 <i< (D .

@ So, just over (I)r(t — 1) regular vertices suffice.

@ Now using Lemma 9.11, the main Erdos-Stone theorem is proved in
Theorem 9.10 of [PA11].

@ For any € > 0, and we have at least ”72(1 - ﬁ + €) edges in G, just

Ten? more edges than T,_1(n).

@ We will discriminate with respect to the vertex degree d(x;) being at
least (n — i)(1 — -L; + £) or strictly lesser than this amount,
respectively, to retain or drop the vertex x; in Step i, i > 0, to set
G,'_|_1 as G,' — Xj.
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Erdos-Stone theorem

Erdos-Stone theorem (cont.)

@ When we get stuck at G; with no more deletions possible, we are
done with [V/(G;)| < n(r, t,5), whereby the Lemma 9.11 holds,
assuring Kf C G; C G, as sought.

@ Setting a loose estimate of an upper bound on |E(G)| based on the
high vertex degrees of deleted vertices and the upper bound (";i) on
the size of G;, and the lower bound for |[E(G)| in the premise of the
Theorem 9.10, we can derive a lower bound for |V(G;)| in terms of n,
r and € as being an estimate for the function n(r, t, 5).

@ Now as an application of the Erdos-Stone theorem, show that given a
nonempty graph H with chromatic number x(H), an H-free graph
can have no more that %2(1 - W) + o(n?) edges.
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The problem of K. Zarenkiewicz

The problem of K. Zarenkiewicz

@ Kovari, Sos and Turan in 1954 solved the problem of bounding the
number of edges in a bipartite graph Gp, 5(V1 U V5, E) so that
another bipartite subgraph K; s is forbidden.

@ We wish to determine the maximum number |E| of edges permissible
so that a K, s does not appear as a subgraph in a bipartite graph
Gm,n(vl U Vs, E)

e For all x € V5, (W, x) pairs must be at most (s — 1)("7) which must
cap (d(rx)) summed over all x € V5, where W is a subset of V4 of r
vertices connected to the same x € V5.

@ This is necessary because no r-tuple from V; should connect to more
than s — 1 vertices in V5, whereas we do have as many as (d(rx))
r-tuples from V;j connecting to each x € V5.

@ So, essentially, we must pack all the available r-tuples we have from
the graph into at most (s — 1)(’:’) r-tuples.
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The problem of K. Zarenkiewicz

The problem of K. Zarenkiewicz (cont.)

@ This forbids K, s and breaching this packing restriction would make a
K s appear.

@ For a solution see Theorem 9.5, Combinatorial Geometry by Pach and
Agarwal, Wiley Interscience Series in Discrete Mathematics and
Optimization.

: _1

@ The upper bound sought is crys(mn1 r + n), where the constant ¢; s

depends only on r and s.

@ Jensen's (secant) inequality comes in handy. The generalization to
general graphs is easy and similar, as in Exercise 9.17 in [PA11].

@ Do exercises 5.2.23, 5.2.25 and 5.2.26 from [Wes00].

@ Indeed Exercise 9.17 in [PA11] helps establish Corollary 9.7 in [PA11]
as G being K s-free in Corollary 9.7 means even bipartite subgraph H
in Exercise 9.17 is K s-free.
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The problem of K. Zarenkiewicz

The problem of K. Zarenkiewicz (cont.)

@ Note that the case of a general graph being K ,-free requires no
notion of orientation but only that any r-tuple in the vertex set V(G)

be contained in the neighbourhood of at most r — 1 vertices.
d(v)

")) r-tuples in its neighbourhood.

o A vertex v with degree d(v) has (

@ The total number of r-tuples is 35,/ (q) (4()), which must not
exceed (V) (r —1).

o Now using (f) as a convex function f(x) for x > r — 1 and using

Jensen's inequality show that E(G) must be bounded by C.n?"7 so
that G has no K, ;.
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Tutte's theorem

Tutte's theorem

@ The generalization of Hall’s theorem to general graphs, the result of
Tutte, can be proved by using Hall's theorem (see Problem 3.3.13 in
[Wes00]).

@ |t is easy to see that the necessity of Tutte's condition, for a simple
graph G(V, E), whereby o(G — S) < |S], holds for every subset S of
vertices.

@ This is so as every odd connected component of G — S would require
to reserve at least one vertex in S C V for the perfect matching.

@ So, at least one edge of the perfect matching must connect each odd
component of G — S to S.

@ So, if J is the set of all such edges over all odd components then
o(G—5) <|J| < S|

@ Since |J| can be large, S will be larger, accomodating parallel edges
of the matching to land up in S.
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Tutte's theorem

Tutte's theorem (cont.)

Figure: A graph with maximum matching of size 9.

@ This also applies to even components but we do not mention
anything about even components here !
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Tutte's theorem

Tutte's theorem (cont.)

o If G satisfies Tutte's condition and G has components, then
furthermore, each component must also be even.

e If G has two vertices then satisfying Tutte's condition would enforce
G = Kby, which is itself a perfect matching.

@ For establishing sufficiency, first we note that if S is the empty set
then Tutte's condition enforces that G must be even.

o Consider a simple graph G’, constructed by adding edges to G, so
that G’ has no 1-factor but joining any pair of non-adjacent vertices
by an edge in G’ results in introducing a 1-factor.

@ We show that such a graph G’, has a special dense structure.

@ If S is a bad set of G’ then by its edge-maximality and Tutte's
condition violation as per Tutte's theorem, all the components of
G’ \ S are complete and every vertex s € S is adjacent to all the
vertices of G’ \ {s}, and S is a clique in G'.
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Tutte's theorem

The maximal graph idea for proving Tutte's theorem

o Consider the set V; of all vertices in G’ that forms a clique and each
vertex in Vj connects to all vertices in V' \ V4. In other words, V; is
the set of all vertices of degree |V| —1in G’

@ It can be shown that vertices outside V; span disjoint complete
graphs, and each vertex v € V4 is adjacent to all vertices in V' \ {v}.
Such a set V; actually exists as we shall argue shortly.

e Using this property (established later below), we first prove Tutte's
theorem as follows.

@ We work on G’ to establish that the negation of Tutte's condition
holds for G'.

e Finally we show that there is an X C V with o(G — X) > |X| for the
original connected simple graph G that has no perfect matching.

@ So, let V; be the set of vertices where G’ has the special structure
with G’ — V4 consisting of complete subgraphs G, Gy, ..., Gy.
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Tutte's theorem

The maximal graph idea for proving Tutte's theorem
(cont.)

@ We need to show that there are at least |Vi| + 1 odd complete
subgraphs amongst Gy, Gy, ..., Gg.

@ For the sake of contradiction, assume that this is not the case.
@ Since we assume thus for the sake of contradiction, we can now

construct a perfect matching, contrary to the assumption that G’ has
no perfect matching.

@ We can choose a 1-factor in each even G; because each such
component is a complete subgraph of G’, and a maximum matching
in for each odd G; (each such matching missing one vertex) that
includes a distinct vertex in Vj.

@ So, we choose independent edges matching one vertex from each odd
G;, with some distinct vertex in V.
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Tutte's theorem

The maximal graph idea for proving Tutte's theorem
(cont.)

@ Now |V| must be even (as we mentioned above) for G to obey
Tutte's condition by choosing X = ¢. So, G’ too is even.

@ So, |V| being even and with independent edges joining V; to odd G;,
we must have only an even number of vertices left in V; to match up
arbitrarily, V; being a complete subgraph of G’.

@ This holds always irrespective of whether there are an odd or an even
number of odd G;'s.

@ Thus we get a 1-factor, a contradiction.
@ So, now we conclude that there are at least |V;| + 1 odd components
of G' — V.

e Finally, dropping added edges from G’ to get G we may only increase
the number of connected components and also the number of odd
connected components, thereby satisfying o(G — V1) > |V4].
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Applications of Tutte's theorem

o Let G = (V, E) be a connected 3-regular graph with no more than
two cut-edges.

@ Since the sum of degrees 3|V(G)| must be even, G must have an
even number of vertices.

@ Since we have at most two cut edges in G, we must have either zero,
or one or two cut edges in G.

@ The case of no cut edges is done in a simpler previous exercise.

@ We know that for an arbitrary non-empty subset S C V that there are
(i) a edges going from S to the odd components of G — S, (ii) an
even number b of edges going from S to the even components of
G — S, and (iii) ¢ edges connecting vertices within S.

@ So, a+b+2c=3|S|. Let o(G—S) be .
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Applicatons of Tutte's theorem
Applications of Tutte's theorem (cont.)

@ The induced subgraph of the odd component G; has even sum of
degrees 3|G;| — mj, where m; is the odd number of edges connecting
this component to S.

@ So, o(G — S) =/ is odd if and only if a is odd.

o If the cut edges are inside components of S then we can use the same
argument as that given in a previous problem.

@ So, we consider the case where the cut edge(s) are between a
component and S.

o If there is only one cut edge then 3(/ —2) + 1 < a, otherwise
3(I-2)+2<a.

@ In either case, as / and a have identical parity, we have 3/ — 4 < a.

@ So, we have 3/ —4 < a<a+ b+2c=3|5|

@ As 3|S] is divisible by 3 while 3/ — 4 is not, either 3/ —4 < a or
b+ 2c > 0.
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Applicatons of Tutte's theorem
Applications of Tutte's theorem (cont.)

o If 3/ — 4 < a, then actually 3/ — 2 < 3, since both a and / are odd or
both are even.

@ So,3/—2<3|S],or I <|S|+2/3.

@ Otherwise, 3/ —4 = a and b+ 2c > 0, so actually b+ 2c > 2, since b
is even.

@ Why is b even?

@ S0,a=3/-4<3/—4+b+2c<3|S|,or3/—4+2<3|5], or
again | < [S| +2/3.

@ A much shorter and simpler proof from Lovasz and Plummer's book
“Matching Theory" is as follows.

@ An elegant and shorter proof is from [LP86] for the Theorem 3.4.1,
which was originally established by Petersen in his pioneering 1891
paper with a “somewhat tedious” proof, as mentioned in [LP86].
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Applicatons of Tutte's theorem
Applications of Tutte's theorem (cont.)

@ In the shorter proof, we assume for the sake of contradiction that
there is no perfect matching.

@ So, we focus on the bad set S, which must have the same parity as
o(G — S) (Why?), as well as violate Tutte's condition, thereby
satisfying o(G — S) > |S].

@ So, we must have o(G — S) > |S| + 2.

@ So, the odd components of G — S have a total of at least
3(o(G — S) — 2) + 2 edges to/from S; at least 3 edges from all but
two odd components, and at least 1 from two odd components.

@ So, any odd component will require at least one (an odd number of)
edge(s) to land in the bad set S, but at most two such components
can have exactly one landing edge because there are at most two cut
edges.
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Applicatons of Tutte's theorem
Applications of Tutte's theorem (cont.)

@ The set of all edges of G, incident on the vertices of an odd
component, is of odd cardinality, but edges that remain within the
induced subgraph of the odd component are even in number.

@ So, we have a total of at least 3|S| + 2 edges from S connecting to
these odd components, which is absurd.
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Establishing Hall's theorem using Tutte's theorem

@ This proof is based on
https://math.stackexchange.com/questions/1803729 /derive-halls-
theorem-from-tuttes-theorem

@ One way to visualize a perfect machine for a graph H is to look at an
induced complete subgraph H’' of H that has a perfect matching.

o Edges going out of H — H' into H’ can then also have a matching
covering the vertices in H — H’, thus completing a perfect matching
for H.

@ We wish to now show how Hall's theorem follows from Tutte's
theorem.

@ Let G be a bipartite graph of n vertices with partites X and Y.

@ Consider the graph H obtained from G by adding an extra vertex to

the partite set Y if nis odd, and then adding edges between vertices
in Y to make Y a complete induced subgraph.
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Deriving Hall's theorem using Tutte's theorem
Establishing Hall's theorem using Tutte's theorem (cont.)

@ So, if n=2m then H = G has n vertices, with Y having an odd
(even) number k of vertices if X has an odd (even) number n — k of
vertices.

o If n=2m+ 1 then H has 2m + 2 vertices with X having an odd
(even) number k of vertices and Y has 2m + 2 — k, an odd (even)
number of vertices.

@ It is easy to see that G has a matching of size | X] if and only if H has
a perfect matching.

@ Assume that G has a matching of size | X].

@ Since G is bipartite, each of the |X| edges of the matching has one
endpoint in X and the other in Y, leaving the remaining vertices in
H(Y) to form a perfect matching (in the remaining complete
subgraph) H(Y), thus yielding a perfect matching for H.

@ Suppose now that H has a perfect matching.
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Tutte's theorem Deriving Hall's theorem using Tutte's theorem

Establishing Hall's theorem using Tutte's theorem (cont.)

@ Since H[X] is independent, a perfect matching in H saturates X.
@ What more we need to show now is that if G satisfies Hall's
condition, then H satisfies Tutte's condition.

@ Suppose that G satisfies Hall's condition. To verify that H satisfies
Tutte's condition, we must show that o(H — T) < |T| for every
subset T of V(H).

@ Since H[Y N T] is a clique, the odd components of H — T are the
vertices of X all of whose neighbors lie in T, possibly along with
Y — T (only if T is chosen so that |Y — T is odd).

o Let S={xe X,N(x) CYNT} (ie. the vertices of X which
become isolated upon the deletion of T from H ).

@ Since G satisfies Hall's condition, we have that |[S| < |T N Y| <|T|,
and thus o(H — T) < |T|+1.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal



Tutte's theorem Deriving Hall's theorem using Tutte's theorem

Establishing Hall's theorem using Tutte's theorem (cont.)

@ However, since H is of even order, o(H — T) and |T| must have the
same parity, and we obtain o(H — T) < |T|. Thus, H satisfies Tutte's
condition.

e With the preceding steps/arguments, it is evident that Hall's theorem
follows from Tutte's theorem.

@ The necessity of Hall's condition is obvious (to have a matching
which saturates X, any subset of X must have at least as many
neighbors as elements in order to be completely matched).

@ To see why sufficiency of Hall's theorem follows from Tutte's
theorem, let H be the auxiliary graph considered throughout this
proof. Since G satisfies Hall's condition (by assumption), H satisfies
Tutte's condition as shown above.

@ Since H satisfies Tutte's condition, it has a perfect matching (by
Tutte's theorem).
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Tutte's theorem Deriving Hall's theorem using Tutte's theorem

Establishing Hall's theorem using Tutte's theorem (cont.)

o Finally, since H has a perfect matching, we may conclude that G has
a matching of size |X|, as shown above in the beginning.
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Hamiltonian circuits and paths

Hamiltonian circuits

o Study Theorems 4.2, 4.3 and 4.4 from [BM76]. Lemmas 4.4.1 and
4.4.2 in [BM76] are supporting results.

@ Hamiltonian paths (or circuits) have all the vertices of the connected
graph.

@ Note that adding edges to the input graph G would not decrease
vertex degrees.

@ Addition of edges would also preserve Hamiltonian circuits.

@ We add edges to G arbitrarily to create a graph G’ which is
non-Hamiltonian but on addition of any edge e, G’ + e is Hamiltonian.

@ For the sake of contradiction, we will assume that G is not
Hamiltonian.
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Hamiltonian circuits and paths

Hamiltonian circuits (cont.)

@ With these assumptions we will demonstrate the presence of two
vertices in the input graph G whose degrees in G add up to a number
strictly less than n, thereby contradicting the initial assumption that
4(G) > 3.

@ This would mean that the graph G is Hamiltonian, given that the
minimum vertex degree in G is at least half the number of nodes in
the graph.

@ This result is by Dirac. See [Wes00; Surl0].

@ Since G’ is assumed to be maximally non-Hamiltonian, we also know
that G’ is not complete.

@ So, we take a pair uv where uv is not an edge of G’. However,
G’ + uv is Hamiltonian.

@ Any spanning cycle of G’ must pass through uv in G’ + uv,
otherwise, we will get a spanning cycle in G’.
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Hamiltonian circuits and paths

Hamiltonian circuits (cont.)

@ So, omitting uv from G’ + uv, we get a Hamiltonian path
u=vi,Vva,..,vp=vin G
@ We collect in a set S, every vertex v; if viv;y1 is an edge.

@ We also collect in a set T, all vertices v; which are neighbours of
vV = Vv,.

Suppose a vertex v; is common to S and T.

Consider vi, Vo, ..., Vi, Vp, Vp—1, --v, Vit1, V1.

This is a Hamilton cycle in G’ because v;v,, is an edge by virtue of
vi € T, and vy 1vp is an edge by virtue of v; € S.

But this contradicts our assumption that G’ is non-Hamiltonian.

So, § and T must not share any element.
Now d(u) = |S| and d(v) = |T|.
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Hamiltonian circuits and paths

Hamiltonian circuits (cont.)

@ But S and T together have strictly less than n vertices (as neither S
nor T can have v,), a contradiction because each vertex degree in G’
is at least 7.

@ This also contradicts the fact that the initial input graph G has
minimum vertex degree at least 7.

@ Therefore, the assumption that G is not Hamiltonian is contradicted.

@ The case of n = 2 is excluded here. So, we assume that the graph has
at least three vertices.

@ Note that we only used the sum of degrees of two vertices
unconnected in G, which were at the two ends of the longest path,
when we compared the sum of degrees with n.

@ So, the minimum degree condition can be weakened/ generalized
somewhat.
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Hamiltonian circuits (cont.)

@ So, we may now state a sufficient condition as follows. If n > 3 and
the degree sum of any two non-adjacent vertices is at least n, then G
contains a Hamilton circuit.

@ This result is due to Ore. See [Wes00; Surl0].
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graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching

Let V1 be the set of vertices connected to all other vertices by edges
in G’.

Let Vb = V\ Vi.

We want to show that if a, b,c € V5, and b is adjacent to both a and
¢, then a is adjacent to c.

This means vertices in V5 have adjacency as an equivalence relation,
and therefore V5 is partitioned into complete subgraphs.

Suppose this is not the case.

Since b € V», there is a fourth point d which is not adjacent to b, as
b would be in Vi if it were adjacent to all vertices outside V.

So, ac and bd are not in G.

By the maximality argument, G’ + ac has a 1-factor F; and G’ + bd
has a 1 factor F».
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graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

@ Clearly, ac is a perfect matching edge in G’ + ac, and bd is a perfect
matching edge in G’ 4 bd. Otherwise, G’ would have had a perfect
matching, which is not the case.

@ Observe F; U F>.

@ This union has common edges and alternating circuits, ac on say (3
and bd on say G,.

e If G; and G, are distinct circuits then we get a 1-factor for G’ (a
contradiction), by replacing the edges of F; by the edges of F; inside
the circuit C; (thereby removing the edge ac of F; from G’ + ac),
and yielding a (new) perfect matching in G’.
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graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

@ Note that bd was not there in G’, and the F> edge bd in G, is not in
C1. So, the above switching will give a perfect matching in G’, as ac
is dropped in (1, and edges of F, in C; now included in the new
matching are all in G'.

@ Thus Fi, a perfect matching for G’ + ac was modified to generate a
new perfect matching for G’ of the same size, a contradiction.

@ The only other case is if C; = C,.

@ In the cycle C; = G, let us start from b through bd till we eventually
hit ac, without loss of generality reach a before we hit c.

@ This traversal b, d, ..., a, c is a path from b to a, starting at F, edge
bd, and ending at a in another F; edge, because ac isin C; = G in
Fi.
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graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

@ So, this (b, a) path P, plus the {a, b} edge forms the cycle K + ab,
with alternating edges of F».

@ Replace edges of K in Fp by edges of K not in F,. This will give a
new perfect matching in G’ as bd of F; is dropped to get the new
matching and bd was never in G'.

@ We thus replace F;, edges in this circuit K + ab by an equal number
of “other” alternating edges in K + ab to get a 1-factor of G/,
whereby we drop {b, d}, which was not in G’ anyway, and add {a, b},
which was in G'.

@ Thus we get a new perfect matching for G/, by modifying the perfect
matching F, for G’ + bd.

@ However, G’ does not have a 1-factor as we stated in our premise.
So, we conclude that V5 is an equivalence relation due to {a, c} being
in G’
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Perfect graphs

@ Local conditions can lead to lower bounding the chromatic number
though chromatic number can grow even if girth is high, as the graph
grows.

@ So, global conditions influence growth of chromatic number.

@ However, in perfect graphs we have some checks.

o We define perfect graphs as those graphs G such that x(H) = w(H)
for every induced subgraph H C G.

@ By this definition it is implied that induced subgraphs of perfect
graphs are perfect.

@ Since induced subgraphs of perfect graphs are perfect, it is natural to
characterize perfect graphs using forbidden induced subgraphs.

@ So, we can say that there is a set F of imperfect graphs such that any
graph is perfect if and only if it has no induced subgraph isomorphic
to any graph in F.
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Perfect graphs (cont.)

@ Here, F could be the set of all imperfect graphs but we would like to
have a small set F.

@ The most famous conjecture till 2005, due to Berge, from 1966, was
that F is the set of all odd cycles of size least 5 and their
complements.

@ Such cycles and their complements are not perfect.

@ So we can rephrase the conjecture — a graph G is perfect if and only
if neither G nor its complement G’ has an odd cycle of length 5 or
more as an induced subgraph.

e This was the strong perfect graph conjecture (SGPC) which was
settled as a theorem in 2005 [CRSTO6].

@ Such graphs were known as Berge graphs, which we know now thus
as exactly the perfect graphs.
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The perfect graph theorem (PGT)
Perfect graph theorem (PGT)

@ The perfect graph theorem (PGT) states that a graph is perfect if
and only if its complement is perfect.

@ The SPGC clearly implies PGT.

@ The PGT was proved by Lovasz in 1972. This proof involves two
stages.
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Perfect graphs Generating perfect graphs by connecting two cliques

Generating perfect graphs by connecting two cliques

@ Let G have two complete disjoint graphs and some edges between
them. Then x(G) = w(G).

@ See Theorem 8.1 in [GGLY5]; the complement graph of G is bipartite.
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Perfect graphs Generating perfect graphs by extension of a vertex

Generating perfect graphs by extension of a vertex

@ Furthermore, in order to prove PGT, we require the following result
(see Lemma 5.5.4 of [Diel7]).

@ The graph obtained by expanding a vertex of a perfect graph is also
perfect.

@ A vertex x in a graph G is expanded by adding a new vertex x’ and
connecting x’ to x and all neighbours of x in G, thus obtaining the
expanded graph G'.

@ This result is established using induction on the number of vertices.
Later PGT is also established using induction and using this vertex
expansion result.

e Coming to expanding G at vertex x, introducing edge xx’ by adding
the new vertex x’, we get graph G’, where x’ connects to all
neighbours of x in G.

@ We show that G’ is perfect if G is so.
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Perfect graphs Generating perfect graphs by extension of a vertex

Generating perfect graphs by extension of a vertex (cont.)

@ We use induction, with the basis case of expansion of K; to K>,
which are both perfect.

@ Now G is perfect so for G’ to be shown perfect we need only show
x(G') < w(G').

@ This is so because every proper induced subgraph H of G’ is either
isomorphic to some induced subgraph of G (and therefore perfect

with x(H) < w(H)), or created from a proper induced subgraph of G
by the expansion of G.

@ If it is the second case above then the induced subgraph H of G’ must
have x’, and a proper induced subgraph K of G, with or without x.

o If x is not there then H = K + {x’} is just like an isomorph of a
proper induced subgraph K + {x} of G where x’ acts just like x.

@ Otherwise we have the non-trivial case where both x and x’ are in H !
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Perfect graphs Generating perfect graphs by extension of a vertex

Generating perfect graphs by extension of a vertex (cont.)

@ In this case the subgraph H of G’ is perfect, by the induction
hypothesis and the expansion construction. Why?

@ This is because we can use induction for showing that the extension
of a proper induced perfect subgraph of G at the vertex x, yields a
perfect graph H, even if it has both x and x’ !

@ So now we have shown that in all the possible cases for a proper
subgraph H of G’, H is indeed perfect and therefore has a w(H)
coloring.

Therefore, now we only need to further show that x(G’) < w(G’).
Let w = w(G), then w(G’) is either w or w + 1.
The easier case is when the maximum clique size is w + 1.

Then x(G') < x(G)+1=w+1=w(G’), because we may need just
one more colour and G is perfect.
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Perfect graphs Generating perfect graphs by extension of a vertex

Generating perfect graphs by extension of a vertex (cont.)

e However if w(G’) = w, then note that x is not in any K|, of G, as
otherwise, together with x’, that would yield a K,,+1 in G, a
contradiction to w(G’) being w.

@ Observe that our definition of extension of G to G’ at x by x’ now
helps us in using this trump card.

@ Now G being perfect we color G with w(G) colors.

@ But x misses all K,, of G, though the color class X of x would not
miss any K,, of G. Why?

@ See the induced subgraph H = G — (X \ {x}), which misses the color
class X but not x, and has w(H) < w.

@ By the induction hypothesis (H being a proper induced subgraph of
G, and thus being perfect), we can color H with w — 1 colors !
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Perfect graphs Generating perfect graphs by extension of a vertex

Generating perfect graphs by extension of a vertex (cont.)

@ Now X is an independent set but observe from the expansion
construction of x’ that X’ = (X \ {x}) U {x'} is also an independent
set as x and x’ play similar connectivity roles, and this set X’ is
exactly all vertices in G but not those in H by definition of H, X and
x|

@ So the (w — 1)-coloring of H can be extended to a w-coloring of G’
by using only one additional color.
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Perfect graphs [JJgiSa {11

Generating a perfect graph by the extension at vertices
with perfect graphs

@ We will now establish a result by Lovasz of 1972 about graph
extension where each vertex is extended by replacing it with some
perfect graph.

@ We will use the characterization of perfect graphs that uses the fact
of an independent set in each and every induced subgraph meets all
the maximum cliques in that induced subgraph.

@ Imagine a vertex xp being replaced in G by some perfect graph G(xp)
for constructing the extension G’ of G at the vertex xg.

@ We can show that G’ is perfect by only showing that x(G’) < w(G');
structurally, all induced subgraphs of G’ are similar to G’ and
therefore all the arguments applying to G’ also apply similarly to
these induced subsets.
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Perfect graphs [JJgiSa {11

Generating a perfect graph by the extension at vertices
with perfect graphs (cont.)

4

Let S be a color class in a x(G)(= w(G))-coloring of the perfect
graph G containing xp.

Let S; be an independent set of G,,, that meets all maximum cliques
of Gy,.

Why is (§ — x9) U S1 an independent set in G'?

Firstly xo is not in G’ but S is an independent set, a color class of G's
optimal coloring.

And S; is a local independent set in Gy, .

Since S is the color class of xg, no vertex in the replacement G(xp) is
adjacent to any vertex of S.

Suppose we take any maximum clique T of G’. Does T meet
(S —x0))US1? Yes. Why?
Hint: Both G and G, are perfect.
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Perfect graphs [SgiSadET I

Generating a perfect graph by the extension at vertices
with perfect graphs (cont.)

@ So now that we have seen how the extension G’ of a perfect graph G
is also perfect, we will proceed with proving PGT.
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Proving PGT as in [Diel7; GGLO5]
Proving PGT as in [Diel7; GGL95]

@ Induced subgraphs of perfect graphs are perfect.

o It suffices to show that given a perfect graph G, the complement
graph G satisfies x(G) = w(G), because by the induction hypothesis,
we know that every proper induced subgraph of G is also perfect
because every induced subgraph of G is perfect.

@ Let us consider the complete subgraph of K of G that meets all the
maximum independent sets of G of size a(G) = «. Indeed there is
such a subgraph K of G as we show below.

@ Note that we have characterized perfect graphs as graphs G whose
each induced subgraph H has an independent set in H that meets all
maximum cliques of H.

@ Observe that G and its induced subgraphs are perfect, and that the
complements of the induced subgraphs of G are perfect, by the
induction hypothesis.
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Proving PGT as in [Diel7; GGLO5]
Proving PGT as in [Diel7; GGL95] (cont.)

@ So, we have w(G — K) = a(G — K) < a(G) = w(G)
@ The strict inequality above follows because the independent set K in

G meets all the maximum cliques of G.
@ In other words, each maximum independent set in G loses a vertex
when K is dropped from G.

@ Now let us start with a minimum proper vertex coloring with
X(G — K) colors for G — K and add the independent set K of G to

G-K.
@ Since K meets each maximum clique of G, we may need a new color

for the vertices in K for a minimum proper vertex coloring of G in
addition to the x(G — K) colors required for G — K.

0 50, X(G) < x(G-K)+1=w(G—K)+1<w(G)
@ The equality above is by the induction hypothesis.
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Proving PGT as in [Diel7; GGLO5]
Proving PGT as in [Diel7; GGL95] (cont.)

@ Now all we need to do is show that there is a complete subgraph K in
G that meets all the maximum independent sets in G.

@ For the sake of contradiction we assume to the contrary that there is
no such complete subgraph K.

@ Then for every complete subgraph K of G we must have some
maximum independent set Ak of G so that K N Ak = ¢.

@ We will also require notation /C for the set of all cliques Ki, Ko, ..., K;
of G.

@ For each vertex x of G, we count the number of K € K such that x is
a vertex in Ak, and call this count as k(x); this will be the size of the
clique that extends G at the vertex x in G.

k(x) = [{K € K|x € Ak}
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Proving PGT as in [Diel7; GGLO5]
Proving PGT as in [Diel7; GGL95] (cont.)

@ So, vertex x of G may vanish in the extension of G if k(x) = 0 but
this does not affect perfectness of the extension.

@ Now we determine w(G’) as the number of vertices of some maximum
clique of G’, where X is the corresponding maximum clique of G.

@ We recall that the extension G’ must be perfect because G is perfect
and therefore x(G’) < w(G’).

@ We know that w(G’) must be the sum of all k(x) such that x € X,

that is
w(G) = k(x)

xeX

which is the number of (x, K) pairs, where x € X, and K € K such
that x € Ak.

@ This can be abbreviated as the sum over all K € IC of | X N Ak|, that
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Proving PGT as in [Diel7; GGLO5]
Proving PGT as in [Diel7; GGL95] (cont.)

e We also know that |G’| must be the sum of k(x) over all vertices x in
G, which is the number of (x, K) pairs over all K € K and x € V),
such that x € Ak, abbreviated as the sum over all K € IC of
|V N Ak, which is clearly |K|.a(G).

@ Therefore, the easier part is to show that |G| is exactly |K|a(G),

thereby x(G') > &k > 265 = IKI.

e Why is a(G’) < a(G)?

@ The interesting part is showing that
W(G') = > ex k(X)=2kex IX N Ak| < |K| — 1, thus deducing
X(G') = K| > |K] =1 > w(G').

@ Now X being a complete subgraph cannot contribute more than one
vertex to any Ak for K € I, where as X N Ax = ¢, whence
w(G) <K -1

@ So we get w(G’) < x(G’), contradicting perfectness of G'.
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Chordal graphs are perfect

@ See Propositions 5.5.1 and 5.5.2 in [Diel7].
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e F-{eT,Cllindependent set with all maximum complete subgraphs

Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set

o Note that the very definition of perfect graphs (in terms of the
equality of the chromatic number and the maximum cliques size of
induced subgraphs) implies that proper induced subgraphs of perfect
graphs are also perfect.

@ Suppose G is a perfect graph and G’ is a proper induced subgraph of
G.

@ So, G’ being perfect as well, we have x(G') = w(G’).

@ Therefore, any color class S of a x(G’) coloration must meet every
maximum clique of G’.

@ Otherwise, S misses some maximum clique say C of G’ and therefore
|C| = w(G’) < x(G"), contradicting the perfectness of G'.

@ So, G being perfect, we see that every induced subgraph G’ of G has

an independent set that meets every maximum clique of G'.
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e F-{eT,Cllindependent set with all maximum complete subgraphs

Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

o Conversely, suppose every proper induced subgraph G’ of G has an
independent set that meets all the maximum cliques of G'.

e We show that x(G’) < w(G’) for the induced subgraphs G’ by
induction on the number of vertices in G’.

@ Let S be an independent set in G’ that meets every maximum clique
in G.

o Consider the induced subgraph G’ — S.

@ Clearly, any proper coloration of G’ will not require at most one more
color than x(G’ — S).

@ So, x(G') < x(G'—-S)+1.

@ Also, since S meets every maximum clique of G’, adding S to G' — S
will give cliques of size w(G’) > w(G' — S)+1in G'; S eats away at

least one vertex from every maximum clique of G’.
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e F-{eT,Cllindependent set with all maximum complete subgraphs

Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

e 6 6 6 o o

4

Department of Computer Science an

Thus, we have w(G') > w(G' = S)+1=x(G' - S)+1> x(G).
The equality is due to the induction hypothesis.

Now we will view the same result in a different way.

For a perfect graph G, let H be any induced subgraph of G.

Let A be any color class of a x(H)(= w(H)) coloration of H.

So, the induced subgraph H — A can be colored with strictly less than
X(H) colors, since a color class is fully deleted.

Also, H — A is perfect. So, w(H — A) = x(H — A) < x(H) = w(H).
Conversely, we show that if G is such that for every induced subgraph
H of G, there exists an independent set A in H such that

w(H — A) < w(H), then G is perfect.

If H is a proper induced subgraph of G then by the induction

hypotheses H is j)erfect as H satisfies the premlse of the converse.
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Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

@ So, we only need to consider G itself.

@ So, assume that A is an independent set in G such that
w(G — A) <w(G).

@ But x(G — A) =w(G — A) < w(G), and also
X(G) < x(G—A)+1<w(G), since G— Ais perfect and G needs at
most one more color than G — A for a proper coloration.
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EGSGHE M Another characterization of perfect graphs by Lovasz (1972)

Another characterization of perfect graphs by Lovasz
(1972)

e A graph G(V,E) is perfect if and only if |V(H)| < a(H)w(H) for
ever induced subgraph H of G. Here, V(H) is the vertex set of H.

@ We will consider only the sufficiency part here as in Theorem 5.5.5
[Diel7].

@ The graph G may be assumed to be not perfect for the sake of
contradiction, whereas the premise |V(H)| < a(H)w(H), holds for all
induced subgraphs of G, including G itself.

@ Also, by the induction hypothesis, each proper induced subgraph of G
is perfect.
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Another characterization of perfect graphs by Lovasz (1972)
Another characterization of perfect graphs by Lovasz
(1972) (cont.)

o (Equality 1:) For any non-empty independent set U of G, G — U has
the same values for chromatic number x(G — U) and the maximum
clique size w(G — U), and this must be equal to say w = w(G). Why?
This naturally holds also for singleton vertex sets U = {u}, for
u e V(G).

@ Any u € V(G) may or may not be in a maximum clique K¢, called K
of G for brevity.

o (Fact 2:) If u ¢ K then K meets all the w color classes of G — u.
Why? Neither G — u nor K have u, so K must have exactly one vertex
from each color class of a proper vertex coloring of G — u of w colors.

o (Fact 3:) If u € K, then K meets all the w color classes of G — u
except one color class. Why? The vertex u € K is in one color class
of a proper coloring of G — u, so K can cover one vertex from only

w — 1 more color classes.
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EGSGHE M Another characterization of perfect graphs by Lovasz (1972)

Another characterization of perfect graphs by Lovasz
(1972) (cont.)

@ Now starting from a maximum independent set
Ao = {u1, ..., Ug(G)=a} Of G, we have w(G) color classes Ay, ..., A, of
a w-coloring of G — uy1, as many color classes A, 1, ..., Asw Of a
w-coloring of G — uy, and so on, a total of a(G)w(G) sets, A;
through A, .

@ For each of the aw + 1 such independent sets A;, i € {0,1,2, ..., aw},
we know that G — A; has a K“, say K; [by Equality 1].

o (Fact 4:) However, for each of the possibly multiple K*’s, say K in
G, we have KN A; = ¢ for exactly one i € {0,1,2, ..., aw}.

@ To see why Fact 4 holds, we use Facts 2 and 3.

@ Observe that by Fact 2 above, if KN Ag = ¢, that is, each of
ui, 1 <i < q, misses K, then every color class of G — u; meets K, as
follows.
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Another characterization of perfect graphs by Lovasz (1972)
Another characterization of perfect graphs by Lovasz
(1972) (cont.)

o KNA(_1)ay # ¢ forall j1 <j<w.

@ On the other hand, if KN Ag # ¢, then |[K N Ag| =1, and
KN A; = ¢ for exactly one i,1 < i < aw.

@ This happens as follows by using Facts 2 and 3.

o Let K meet Ag at the unique vertex u;. Apply Fact 3 to this unique
vertex uj € K N Ag (where only one of the color classes of G — uj,
that is, A(j_1).+,; would be missed by K), and apply Fact 2 to all the
other vertices of Ag.

@ Now define A as a matrix of row incidence vectors for A;, and B as a
matrix of column incidence vectors of Kj.

e Why is AB = J, where J is a (aw + 1)X(aw + 1) matrix of all ones
except the diagonal, which is all zeros? Hint: See how K; is defined
with respect to A;.
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Perfect graphs Another characterization of perfect graphs by Lovasz (1972)

Another characterization of perfect graphs by Lovasz
(1972) (cont.)

@ Are AB and thus A (B) non-singular?
@ Why is the rank of A aw + 17

e Why is |V(G)| > aw + 1?7 This contradicts the premise
(IV(G)] < aw), and therefore G must be perfect.
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Perfect graphs The perfectness of bipartite graphs and their complements

Bipartite graphs and their complements

Are bipartite graphs perfect?

Are complements of bipartite graphs also perfect?

The Konig-Egervary theorem along with Gallai's theorem imply
(i) B(G) = &/(G) (Konig-Egervary theorem)=,

(i) n — a(G) (independent sets and vertex covers in G are
complements of each other)=,

o (iii) n — w(G") (independent sets in G are cliques in the complement
graph G')=,

e (iv) n— fB/(G)(Gallai's theorem)=,

@ (v) n— x(G’) for a bipartite graph G and its complement G,
provided we show that,

o (vi) B'(G) = x(G).
@ Also, we have o(G) = f/(G) due to the Konig-Egervary theorem and

)
Gallai's theorem.
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Perfect graphs The perfectness of bipartite graphs and their complements

Bipartite graphs and their complements (cont.)

@ Is there a a(G) = f'(G) = w(G’) vertex coloration for G’, the
complement of the bipartite graph G ?

@ This above question would show x(G’) = w(G’) for the complement
G’ of a bipartite graph G.

@ Take this as a homework problem.

e Firstly, V(G) can be covered by a(G) = (/(G) edges from the
minimum edge cover of G, assuming G has no isolated points.

@ The edge cover (clique cover) in G is made of as many stars as
o/(G) = B(G).

@ The minimum clique cover (edge cover) of size
a(G) = f'(G) = w(G’) in G corresponds to the minimum cover with

independent sets in G’, with as many colors required for a
X(G") = a(G) = B'(G) = w(G’) coloration.
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Perfect graphs The perfectness of bipartite graphs and their complements

Bipartite graphs and their complements (cont.)

@ Incidentally, the centres the stars of the edge cover in G constitute a
minimum vertex cover in G and single edges from the stars make a
maximum matching in G.
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Coloring

@ We observe that edge coloring chromatic number x/(G) of a graph G
is the same as the vertex coloring chromatic number x(L(G)) of the
line graph L(G) of G.

@ The edges e = {u, v} of G incident at a vertex v of G form a clique
C, in L(G) where each edge of e of G is a vertex v, in L(G) of the
clique C,.

@ A trivial lower bound for x/(G) is A(G), with equality attained (see
Exercise 22 of Chapter 3 in [Bol98]) for bipartite graphs.

@ Another lower bound is [%]

@ We note that a complete graph G requires to have (X(2G)) edges.

o It is also the case that any graph G has at least (x(zG)) edges.

@ Suppose we construct a graph G vertex by vertex by adding edges
incident on the new vertex at each step of vertex inclusion, where we
call the current %raph G’ at each step.
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Coloring (cont.)

@ So, there will be steps of vertex inclusion when the chromatic number
X(G’) is incremented.

@ In these steps the new vertex must have been adjacent to vertices of
as many as x(G') different colors in any proper coloration of G'.

@ So, the number of edges should increase by at least x(G’) to at least
! /
x(G) + (X(S )) = (X(GQ)H) in the new graph.

@ A better way of looking at this is to visualize the x(G) color classes,
each of which is an independent set, and unless there are edges
between two color classes, we can always merge the two into one
class.

@ Also, the sum of the vertex coloring numbers of a graph and its
complement is no more than n-+ 1, where n is the number of vertices.
(Exercise 5 of Chapter 5 in [Bol98])
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Coloring (cont.)

@ This problem can be solved as in [Lov93] using a result of R. P.
Gupta, in: Theory of Graphs. Proc. Int. Coll. Rome, Gordon and
Breach, 1969.

n(G)

o It is easy to see that we will need at least as many as a(G) colors for
proper vertex coloring.

@ So, in any induced subgraph H of a perfect graph G, we have

X(H) = w(H) > 23,

@ This is also a sufficient condition for perfectness of G, and this also
implies the perfect graph theorem PGT which says that a graph is
perfect if and only if its complement graph is perfect.

@ We may need more colors if there are vertices of high degree.

@ However, it is easy to show that x(G) will not exceed A(G) + 1 in a
greedy proper coloring.
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Coloring (cont.)
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For the complete graph and the odd cycle, this is the best we can do
as K, has maximum degree n — 1 and Cpk11 has maximum degree 2.

Szekeres and Wilf (1968) gave an upper bound for chromatic number
as follows. For any graph G, x(G) <1+ maxd(G’), where the
maximum is taken over all induced subgraphs G’ of G.

So, for Kj,, we have x(Kj,) = (n— 1)+ 1. For Cyx41 the chromatic
number is 2+1.

So, much for these extreme cases of regular graphs.

Now consider a non-regular graph K4 — {e}. where e is any edge in
Ks.

This graph has 4 vertices, 5 edges, and 15 non-empty vertex subset
induced subgraphs, of which the four singleton vertex subset
subgraphs have minimum vertex degree 0, five 2-vertex subgraphs
have minimum degree 1, one 2-vertex subgraph has 0, two 3-vertex

subgraphs 2, two 3-vertex subgraph 1, and one 4-vertex |glraph 2. .



Coloring (cont.)

@ So, we see that x(Ks — {e}) = 1+ 2, satisfying the upper bound
inequality for x(G) tightly.

@ Let k = maxd(G’), where G’ is any induced subgraph of G.

@ So, the graph G must have a vertex of degree at most k.

@ This is subtle and deep, and would require some thought. So, we give
a few examples.

@ In the case G = K,,, k = n—1 and this is also the degree of a vertex
in the minimal subgraph of K, with chromatic number x(K,) = n.

e For G = K4 — {e}, k =2, and this is also the degree of a vertex in
the minimal subgraph of K, — {e} with chromatic number
X(Kn —{e}) = 3.

@ Another example is the wheel graph Wg, which has a 5-cycle and a
5-star, 10 edges, 6 vertices, girth 3, maximum clique size 3, chromatic
number 4, and the minimum degree of all its proper induced
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Coloring (cont.)

@ So, x(G) <1+ maxd(G') =1+ 3 =4, over all induced subgraphs
G’ of G = W.
@ Note that Wg has no K; but has chromatic number 4.

@ However, like Wg, W7 too has all its proper induced subgraphs of
minimum degree at most 2, whereas W7 has minimum degree 3, with
chromatic number 3 < 1+ 3, loosely satisfying the inequality.

e So, W4 fits the inequality x(G) < 1+ maxd(G’), over all induced
subgraphs G’ of G = W4, loosely.

@ Now suppose in an arbitrary connected graph G, let x, be a vertex
that has degree no more than the maximum of the minimum vertex
degree, k = maxd(G’), over all induced subgraphs G’ of G.

@ Observe that by the definitions, it holds that G has such a vertex x,.
@ Set Hy_1 =G — {xp}.
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Coloring (cont.)

@ Further observe that H,,_; too has a vertex of degree at most k. Let
Xn—1 be such a vertex.

@ Set H,_» = —{xn-1} = G — {xn, xn—1}.

@ In this way we enumerate all the vertices of G.

@ Observe that greedily coloring vertices in the order of this ingenious
sequence Xi, X2, ..., Xp, €ach x; connected by an edge to at most k
vertices preceding it in the sequence.

@ This result is deep and can be exploited in the case of connected
graphs that are not A-regular where A is the maximum vertex degree.

@ Observe the subtle property that in such cases, maxd(H) over all
induced subgraphs H of G is at most A — 1, making x(G) < A.

@ So, we need to consider now only A-regular connected graphs G for
showing that x(G) < A, for establishing Brooks' theorem.

@ This is shown in Theorem 3, Chapter 5 in [Bol98] as follows.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 133



Coloring (cont.)

A graph can be disconnected or may have a cut vertex or, contain a
complete subgraph whose vertex set disconnects the graph, as in
chordal graphs.

In such cases we can colour each part separately and then combine
these colourings to produce a colouring of the whole graph.

Therefore, we may assume without loss of generality that G is
2-connected and A-regular.

Here, we drop the case of A = 2 because a connected 2-regular
3-chromatic graph is an odd cycle.

So, we assume A > 3.

If G is 3-connected, let x, be any vertex of G and let x;, x» be two
nonadjacent vertices in G — {x,} in the neighbourhood of x, in G.

Such vertices exist since G is regular and not complete.
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Coloring (cont.)

e If G is not 3-connected, let x, be a vertex for which G — {x,} is
separable, and thus has at least two blocks.

@ Since G is 2-connected, each endblock of G — {x,} has a vertex
adjacent to x,.

@ Let x1, xo be such vertices belonging to different endblocks.

@ In either case, we have found vertices x;, x2, x, such that G — {x1, x>}
is connected, x1xp is not an edge of G, x, has edges to x; and xy.

@ Let x,—1 € V — {x/,x2, x»} be a neighbour of x,, let x,_» be a
neighbour of x, or x,_1, etc.

@ Then the order x;, x2, x3, ..., X, is such that each vertex other than x,
is adjacent to at least one vertex following it.

@ Thus the greedy algorithm will use at most A(G) colours, where x;
and xp get the same colour.
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Coloring (cont.)

Here, x, is the only vertex with A neighbours preceding it, x, being
adjacent to both x; and x», whereas while coloring each of the other
n — 1 vertices greedily we have at most A — 1 neighbours to consider.

We now present an alternative proof of the Szekeres-Wilf result as in
[Har69].

Let x(G) = k and let H be a minimal induced subgraph of G with
x(H) = k.

Let v be any vertex of H.

Then x(H—v)=k—1.

So, d(v) > k—1and 6(H) > k — 1.

So, the maximum of §(H’) over all induced subgraphs H' of H is at
least k — 1.

It is now easy to see that maxd(G’) over all induced subgraphs G’ of
G is also at least k — 1.
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Hypergraph theory

e 6 o6 ¢

(]

Let us consider a set system or a hypergraph H = (V/(H), E(H)).

A subset A C V/(H) is called shattered if for every B C A, there exists
an E € E(H) such that ENA = B.

The Vapnik-Chervonenkis dimension VC — dim(H) of H is defined as
the cardinality of the largest shattered subset of V/(H).

If VC —dim(H) is d then we show that |[E(H)| < (§) + (}) +...+ ().
This is trivial if d =0 and n < d. Why?

For d =0 and n < d, it is vacuously true.

For n = d, we have all possible subsets of V(H) realized as edges in
E(H). See [PA11].

We use strong induction on both d and n.

We must drop a vertex to do induction on n; to do induction on n
and d simultaneously, we must drop a vertex as well as edges which
did not have the vertex.
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Hypergraph theory (cont.)

@ In the former case we just take the proper induced hypergraph by
dropping a vertex x € V(H).

o In the latter case, we retain only those E € E(H) edges that do not
have the deleted vertex x but E U {x} € E(H).

o Naturally, these two sets E(H1) and E(H2) are such that
E(HY)| + |[E(H2)] = [E(H)] < T (") + 255 (77) = 28 (9).

@ In the latter case the VC dimension too falls with the deletion of the
vertex and edges.

@ This because if E(H2) shatters a set A C V(H) — {x} then E(H)
shatters the set AU {x}.

@ SupposeB C A is such that B = hN A for some h € E(H2), then
BU{x} = (hU{x})N(AU{x}).

@ This means that the upper bound on the number of edges forces the
VC dimension to rise as we add edges.
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Hypergraph theory (cont.)

@ The vertex cover number or transversal number 7(H) is naturally
defined by extending the similar notions in graphs.

@ The packing number or matching number v(H) is the dual
counterpart, whereby v(H) < 7(H).
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Planarity

See Proposition 6.1.2 in [Wes00].

For any planar drawing without crossings for a graph, we can start
drawing a spanning cycle first (if any), in a closed loop, and then
draw internal and external chords for remaining edges judiciously,
without crossings.

We can show that Kuratowski's two graphs are not planar by showing
that it is impossible to embed the graphs thus, by analysis of the
various exhaustive cases.

The easier part of Kuratowski's theorem is to show that the presence
of homeomorphs of Ks or K33 as subgraphs would make a graph
non-planar.

We achive this by (i) showing that Ks and K33 are non-planar, and
(i) the presence of a homeomorph of a non-planar graph causes
non-planarity.
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Planarity (cont.)

Department of Computer Science and Engineering, Il

A graph G is a homeomorph of another graph H if G can be obtained
by repeatedly adding degree-2 vertices w by deleting edge {u, v}, and
adding edges {u, w} and {w, v}.

Note that H is planar if and only if its homeomorph G is planar.

The necessary condition in Kuratowski's theorem is that
homeomorphs of none of the two Kuratowski's graphs can appear as
subgraphs in a planar graph.

The tougher (sufficiency) part of Kuratwoski's theorem is to show
that a graph is planar if it does not have subgraphs homeomorphic to
the any of the two Kuratowski graphs.

We can show that a connected simple planar graph with m edges, n
vertices and girth g satisfies m < %.

The dual of a planar embedding of a planar graph is such that the

sum of degrees of the faces in the planar embedding is 2m, exactly

the same as the sum of de1grees of the vertices.
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Planarity (cont.)

The degree of a face is the number of its bounding edges.
So, 2m > gf where f is the number of faces.

Now use Euler's equation n+f = m+ 2. For K33, m=9, g =4 and
n = 6, this inequality is violated.

The thickness of G is the least integer k so that G has planar
partition [Gy, Gy, ..., Gg].

A planar partition of G is a collection G =[Gy, Gy, ..., Gk| of
edge-disjoint spanning subgraphs of G, whose union is G.

We can derive a lower bound for the thickness (G) of G in terms of
the number m of edges of G, the girth g of G, and the number of
vertices n of G.

Blocks of a graph must be planar for a graph to be planar. So,
planarity of blocks is a necessity.

Is this also sufficient? See Theorem 11.2 in [Har69].
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Planarity (cont.)

@ The following notations and definitions are from [Har69].

o Cutpoints are cut vertices whose removal increases the number of
components.

@ A nonseparable graph is nontrivial, connected and has no cutpoints.

@ Note that complete graphs are nonseparable. A block is a maximal
nonseparable graph. Bridges are cut edges.

o Reading exercises: Theorems 3.1 through 3.4 from [Har69] on cut
vertices and cut edges.

@ Work out Problems 3.12 and 3.13 from [Har69] on the number of
blocks and cut vertices, respectively.

e Following [Par94], we proceed as follows restricting our attention to
3-connected graphs and blocks.

@ Corollary 6.8 in [Par94] is the simpler part of necessity, stating that
any graph containing a homeomorph of Ks or K3 3y, is non-planar.
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Planarity (cont.)

The sufficiency can be established by just proving the converse for
3-connected graphs, using Lemma 6.2 of [Par94], which says that a
non-planar graph G with the minimal number of edges that contains
no subdivision of the two Kuratowski graphs, is simple and
3-connected.

This Lemma 6.2 of [Par94] is stated equivalently in Lemma 6.2.7 of
[Wes00] as“If G is a graph with fewest number of edges among all
non-planar graphs without Kuratowski subgraphs, then G is
3-connected.”

We know that a minimal non-planar graph is a block.

For the sake of contradiction for Lemma 6.2 of [Par94], suppose the
non-planar given graph G, with a minimal number of vertices, has a
2-vertex cut S = {u, v}, and is thus not 3-connected.

Let G — S have G; and one connected component and G, as the
union of the rest of the connected components.
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Planarity (cont.)

o Let Hi(H>) be the induced subgraph with vertex set V(G1)U S
(V(G2)US), with both graphs added with an additional edge e = uv.
What happens in the other case where uv is an edge of G?

@ Also, we will now show that at least one of H; and H, is non-planar
because G is non-planar, which is easy to see as in [Par94].

@ For the sake of contradiction, suppose the H; is non-planar. What if
instead H, is non-planar?

@ Then, the non-planar graph H; not being a subgraph of G (as xy is
not an edge of G), but H; being smaller than G in the number of
edges, Hi must have a subdivision K of one of the two Kuratowski
graphs, by the minimality of G.

@ However, K must necessarily have e because K C G would contradict
our assumption that G has no subdivision of any of the two
Kuratowski graphs.
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Planarity (cont.)

Now, replace e of K by a u to v path in H, to get a homeomorph of
K in G, a contradiction.

So, G must have no 2-vertex cut and so G must be 3-connected.
The case where xy is an edge of G can be very similarly argued.

Now we can show that the sufficiency condition for planarity holds for
3-connected graphs and that would be enough to do. Why?

So, let G be a connected non-planar graph which is 3-connected. We

discuss the proof of Thomassen's result as stated in the proof of
Theorem 6.2 in [Par94] after we state a few more elementary results.
See Section 6.2 of [Wes00], Lemmas 6.2.7, 6.2.6, 6.2.5 and 6.2.4, in
that order for a detailed top-down presentation of the main result
about considering only 3-connected graphs, as in Lemma 6.2 of
[Par94].
Definition 6.2.3 for “Kuratowski subgraphs”, “minimal non-planar
raphs” in [Wes00], and Definition 5.2.19 in [Wes00] will be useful.
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Planarity

Figure: T2(12), the Turan graph of 12 vertices, 4-partite, with three vertices in
each partite and thus also the K;. This graph has multiple K;'s but is just one
edge deficient from possessing a Ks.
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Planarity

u e v u e v

C

Figure: The non-planar cases of K33 and Ks respectively, appearing as illustrated
in Figure 6.7(a) [Par94].

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 148



[MEGEIQAA Another proof of Kuratowski's theorem
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Redrawn G
Figure: The transformations not violating planarity in the planar case, as
illustrated in Figure 6.7(b) [Par94].
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[MEGEIQAA Another proof of Kuratowski's theorem

Another proof of Kuratowski's theorem

@ Let G be a minimal non-planar graph with all vertices having degrees
at least three. [By minimality we mean that each proper subgraph of
G is planar.]

@ We first how that G is 3-connected. (Part (a)). (Problem 5.37(a)
[Lov93].)

@ For the sake of contradiction, assume that G is not 3-connected.
However, it is trivially 2-connected as the minimum degree is three in
the connected graph G.

© So take any a two-vertex separator S = {x,y} in G. Then, we can
define two separated graphs as follows, which are both planar and then
use their planar embeddings to get a planar embedding for G, a
contradiction.

@ Let Gy and G; be such that G = Gy U Gy and V(G) N V(G) = {x,y}.

© Let P; (P>) be an (x,y)-path in Gy (Gp) and Hy = G; + P
(H2 = Gy + Pl)

@ Observe that H; and H, are both planar !
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[MEGEIQAA Another proof of Kuratowski's theorem

Another proof of Kuratowski's theorem (cont.)

@ Now deleting the two paths P; and P, between x and y, we get a
planar embedding of G, a contradiction.

© Now we further show that G has a cycle with a chord. (Problem
5.37(b) [Lov93]). (Part (b)).
[Hint: Observe a longest path and that its first vertex has two more
neighbours in the same longest path.]

© Also, G must be isomorphic to a Kz or a K3 3. (Problem 5.37(c)
[Lov93]). (Part (c)).
[Hint: Use circuits and chords: Remove the chord xy of the circuit C
that encloses the largest number of connected components of G — C.
All such components must be inside C. Prove that the graph has only
chords outside the circuit. Now consider the bridges inside the circuit
and flap out those that are flapable outside C. Show that there now
must be a bridge that forms a Ks or a K3 3 along with xy.]
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[MEGEIQAA Another proof of Kuratowski's theorem

Another proof of Kuratowski's theorem (cont.)

@ Show that a graph G that is non-planar must have a subdivision of a
Kuratowski subgraph. (Problem 5.37(d) [Lov93]).
[Hint: A planar graph cannot have any Kuratowski subgraph. However,
we must now show that a non-planar graph must have a subdivision of
a Kuratowski subgraph. Use Parts (a), (b) and (c) above.]
[Solution sketch: If G is not planar then G contains a minimal
non-planar graph Gp. If we get rid of the vertices of degree 2, we get
another minimal non-planar graph, now with vertex degrees at least
three. This graph is must be either of the two Kuratowski graphs. So,
Go must be a subdivision of one of the two Kuratowski graphs.]
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The Kuhn-Munkres theorem

e We start with the initial feasible labeling /(x) = max,w(x,y), of
vertices in the complete bipartite graph G(X, Y, E), with
non-negative weight edges, where y € Y for each x € X, and
I(y) =0, forally €Y.

@ It is easy to see that this is a feasible labeling, that is,
I(x)+ I(y) > w(x,y), for every edge (x,y) € E.

@ Moreover, each x € X is connected to at least one vertex y € Y
where the equality holds (actually, to all the vertices in Y for which
the maximum outgoing weight from x is assigned to /(x)).

@ Therefore, the equality graph G(X, Y, E;) is not empty, to begin with.

@ However, we do not know how many edges of G(X,Y,E) are there in
E; or whether G, has a perfect matching.

@ We can definitely compute the maximum (cardinality) matching in
Gy, which may not be a perfect matching.
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The Kuhn-Munkres theorem (cont.)

We plan to compute a perfect matching in G;.

o If G; has no perfect matching, we may improve the labeling / of
vertices to compute another feasible labeling / such that it now
contains more “useful” edges.

@ Some edges may be lost as we go from G; to Gy, and some edges
may be added.

@ We may then again compute the maximum matching in the new
equality graph Gy and see if this matching is a perfect matching,
because Gy would have an augmenting path, with respect to the
maximum matching of G;.

@ Kuhn—Munkres Theorem: Let / be a feasible labeling of G. If M is a
perfect matching in G;, then M is a maximum matching in G.
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The Kuhn-Munkres theorem (cont.)

Let M be any matching in G. We then have

w(M) =3 em WX, ¥) < 3 yemll(x) +1(y)] <

doxex 1)+ 22,y 1(y) =22 cv I(v), by the feasibility requirement
of vertex labels/weights.

So, we have two equalities sandwiching two inequalities.

The first inequality is because the / function is perhaps not yet
optimized.

The second inequality is because M may not be a perfect matching in
G/.

If M is a perfect matching in G, it matches all vertices in V.

Therefore, for a perfect matching M of G;, we have

W(M) = 3y W0 ¥) = S pepyemll() + 1()] =

doxex 1)+ 2 ,ev 1Y) =2vev /(v), because forcing the second
inequality into an equality, forces also the first inequality to become

an equality.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 155



The Kuhn-Munkres theorem and the Hungarian algorithm

The Kuhn-Munkres theorem (cont.)

@ Now consider forcing the first inequality
w(M) =3 yemll(x) + I(y)]. Then, we show that M is a perfect
matching in G;. This is intuitively so because the equality
w(x,y) = I(x)+ I(y) will now hold for each edge (x,y) in M, making
M a perfect matching in the equality graph G;. This is due to the
fact that all w(x,y), /(x) and /(y) are non-negative. See Lemma
3.2.7 in [Wes00].

@ A more rigorous argument is there in Lemma 13.2.2 in [Jun99].
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The Kuhn-Munkres theorem and the Hungarian algorithm The Hungarian algorithm

The Hungarian algorithm

@ Enhancing the equality graph requires looking for an edge that
minimally violates the equality.

@ So, we build the “alternating tree” that finally gives an augmentation,
and this is carried on until we get a perfect matching in the equality

graph.
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