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Preliminaries Walks and cycles

Walks and cycles

A subgraph of a graph G (V ,E ) with edge set E and vertex set V is a
graph whose all edges and vertices are from E and V , respectively.

A spanning subgraph of the graph G (V ,E ) is a subgraph of G (V ,E )
that has all the vertices in V .

Given a graph G (V ,E ), and a set H ⊆ V , the induced subgraph
G (H,E ′) is the maximal subgraph of G (V ,E ) with the set of vertices
in H.

Every graph is its own induced subgraph.

A walk is just a finite sequence of vertices where consecutive vertices
are connected by an edge. So, vertices and edges can repeat. It is not
difficult to show by induction that any closed walk of odd length at
least three must contain an odd cycle. See Lemma 1.6.1 of [Sur10].
See Figure 1.
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Preliminaries Walks and cycles

Walks and cycles (cont.)

i

a b

d

c

f

ehg

Walk: a, b, c, d, e, f, g, h, b, i, a

Euler Tour: b, i, a, b, c, d, b, e, f, g, h, b

The vertex b has degree 6 and all the other vertices have degree 2

Figure: 1: Walks and cycles

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 8



Preliminaries Bipartite graph cycles

Bipartite graph cycles

We also note that a non-trivial graph is bipartite if and only if it has
no odd cycles (Theorem 1.6.4 of [Sur10]).

We can show the only if part by showing that every closed cycle
v0v1v2...vp = v0 will have an even size p.

If V1 and V2 are the two partites then without loss of generality let us
assume that p0 ∈ V1. Then v1, v3, ... ∈ V2 and v0 = vp, v2, ... ∈ V1.
Thus p is even.

For the if-part, we assume that all cycles are even.

From an arbitrary vertex u ∈ V , in the simply connected graph, we
define sets V1 (resp. V2) of vertices of even (odd) distances from u.

Now, suppose we have an edge connecting v ,w ∈ V1 then the
shortest path from v to u appended by the shortest path from u to w
and then the edge vw will form an odd cycle.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 9



Preliminaries Bipartite graph cycles

Vertex and edge connectivity

Edge connectivity λ(G ) of a graph is the minimum number of edges
whose removal results in a disconnected or trivial graph.

So, λ(G ) is at most the minimum degree δ(G ) in a simple connected
graph G , because, by simply deleting as few as δ(G ) edges we can
disconnect the graph.

Disconnecting means creating at least two components.

A graph G on at least two vertices is k-edge-connected if any two
vertices are connected by at least k edge-disjoint paths, and
k-connected if any two vertices are connected by at least k
internally-disjoint paths.

So, for a k-edge-connected graph G , λ(G ) ≥ k .

A graph on one vertex is defined to be both k-edge-connected and
k-connected for k = 0, 1, but not for k > 2.
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Preliminaries Bipartite graph cycles

Vertex and edge connectivity (cont.)

Thus every graph is 0-connected, a graph is 1-connected if and only if
it is connected.

A graph G is m-connected if the vertex connectivity κ(G ) ≥ m.

Also, since internally-disjoint paths are edge-disjoint, k-connected
graphs are k-edge-connected.

Do we need to delete more than δ(G ) vertices to disconnect a simple
connected graph?

The vertex connectivity κ(G ) of a graph G is the minimum number of
vertices whose removal results in a disconnected or trivial graph.

We show that vertex connectivity κ(G ) is at most λ(G ). See
Theorem 3.3.1 in [Sur10].

For trivial or disconnected graphs both connectivities are zero.
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Preliminaries Bipartite graph cycles

Vertex and edge connectivity (cont.)

If G is connected but has a cut edge e then λ(G ) = 1, and
additionally if G = K2 then κ(G ) = 1. Otherwise, at least one end of
e has degree at least 2 and thus will be a cut vertex yielding
κ(G ) = 1.

Now if λ(G ) ≥ 2, then after removing some λ(G )− 1 edges we must
get a graph H that must have a cut edge, say e = uv .

Since uv survives as a cut edge, in the connected graph H, we can
now choose and delete one vertex (which is neither u nor v) from
each of the λ(G )− 1 edges deleted.

If the resulting graph is still connected then we can remove u or v
additionally, thus disconnecting G with at most λ(G ) vertex deletions.
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Preliminaries Bipartite graph cycles

Vertex and edge connectivity (cont.)

Study exercise 1: Whitney’s 1932 theorem on characterizing
2-connected graphs as those that have internally disjoint u, v -paths
for every pair {u, v} of vertices. (Theorem 3.2 from Bondy and
Murty’s textbook [BM76].)
[Hint: Use induction on the length of the path or the non-trivial part,
where Theorem 2.3 [BM76] is used in the basis case. For the easier
part, since there are two internally disjoint paths between u and v ,
dropping just one vertex cannot disconnect the graph. So, κ(G ) ≥ 2
implying G is 2-connected.]

Study exercise 2: Whitney’s 1932 theorem on characterizing
2-connected graphs as those that have an ear decomposition.
[See Definition 4.2.7 and Theorem 4.2.8 in [Wes00].]

Try Exercises 5.21 and 5.22 from [Har69].

Theorem 3.2 in [BM76] can be generalized to k-connected graphs as
a version of Menger’s theorem as follows.
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Preliminaries Bipartite graph cycles

Vertex and edge connectivity (cont.)

A graph with at least k + 1 vertices (why k + 1?) is k-connected if
and only if any pair of distinct vertices have at least k vertex disjoint
paths connecting them.

The edge version of Menger’s theorem states that a graph is
k-edge-connected if and only if any pair of distinct vertices have at
least k edge disjoint paths connecting them.

Try exercises 3.2.1, 3.2.2, 3.2.3 and 3.2.4 from [BM76].
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Preliminaries Bipartite graph cycles

Paths and connectivity in trees

Problem 6.24 in [Lov93] requires showing the existence of n − k
distinct paths of length k in a tree T with diameter 2k − 3.

We can take the longest path P of 2k − 2 vertices x1, x2, ..., x2k−2 in
T , and consider distinct paths of length k from x1 to xk+1, x2 to
xk+2, ..., and from xk−2 to x2k−2. These are k − 2 distinct paths in P.

We can also find n− (2k − 2) distinct paths in T of length k , starting
at each of the n − (2k − 2) vertices outside the diameter path P.
This makes a total of n − k paths.
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Preliminaries Bipartite graph cycles

Connectivity of the complement graph

We know that undirected graphs have edges and therefore there may
exist paths connecting vertices.

In case there is no path connecting two arbitrary vertices u and v in
an undirected simple graph G , the complement graph G ′ will contain
the edge {u, v} if u and v are not connected by an edge in G .

However, if there is an edge between u and v in G , then these two
vertices will not be directly connected in G ′. Note that even in this
case, will the two vertices be connected by a path in G ′?
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Preliminaries Bipartite graph cycles

Connectivity of the complement ...

So, we ask whether the complement of a simple disconnected graph
must be connected.

Let G be a simple disconnected graph and u, v ∈ V (G ). If u and v
belong to different components of G , then clearly the edge uv ∈ G ′,
yielding a trivial path connecting the two vertices.

u

v

w

x y z

v

w

x y zu

G′G

Figure: 2: Connectivity of the complement graph
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Preliminaries Bipartite graph cycles

Connectivity of the complement ... (cont.)

If u and v belong to the same component of G but are not connected
by an edge then we have a similar trivial path between them in the
complement graph G ′. If uv ∈ G , choose a vertex w in any other
(disconnected) component of G . The edges uw and wv belong to G ′.
See Figure 2.
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Degrees and connectivity

Degrees and connectivity

It is interesting to see what happens if both the degree of each vertex
as well as the girth of the graph, are both k > 3.

In this case we show that there would be at least 2k vertices in the
graph.

For a vertex v , let K be the set of k neighbours of v .

Take a vertex w ∈ K .

If x ̸= v is a neighbour of w then x cannot be in the set K because
that would yield a triangle, contradicting the fact that the girth is
k ≥ 3.

So, all the k − 1 neighhbours of w (other than v) are none of the
vertices in K .

Therefore, we already have |K |+ 1 + (k − 1) = 2k vertices in the
graph.
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Degrees and connectivity

Girth four regular graphs

If we have high vertex degrees then we will have at least a
proportionate number of edges even with bounded girth like four.

Suppose we have k-regular graph of girth four.

Let u have the set N(u) as its k neighbours.

With the same reasoning as in the case of large girth, we can say that
for v ,w ∈ N(u), vw is not an edge.

So, for one v ∈ N(u), its k − 1 neighbours other than u are not in
N(u), already account for |{u}|+ |N(u)|+ k − 1 = 2k vertices.

Suppose above N(u) = {v1, v2, ..., vk}.
Then we have edges N(v1) = {u,w1,w2, ...,wk−1}.
We can connect each of v2, v3, ..., vk as well to N(v1) \ {u}, whereas
u is already connected to N(u).

This gives the complete bipartite graph with partites N(u) and N(v1).

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 20



Degrees and connectivity

Distinct degrees

If all the vertices have disinct degrees in a simple connected
undirected graph then these must be 0, 1, 2, ..., and n − 1,
respectively.

This implies that one vertex must be connected to all the n − 1 other
vertices, including the one with degree zero, a contradiction because
we assumed the graph was connected.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 21



Degrees and connectivity

High degree, longer path

When there is much connectivity, like if each vertex has at least k
neighbours, then we can also have long paths.

If we take a maximal path starting at u, then all the k neighbours of
u must be on this path because we cannot extend this maximal path
by connecting a neighbour of u, thus requiring this maximal path to
be of length at least k .

See Proposition 1.2.28 in [Wes00].
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Degrees and connectivity

Connectivity with edges

Suppose we have an even graph. Can this graph have a cut edge?

If it were so then dropping this edge would render two connected
components in the disconnected graph to have odd degrees.

However, no connected subgraph can have just a single odd degree
vertex.

Adding edges can increase connectivity; in other words, an edge
added to a graph G (V ,E ) may reduce the c(G ), that is, the number
of connected components by at most 1.

So, by induction we can show that c(G ) is lower bounded by
|V | − |E |.
A graph with two edges has exactly |V | − 2 connected components.
A graph with one edge has exactly |V | − 1 components but a graph
with three edges may have |V | − 2 or |V | − 3 components.
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Degrees and connectivity

Degrees and independence

If α(G ) is the maximum size of an independent set in a simple graph
G (V ,E ) then each of the |V | − α(G ) vertices have some edges
coming out, such that the sum of degrees of these vertices is at least
the number |E | of edges of G .

Thus ∆(G )(|V | − α(G )) ≥ |E |, where ∆(G ) is the maximum degree
of a vertex in G .

Thus we have α(G ) ≤ |V | − |E |
∆(G) .

In a regular graph |E | = ∆(G)
2 |V |, whence α(G ) ≤ |V |

2 .
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Matching and factors

Matchings and factors

A matching M is an independent set of edges in a graph G (V ,E )
[Die17].

So, no vertex in the graph will be in more than one edge of a
matching.

A k-factor of G is a k-regular spanning subgraph of G .

So, a subgraph is a 1-factor if and only if it is a matching for the
entire set of vertices in the graph, or in other words, it is a perfect
matching.

Such perfectly matched graphs must therefore have an even number
of vertices.

Note that even non-bipartite graphs may have perfect matchings.

We can characterize general graphs that have a perfect matching by
Tutte’s condition, as per Tutte’s theorem (Theorem 3.3.3 in [Wes00]).
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Matching and factors

Berge’s theorem

A matching M in a graph G is a maximum matching in G if and only
if G has no M-augmenting path. This is a result from 1957.

Let p denote the statement “M is a maximum matching”, and q
denote the statement “there is no M-augmenting path”.

Then the statement p if and only if q has two implications.

The if-part is q =⇒ p, and the only-if part is p =⇒ q.

To show the only-if part we show therefore that ¬p ∨ q holds or
p ∧ ¬q does not hold.

Suppose a maximum matching M has an M-augmenting path.

Then we can demonstrate a larger matching, contradicting the
assumption that M is a maximum matching. This completes the
only-if part.

For the if-part we show ¬q ∨ p holds or q ∧ ¬p does not hold.
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Matching and factors

Berge’s theorem (cont.)

So, to show the if-part we show the impossibility of M being not a
maximum matching as well as that there are no M-augmenting paths.

Assume that there is no M-augmenting path, but M is not a
maximum matching. We show that this is impossible as follows.

Let the maximum matching be M ′ and F be the symmetric difference
betweem M and M ′.

Since |M ′| > |M|, at least one component C of F must have more
edges from M ′.

Since all cycles are of even length, and edges alternate between M
and M ′ in F , C must therefore be a path and not a cycle in F .

The two extreme edges in C must thus be from M ′, yielding an
M-augmenting path.

This completes the proof of the if-part of Berge’s theorem
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Matching and factors

Berge’s theorem (cont.)

Now we formally state the definition of the symmetric difference of
two matchings and study its properties.

If M and M ′ are matchings, then M∆M ′ = (M ∪M ′) \ (M ∩M ′).

We show that every component of this symmetric difference of is a
path or an even cycle.

At most one edge of M and at most one edge of M ′ is incident on
any vertex v .

So maximum degree of any node in F is 2. So, components of F
must be paths or cycles.

Also, edges in a path or cycle will alternate between edges of M \M ′

and M ′ \M.

So all cycles must be even.
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Matching and factors

Proof of Hall’s theorem using alternating paths

For a bipartite graph G (X ∪ Y ,E ), suppose the neighbourhood N(S)
of any subset of the partite X is at least as larger as S , then we must
show that there is a matching that covers the whole of X . This is
known as Hall’s theorem. (See Theorem 3.1.11 in [Wes00])

Equivalently, we can establish sufficiency by demostrating the
contrapositive; if the maximum matching M fails to match a vertex
say u ∈ X then we must demonstrate a subset S of X whose
neighbourhood N(S) is smaller than |S |.
Towards this goal, we find the vertex subsets S(resp.,T ) of
X (resp.,Y ) that are in M-alternating paths starting at the
unmatched vertex u of X . Here u ∈ S and T = N(S).

The unmatched vertex u cannot reach out to opposite side vertices
outside M, as in that case u would match a vertex outside M and
create a matching larger than M.
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Matching and factors

Proof of Hall’s theorem using alternating paths (cont.)

Suppose we show that M matches S \ {u} to T . Then we would have
shown that N(S) = T has only |S | − 1 elements, violating Hall’s
condition (given that we had started with the assumption that the
maximum matching M failed to match u ∈ X ).

Now we show how M matches the whole of S \ {u} to T .

Each vertex of S \ {u} must be reached from a vertex of T in some
M-alternating path via an edge of M.

Also, M being a maximum matching, by Berge’s theorem we do not
have an M-augmenting path.

So, the whole of T is saturated.

Thus T = N(S), with M defining the bijective mapping.

Now as an application of Hall’s theorem we can show that a k-regular
bipartite graph has a perfect matching i.e., a 1-factor.
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Matching and factors A proof of Hall’s theorem using induction

A proof of Hall’s theorem using induction

For the bipartite graph G (A ∪ B,E ), the subsets we consider are
X ⊆ A, irrespective of whether N(X ) is equal to or greater |X |, where
A is the set to be matched. Throughout N(X ) is identical to NG (X ),
the neighbourhood set of X in G .

Hall’s condition requires N(X ) to be at least as big as X . So, clearly,
there are two cases, one of equality and one of strictly being greater.

We use induction to prove the hypothesis for matching the set A,
given that the hypothesis holds for matching smaller sets that are
subsets of A.

We assume that (i) N(X ) is strictly larger than X for every X ⊂ A,
X ̸= ϕ, or (ii) there is at least one A1 ⊂ A, such that N(A1) is of the
same size as that of A1, A1 ̸= ϕ. Naturally, for A we assume N(A) is
at least as big as A.

These two are mutually exclusive and exhaustive cases.
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Matching and factors A proof of Hall’s theorem using induction

A proof of Hall’s theorem using induction (cont.)

In either case, the induction hypothesis is that there is a matching
that covers any proper subset of A.

We need to show by using induction that there is a also a matching
that covers A.

In the first case we connect x ∈ A to one of its adjacent vertices
y ∈ B. Now see G1 = G − x − y . We know that such a y exists.

Let X ⊆ A− {x}. Assume X ̸= ϕ. Why?

Clearly, X ̸= A. Also, note that y may or may not be in N(X ).

Since this case assumes |N(X )| > |X |, so
|NG1(X )| ≥ N(X )− 1 ≥ |X |, as (i) NG1(X ) will miss out y only if
y ∈ N(X ) = NG (X ), and (ii) N(X ) > |X |.
So, by the induction hypothesis, there is a matching F1 covering
A− {x} in G1, which along with (x , y) gives the matching covering
the whole of A in G .
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Matching and factors A proof of Hall’s theorem using induction

A proof of Hall’s theorem using induction (cont.)

In the second case, A1 ⊂ A, A1 ̸= ϕ, and |N(A1)| = |A1|.
So let G1 be the subgraph of G induced by A1 ∪ N(A1), and let
G2 = G − A1 − N(A1).

Now in G1, let X ⊆ A1.

Then NG1(X ) = NG (X ) = N(X ), and |NG1(X )| = |N(X )| ≥ |X |.
This holds for every X ⊆ A1.

Thus by the induction hypothesis there is a matching F1 in G1 which
matches A1 with N(A1).

In G2, let X ⊆ A− A1.

Then |NG2(X )| = |N(X ∪ A1)| − |N(A1)| ≥ |X ∪ A1| − |N(A1)| =
|X ∪ A1| − |A1| = |X |.
So in G2, by the induction hypothesis, we have a matching F2 that
matches A− A1 with certain vertices in B − N(A1).

F1 ∪ F2 is the matching for A.
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Matching and factors
Computing a maximum matching using augmenting paths in

bipartite graphs

Matching by augmenting paths in bipartite graphs

G (X ,Y ,E ) has vertex partites X and Y , and edges E . Let M ⊆ E
be a matching in G .

We maintain S ⊆ X (initially S = U, where U is the set of
M-unsaturated vertices of X ) and T ⊆ Y (initially ϕ), and mark
vertices in S one by one, stopping when all vertices in S are marked.

An M-augmenting path from any unmarked x ∈ S to a vertex
y ∈ N(x), if xy /∈ M (and thus y is unsaturated) is xy itself !

If y is not unsaturated, and thus matched to w ∈ X by M, then put
y in T , as y is reachable from x , and put w in S , as it is reached
from y .

Once all such edges sitting on x are explored thus, mark x , and
proceed iterating.

See Theorem 3.2.2 [Wes00] and Algorithm 3.2.1.

Note that M gets augmented until all vertices in S are marked.
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Matching and factors
Computing a maximum matching using augmenting paths in

bipartite graphs

Matching by augmenting paths in bipartite graphs (cont.)

Two things now needed are to show are that on termination, M is the
maximum matching with the same number of edges as the set
R = T ∪ (X \ S), which is the (minimum) vertex cover.

When we have the augmenting path, we enhance the matching, else
we have already computed the maximum matching by Berge’s
theorem, and must now have the minimum vertex cover, thereby
establishing the Konig-Egervary theorem.

To show that R is indeed a vertex cover, we may show that S has no
edges to vertices in Y \ T .

We know that each vertex of S \ U is matched by an edge of M to
some vertex in T , and no vertex of S has an edge of M into Y \ T .

Also, no non-M edges connect from S to Y \ T , as then we would
have augmented M, extending T , a contradiction.
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Matching and factors
Computing a maximum matching using augmenting paths in

bipartite graphs

Matching by augmenting paths in bipartite graphs (cont.)

So, the vertex cover is only T from Y and the whole of X , leaving
out S from X , as not only S \ U but also all of U ⊆ S have been
marked as having an edge into T .

So, to cover edges from S , we include T in the vertex cover and to
cover the edges from U, the remaining vertices in X , we include X \ S
in the vertex cover.

Now T has only saturated vertices, and all vertices in T are matched
to an equal number of vertices in S .

The additional matching edges in M beyond the |T | already
mentioned are from S but not in U or those matched to T from S .
These are thus the remnants in X after dropping S .

This is thus a constructive proof of the Konig-Egervary theorem.
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Matching and factors Proof of Hall’s theorem using the Konig-Egervary theorem [Die17]

Proof of Hall’s theorem using the Konig-Egervary theorem
[Die17]

The theorem of Konig-Egervary is a well-known duality result stating
that the size of the maximum matching is the same as the size of the
minimum vertex cover in a bipartite graph.

Let A′ ⊆ A and B ′ ⊆ B be the two mutually disjoint subsets of V
constituting the minimum vertex cover U for G (V ,E ).

Consider A \ A′ and B \ B ′.

These sets do not induce any edges in G and therefore constitute a
maximum independent set, because A′ ∪ B’ is the minimum vertex
cover.

So, |N(A \ A′)| ≤ |B ′|.
Now let us now assume that G does not have a matching for the
whole of A, implying |A′|+ |B ′| = |U| < |A|, or |A| − |A′| > |B ′|, and
thus |A \ A′| > |B ′| ≥ |N(A \ A′)|.
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Proof of Hall’s theorem using the Konig-Egervary theorem
[Die17] (cont.)

This establishes the contrapositive for the sufficiency condition for
Hall’s theorem with the subset A \ A′ as witness.

Here, the strict inequality |U| < |A| holds because the maximum
matching size is the same as the size |U| of the minimum vertex cover
by the Konig-Egervary theorem, and at least one vertex in A is not
matched in any maximum matching.
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Matching and factors Proof of Hall’s theorem using the Konig-Egervary theorem [Die17]

Notations and definitions about independence and covering

For the sake of some notation, let us use
α(G ) to denote the size of the maximum independent (stable) set in
a simple connected graph G (V ,E ),
β(G ) to denote the size of the minimum vertex cover,
α′(G ) for the size of the maximum matching, and
β′(G ) for the size of the minimum edge cover.

We know that α(G ) + β(G ) = |V | = n for any graph.

For bipartite graphs we know by the Konig-Egervary theorem that
β(G ) = α′(G ).

For general graphs β(G ) ≥ α′(G ) because we need to cover each
edge of a matching by at least one vertex.

We also know that for any graph, no edge can cover two vertices of
an independent set.
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Matching and factors Proof of Hall’s theorem using the Konig-Egervary theorem [Die17]

Notations and definitions about independence and covering
(cont.)

So, we can write β′(G ) ≥ α(G ).

Further, note that by Gallai’s theorem we know that
α′(G ) + β′(G ) = |V | = n for any connected graph.

To show that α(G ) + β(G ) = |V | = n for any connected graph, we
argue as follows.

If T is an independent set, then edges can have at most one endpoint
in T .

So each edge has at least one endpoint in V \ T , making it a vertex
cover.

Also, if V \ T is a vertex cover, T will not have both endpoints of
any edge.

Study exercise: Proof of Gallai’s theorem.
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Applications of Hall’s theorem

We show using Hall’s theorem that any simple undirected 2k-regular
bipartite graph has a 2-factor (cycle cover).

See Theorem 3.3.9 in [Wes00] and Theorem 7.2.8 in [Jun99].

The common property of a 2-factor and an Euler tour is that both
span the graph, albeit in different ways.

Whereas the 2-factor spans all the vertices in a subgraph where all
vertices use only two edges, the Euler tour spans all the edges, each
edge exactly once.

Let us assume that the simple undirected 2k-regular undirected
bipartite graph G is connected.

Let m be the number of its edges. Let v0 be any vertex.

Then we have an Euler tour v0, e1, e2, ..., em, vm = v0, where
ei = vivi+1.

So, e1 = v0v1, e2 = v1v2, ..., em = vm−1vm = vm−1v0.
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Applications of Hall’s theorem (cont.)

We replace each vertex v by two vertices v ′ and v ′′ and each edge
ei = vivi+1 is replaced by v ′i v

′′
i+1.

So, e1 is replaced by v ′0v
′′
1 , going from the left to right, and e2 is

replaced by v ′1v
′′
2 , going from right to left.

Due to the Euler tour, each original vertex v ∈ V , now has exactly k
edges going left to right (right to left) from v ′, and exactly k edges
going right to left (left to right) from v ′′ if v is on the left (right) set.

The new graph is k-regular and has therefore a 1-factor; merging the
split vertices back gives the 2-factor for the original graph G .

This solution is from [Die17].
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Gallai’s theorem

Proof of Gallai’s theorem

If we have a graph with no isolated vertices then we can show that
β′(G ) ≤ |V | − α′(G ).

The trick is that we can start with a maximum matching M and
generate an edge cover L of size |V | − |M|.
The edge cover L of size |V | − α′(G ) is at least the size β′(G ) of the
minimum edge cover.

How do we do this construction? We add to M one edge incident on
each vertex uncovered by M.

Since M covers 2α′(G ) vertices, the new edges added are only
|V | − 2α′(G ) in number.

These edges along with the α′(G ) edges of M form the edge cover L.

To complete the proof of Galai’s theorem, we must now show
β′(G ) ≥ |V | − α′(G ), or equivalently, α′(G ) ≥ |V | − β′(G ).
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Gallai’s theorem

Proof of Gallai’s theorem (cont.)

We start with a minimum edge cover L of size β′(G ), and construct a
matching of size |V | − β′(G ), which has to naturally be of size no
more than α′(G ).

This is so as L is a collection of k stars, with each star giving only
exactly one edge to the matching M.

The matching size is the number k = |V | − |L| = |V | − β′(G ) of stars
counted by the central vertices of the stars because all edges of L end
on peripheral vertices of their respective stars which number |V | − k .

Why is L a collection of k stars?
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Proving the Konig-Egervary theorem using Hall’s theorem

It is sufficient to show that for any minimum cardinality vertex cover
Q of G (X ∪ Y ,E ), we can demonstrate a matching M of size
β(G ) = |U|. Why?

(We know that β(G ) ≥ α′(G ). We need at least as many vertices as
the number of edges in the maximum matching in order to cover all
edges.)

Consider the partition of any minimum cardinality vertex cover Q into
R = Q ∩ X and T = Q ∩ Y .

Consider (edge-disjoint) subgraphs H and H ′ induced by R ∪ (Y \ T )
and T ∪ (X \ R).
Using Hall’s theorem we show that H has a matching for R into
Y \ T and H ′ has a matching for T into X \ R.
So, a matching of size |Q| from H and H ′ for the whole of G can be
demonstrated.
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The Konig-Egervary theorem

Proving the Konig-Egervary theorem using Hall’s theorem
(cont.)

Since R ∪ T is a vertex cover for G , no edges exist between Y \ T
and X \ R.
For any S ⊆ R, consider NH(S) ⊆ Y \ T . Can the vertex cover
R ∪ T be replaced by (R \ S) ∪ NH(S) ∪ T?

Since this can never shrink the minimum vertex cover Q, we have
Hall’s condition |NH(S)| ≥ |S | for any S ⊆ R.

So, R matches into Y \ T by Hall’s theorem. See [Wes00].

Similarly we can show that T matches into X \ R.
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[Die17]

Proving the Konig-Egervary theorem using alternating
paths [Die17]

It is enough to show that there is a vertex cover whose size equals the
size of the maximum matching in a bipartite graph.

So, given a maximum matching M, we pick exactly one vertex from
each edge of M and show that these vertices cover all edges of the
graph.

We do this using alternating paths [Die17]; later we also do this using
the max-flow-min-cut theorem [GGL95].

So take the two partite sets as A and B with the maximum matching
M in bipartite graph G (A ∪ B,E ).

We define a set U as the collection of vertices of the edges of M, only
one vertex per edge of M as follows, and show that U is a vertex
cover.
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The Konig-Egervary theorem
A proof of the Konig-Egervary theorem using alternating paths

[Die17]

Proving the Konig-Egervary theorem using alternating
paths [Die17] (cont.)

So, for each M-alternating path, ending with a vertex in B in the
matching M, we take the end vertex in that path in U, which thus
belongs to an edge e of M, provided just one vertex is taken from the
edge e in M. For the remaining edges in M we take the vertex in A.

Since by Berge’s theorem, the graph has no M-augmenting path,
each M-alternating path (starting at an M-unsaturated vertex in A)
will end at a vertex in B belonging to an edge of M.

Such a path could also contain just a single edge.

We claim that U is a vertex cover. See [Die17]. At least all edges of
M are covered as per the construction. Also, all other edges must be
shown to be covered by U.
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A proof of the Konig-Egervary theorem using alternating paths

[Die17]

Proving the Konig-Egervary theorem using alternating
paths [Die17] (cont.)

For each M-unsaturated vertex u ∈ A determine reachable vertices in
B where M-alternating paths starting at u end. Add these vertices to
U, and for other edges of M, add the ends in A on these edges of M
to U.

More formally, let ab ∈ E be an edge with a ∈ A and b ∈ B, ab /∈ M.
As all edges in M have at least one vertex in U, as per the
construction/definition of U above, we now need to show that at
least one of a or b is in U.

Since ab is not in the maximum matching M, there must be an edge
a′b′ ∈ M such that a = a′ or b = b′. Otherwise, we could add ab to
M getting a bigger matching.

But is it possible that a is unmatched? If so, then surely b = b′, as
a ̸= a′, and here ab is an alternating path of odd length unity, and so
the end of a′b′ ∈ M, chosen for U was the vertex b′ = b.
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A proof of the Konig-Egervary theorem using alternating paths

[Die17]

Proving the Konig-Egervary theorem using alternating
paths [Die17] (cont.)

So, now we assume that a is matched, that is, a = a′ and b ̸= b′.
Now if a′ = a is not in U, then surely b′ ∈ U, and some
M-alternating path P ends in b′.

But then there is also an M-alternating path P ′ ending in b as shown
here.

P may have b or may not have b.

In the first case P ′ is Pb and in the other case P ′ is Pb′a′b.

By the maximality of M, P ′ is not an M-augmenting path. Therefore,
b must be matched, and was chosen for U from the edge of M
containing it.

So, ab is always covered by U.
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Extremal results

Large number of edges lead to subgraphs with
proportionate minimum vertex degree

We observe that if G is a graph on n vertices with more than (c − 1)n
edges, where c is a positive integer, then G has a subgraph H of
minimum degree at least c (Lemma 7.1, page 74 [GGL95]).

This is so as any minimal subgraph H with more than (c − 1)v(H)
edges has the necessary property of minimum vertex degree at least c .

If H had a vertex v of degree at most c − 1, then subgraph H \ {v}
would contradict the choice of H because in that case H \ {v}, and
not H would be the minimal subgraph with the required property.
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Extremal results

Extremal results: Spanning subgraphs of high vertex
degrees

In similar vein, we can show that every graph G has a bipartite
spanning subgraph B such that degreeB(v) ≥ degreeG (v)

2 for all
vertices v (Lemma 7.2, page 74 [GGL95]).

We note that any bipartite spanning subgraph B(X ,Y ) with the
maximum number of edges has this property.

Suppose B had a vertex v of degree less than degreeG (v)
2 , and without

loss of generality v ∈ X , then the bipartite spanning subgraph with
bi-partition (X \ {v},Y ∪ {v}) would contradict the choice of B
because this modified graph would have more edges.

Such results may be required in the proofs of extremal properties
where the number of edges is only of some modest smaller
magnitude, serving a required purpose, even by restricting the class of
graphs under consideration to bipartite graphs of large degree.
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Extremal results

Extremal results: Spanning subgraphs of high vertex
degrees (cont.)

In the breadth-first search trees of bipartite graphs of large degree,
the sets reachable grow rapidly.
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Extremal results: Mantel’s theorem

We can put some weights (non-negative) for the vertices of the graph
G (V ,E ), so that the weights add up to 1, trying to maximize the
sum over all edges of the products of weights assigned to its vertices.

If all the weights are just 1
n then we have a sum |E |

n2
. This may not be

the maximum though.

We can show the maximum is attained when we assign 1
2 to just two

vertices connected as an edge in G , whereby the maximum sum is
just 1

4 . So,
|E |
n2

≤ 1
4 .

For a pair {k , l} of unconnected vertices, let x and y be the sum of
weights assigned to the neighbours of vertices k and l respectively,
where x > y . Let the weights assigned to vertices k and l be
respectively zk and zl .

We note that moving a small weight e from vertex l to the vertex k,
will change the sum of products of weights of vertices joined by edges
to x(zk + e) + y(zl − e) ≥ xzk + yzl .
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Bounding triangles in a graph

We show that the number of triangles in any simple graph of n
vertices and m edges is at least 4m

3n (m − n2

4 ).

For any edge xy there are at least d(x) + d(y)− n vertices adjacent
to both x and y . Why? The remaining n − 2 vertices cover at least
d(x) + d(y)− 2 edges. If c is the number of triangles sitting on base
xy then n − 2 + c ≥ d(x) + d(y)− 2 or c ≥ d(x) + d(y)− n.

So, this is also a lower bound on the number of triangles sitting on xy .

However, due to counting thrice (once for each edge of every
triangle), we consider only a third of the sum of such lower bound
estimates over all edges as a lower bound for the number of triangles
in the graph.

This estimate is a third of
∑

(d(x))2 −mn, which is at least a third
of n times the square of the average of vertex degrees minus mn by
the Cauchy-Schwartz inequality. Why?
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Bounding triangles in a graph (cont.)

So, the number of triangles is at least

1

3

∑
xy∈E

(d(x) + d(y)− n)

=
1

3
((
∑
x∈V

d2(x))−mn)

≥ 1

3
((n(

∑
x∈V

d(x)

n
)2)−mn)

=
1

3
(n(

2m

n
)2 −mn)

Now consider adding the squares of the degrees of all vertices in a
triangle-free graph.

View this summation over all vertices as a sum over all edges xy ∈ E .
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Bounding triangles in a graph (cont.)

For each edge xy we simple need to add d(x) and d(y), that is
d(x) + d(y) ≤ n, thereby adding d(x) for each vertex d(x) times.

So the summation is simply mn as we have m edges.

However, (2m)2 = (Σx∈V d(x))
2 ≤ nΣx∈V d

2(x) =

nΣxy∈E (d(x) + d(y)) ≤ mn2, yielding m ≤ n2

4 .
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Turan’s problem

The r = 2 case of avoiding a Kr+1 in a graph was attained with the
maximum number n2

4 of egdes by K⌈ n
2
⌉,⌊ n

2
⌋.

We generalize now to the case for avoiding Kr+1 for r > 2, again
maximizing the number of edges in the n-vertex graph G

To construct such a graph G of n vertices, we must note that G
should have a Kr , otherwise, we could add an edge and still not have
a Kr+1.

Let A be the set of r vertices in some r -clique in G (V ,E ).

Let B = V \ A be the set of the remaining n − r vertices.

Let Tn,r be the n-vertex graph that is maximal, r -partite and
balanced. Let e(Tn,r ) be its number of edges.

So, we have
|E | ≤

(r
2

)
+ (r − 1)|B|+ e(B) ≤

(r
2

)
+ (r − 1)(n − r) + e(Tn−r ,r ).
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Turan’s problem (cont.)

The r -clique A has
(r
2

)
edges, each vertex in B can connect to at most

r − 1 vertices in A and by the induction hypothesis e(B) ≤ e(Tn−r ,r ).

To complete the proof, we need to argue that the final sum above is
indeed e(Tn,r ), which is easy to see; this part of establishing the
equality is independent of A and B.

Just drop r vertices, one from each partite.

Exactly n − r remaining vertices would each lose exactly r − 1
neighbours.

Question: Determine e(Tn,r ) in terms of n and r .

Guessing e(Tn,r ) ≤ 1
2(1−

1
r )(n

2), and by induction we claim that
e(Tn,r ) ≤

(r
2

)
+ (r − 1)(n − r) + e(Tn−r ,r ) ≤(r

2

)
+ (r − 1)(n − r) + 1

2(1−
1
r )(n − r)2.

Question What is the maximum number of triples in an n-vertex
3-uniform hypergraph without a tetrahedron?
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Turan’s problem (cont.)

If n is a multiple of r then e(Tn,r ) =
1
2(1−

1
r )(n

2).

So, r = 2 gives us Mantel’s theorem bound for missing a K3. And
r = 3 gives us the bound for missing a tetrahedron or K4 as n2

3 .
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A “Pigeonhole approach” to Turan’s problem

Turan’s theorem in the “Pigeonhole principle mode” may be stated as
follows.

Let G (V ,E ) be a graph with n = mk vertices and more than
e =

(k
2

)
m2 edges.

Then G must have a Kk+1.

We use induction on m to establish this result.

Suppose G has no Kk+1.

Then, the graph G1 = G − V (H) has mk − k vertices which has no
more than k − 1 edges connecting to H, where H is a Kk in G .

So, G1 must have more than(k
2

)
(m)2 − (k − 1)(mk − k)−

(k
2

)
=

(k
2

)
(m − 1)2 edges.

This is so as the induced subgraph H had
(k
2

)
edges and each of the

surviving mk − k vertices in G1 can connect to at most k − 1 vertices
in H to make G .
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A “Pigeonhole approach” to Turan’s problem (cont.)

However, by the induction hypothesis, this means that G1 with
k(m − 1) vertices, and

(k
2

)
(m − 1)2 contains a Kk+1, and hence, so

does G , a contradiction to our assumption that G has no Kk+1.
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Erdos-Stone theorem

We will restate the result of Turan where we look for Kr -free graphs
on n vertices, as stated in Theorem 9.3 in [PA11] for r > 2.

The number of edges in such a graph G would never exceed the
number of edges in Tr−1(n), an (r − 1)-partite graph that is
balanced, complete and has no Kr .

The equality here would hold if and only if G = Tr−1(n).

Each of the r − 1 partites has either ⌈ n
r−1⌉ or ⌊ n

r−1⌋ vertices in
Tr−1(n).

Exercise 9.5 in [PA11] gives the exact number of edges in Tr−1(n) as
1
2(1−

1
r−1)(n

2 − s2) +
(s
2

)
, where s = n mod (r − 1). These are

quite dense graphs.

Turan’s theorem implies that a graph G with more than e(Tr−1(n))
edges would contain a Kr as a subgraph.
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Erdos-Stone theorem (cont.)

More edges would be required so that a graph G contains an r -partite
complete subgraph K t

r , that has t vertices in each partite. Here
K t
r = Tr (rt), and t is any fixed constant.

The Erdos-Stone theorem (Theorem 9.10 in [PA11]) states that K t
r is

contained in G if it has n ≥ n0(r , t, ϵ) vertices for any ϵ > 0, and if

we have at least n2

2 (1−
1

r−1 + ϵ) edges in G .

The number of edges is roughly just ϵn2 more than e(Tr−1(n)).

This is possible if G has d(x) ≥ n(1− 1
r−1 + ϵ) for every vertex

x ∈ V (G ), under the same conditions. (See Lemma 9.11 in [PA11]).

Clearly, ϵ < 1
r−1 .

The core idea is that pumping in so many edges into G would inflate
the degrees of a bunch of vertices to cross the bound on vertex
degrees required in Lemma 9.11, so that an induced subgraph of G
has a K t

r .
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Erdos-Stone theorem (cont.)

The harder part to show is the inductive proof of Lemma 9.11 as
follows.

The induction is on r .

As we already know, the claim holds for r = 2, by the use of Corollary
9.7 to Lemma 9.6 and the Kovari, Sos, Turan result in Theorem 9.9
in [PA11], where ϵn2 edges are sufficient.

So, we can assume the claim holds for some r ≥ 2 and using this
claim we show it holds for r + 1 as well.

Set T = ⌈ tϵ⌉.
If n > n1(r ,T , ϵ), then by the inductive hypothesis, KT

r ⊆ G .

We have to find vertices in V (G ) outside the KT
r that are adjacent to

at least t vertices in each partite of the KT
r .

Calling such vertices as regular, we need a sufficient number of them,
say R, so that we can form a K t

r+1.
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Erdos-Stone theorem (cont.)

We can lower bound R by n ϵ(r−1)
1−ϵ − rT , by estimating the number m

of missing or absent edges in G between the KT
r and the rest of G ,

by using an easy upper bound on m based on vertex degree lower
bounds in the premise of Lemma 9.11, and a non-trivial lower bound
for m based on how the non-regular vertices miss out the adjacency of
at least T − t vertices in at least one partite of the KT

r .

Note that by choosing a sufficiently large n we can ensure the
required number R of regular vertices necessary to build the K t

r+1, as
we state below.

Let Ci , i ≤ i ≤
(T
t

)r
, denote the ith combination of t-subsets from

the r -partite sets Vj , 1 ≤ j ≤ r , where each Vj has T vertices.

Let wi ,k , 1 ≤ k ≤ t − 1 be a regular vertex adjacent to all vertices in

Ci , 1 ≤ i ≤
(T
t

)r
.
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Erdos-Stone theorem

Erdos-Stone theorem (cont.)

So, adding just one more regular vertex x would create a K t
r+1,

because being regular, the vertex x must be adjacent to all vertices of
some Ci , 1 ≤ i ≤

(T
t

)r
.

So, just over
(T
t

)r
(t − 1) regular vertices suffice.

Now using Lemma 9.11, the main Erdos-Stone theorem is proved in
Theorem 9.10 of [PA11].

For any ϵ > 0, and we have at least n2

2 (1−
1

r−1 + ϵ) edges in G , just
1
2ϵn

2 more edges than Tr−1(n).

We will discriminate with respect to the vertex degree d(xi ) being at
least (n − i)(1− 1

r−1 + ϵ
2) or strictly lesser than this amount,

respectively, to retain or drop the vertex xi in Step i , i ≥ 0, to set
Gi+1 as Gi − xi .
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Erdos-Stone theorem (cont.)

When we get stuck at Gi with no more deletions possible, we are
done with |V (Gi )| ≤ n(r , t, ϵ

2), whereby the Lemma 9.11 holds,
assuring K t

r ⊆ Gi ⊆ G , as sought.

Setting a loose estimate of an upper bound on |E (G )| based on the
high vertex degrees of deleted vertices and the upper bound

(n−i
2

)
on

the size of Gi , and the lower bound for |E (G )| in the premise of the
Theorem 9.10, we can derive a lower bound for |V (Gi )| in terms of n,
r and ϵ as being an estimate for the function n(r , t, ϵ

2).

Now as an application of the Erdos-Stone theorem, show that given a
nonempty graph H with chromatic number χ(H), an H-free graph

can have no more that n2

2 (1−
1

χ(H)−1) + o(n2) edges.
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The problem of K. Zarenkiewicz

The problem of K. Zarenkiewicz

Kovari, Sos and Turan in 1954 solved the problem of bounding the
number of edges in a bipartite graph Gm,n(V1 ∪ V2,E ) so that
another bipartite subgraph Kr ,s is forbidden.

We wish to determine the maximum number |E | of edges permissible
so that a Kr ,s does not appear as a subgraph in a bipartite graph
Gm,n(V1 ∪ V2,E ).

For all x ∈ V2, (W , x) pairs must be at most (s − 1)
(m
r

)
which must

cap
(d(x)

r

)
summed over all x ∈ V2, where W is a subset of V1 of r

vertices connected to the same x ∈ V2.

This is necessary because no r -tuple from V1 should connect to more
than s − 1 vertices in V2, whereas we do have as many as

(d(x)
r

)
r -tuples from V1 connecting to each x ∈ V2.

So, essentially, we must pack all the available r -tuples we have from
the graph into at most (s − 1)

(m
r

)
r -tuples.
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The problem of K. Zarenkiewicz (cont.)

This forbids Kr ,s and breaching this packing restriction would make a
Kr ,s appear.

For a solution see Theorem 9.5, Combinatorial Geometry by Pach and
Agarwal, Wiley Interscience Series in Discrete Mathematics and
Optimization.

The upper bound sought is cr ,s(mn1−
1
r + n), where the constant cr ,s

depends only on r and s.

Jensen’s (secant) inequality comes in handy. The generalization to
general graphs is easy and similar, as in Exercise 9.17 in [PA11].

Do exercises 5.2.23, 5.2.25 and 5.2.26 from [Wes00].

Indeed Exercise 9.17 in [PA11] helps establish Corollary 9.7 in [PA11]
as G being Kr ,s -free in Corollary 9.7 means even bipartite subgraph H
in Exercise 9.17 is Kr ,s -free.
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The problem of K. Zarenkiewicz

The problem of K. Zarenkiewicz (cont.)

Note that the case of a general graph being Kr ,r -free requires no
notion of orientation but only that any r -tuple in the vertex set V (G )
be contained in the neighbourhood of at most r − 1 vertices.

A vertex v with degree d(v) has
(d(v)

r

)
r -tuples in its neighbourhood.

The total number of r -tuples is
∑

v∈V (G)

(d(v)
r

)
, which must not

exceed
(|V (G)|

r

)
(r − 1).

Now using
(x
r

)
as a convex function f (x) for x ≥ r − 1 and using

Jensen’s inequality show that E (G ) must be bounded by C .n2−
1
r so

that G has no Kr ,r .
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Tutte’s theorem

Tutte’s theorem

The generalization of Hall’s theorem to general graphs, the result of
Tutte, can be proved by using Hall’s theorem (see Problem 3.3.13 in
[Wes00]).

It is easy to see that the necessity of Tutte’s condition, for a simple
graph G (V ,E ), whereby o(G − S) ≤ |S |, holds for every subset S of
vertices.

This is so as every odd connected component of G − S would require
to reserve at least one vertex in S ⊆ V for the perfect matching.

So, at least one edge of the perfect matching must connect each odd
component of G − S to S .

So, if J is the set of all such edges over all odd components then
o(G − S) ≤ |J| ≤ |S |.
Since |J| can be large, S will be larger, accomodating parallel edges
of the matching to land up in S .

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 72



Tutte’s theorem

Tutte’s theorem (cont.)

Figure: A graph with maximum matching of size 9.

This also applies to even components but we do not mention
anything about even components here !
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Tutte’s theorem

Tutte’s theorem (cont.)

If G satisfies Tutte’s condition and G has components, then
furthermore, each component must also be even.

If G has two vertices then satisfying Tutte’s condition would enforce
G = K2, which is itself a perfect matching.

For establishing sufficiency, first we note that if S is the empty set
then Tutte’s condition enforces that G must be even.

Consider a simple graph G ′, constructed by adding edges to G , so
that G ′ has no 1-factor but joining any pair of non-adjacent vertices
by an edge in G ′ results in introducing a 1-factor.

We show that such a graph G ′, has a special dense structure.

If S is a bad set of G ′ then by its edge-maximality and Tutte’s
condition violation as per Tutte’s theorem, all the components of
G ′ \ S are complete and every vertex s ∈ S is adjacent to all the
vertices of G ′ \ {s}, and S is a clique in G ′.
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Tutte’s theorem

The maximal graph idea for proving Tutte’s theorem

Consider the set V1 of all vertices in G ′ that forms a clique and each
vertex in V1 connects to all vertices in V \ V1. In other words, V1 is
the set of all vertices of degree |V | − 1 in G ′.

It can be shown that vertices outside V1 span disjoint complete
graphs, and each vertex v ∈ V1 is adjacent to all vertices in V \ {v}.
Such a set V1 actually exists as we shall argue shortly.

Using this property (established later below), we first prove Tutte’s
theorem as follows.

We work on G ′ to establish that the negation of Tutte’s condition
holds for G ′.

Finally we show that there is an X ⊆ V with o(G − X ) > |X | for the
original connected simple graph G that has no perfect matching.

So, let V1 be the set of vertices where G ′ has the special structure
with G ′ − V1 consisting of complete subgraphs G1,G2, ...,Gk .
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Tutte’s theorem

The maximal graph idea for proving Tutte’s theorem
(cont.)

We need to show that there are at least |V1|+ 1 odd complete
subgraphs amongst G1,G2, ...,Gk .

For the sake of contradiction, assume that this is not the case.

Since we assume thus for the sake of contradiction, we can now
construct a perfect matching, contrary to the assumption that G ′ has
no perfect matching.

We can choose a 1-factor in each even Gi because each such
component is a complete subgraph of G ′, and a maximum matching
in for each odd Gi (each such matching missing one vertex) that
includes a distinct vertex in V1.

So, we choose independent edges matching one vertex from each odd
Gi , with some distinct vertex in V1.
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Tutte’s theorem

The maximal graph idea for proving Tutte’s theorem
(cont.)

Now |V | must be even (as we mentioned above) for G to obey
Tutte’s condition by choosing X = ϕ. So, G ′ too is even.

So, |V | being even and with independent edges joining V1 to odd Gi ,
we must have only an even number of vertices left in V1 to match up
arbitrarily, V1 being a complete subgraph of G ′.

This holds always irrespective of whether there are an odd or an even
number of odd Gi ’s.

Thus we get a 1-factor, a contradiction.

So, now we conclude that there are at least |V1|+ 1 odd components
of G ′ − V1.

Finally, dropping added edges from G ′ to get G we may only increase
the number of connected components and also the number of odd
connected components, thereby satisfying o(G − V1) > |V1|.
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Applications of Tutte’s theorem

Let G = (V ,E ) be a connected 3-regular graph with no more than
two cut-edges.

Since the sum of degrees 3|V (G )| must be even, G must have an
even number of vertices.

Since we have at most two cut edges in G , we must have either zero,
or one or two cut edges in G .

The case of no cut edges is done in a simpler previous exercise.

We know that for an arbitrary non-empty subset S ⊆ V that there are
(i) a edges going from S to the odd components of G − S , (ii) an
even number b of edges going from S to the even components of
G − S , and (iii) c edges connecting vertices within S .

So, a+ b + 2c = 3|S |. Let o(G − S) be l .
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Applications of Tutte’s theorem (cont.)

The induced subgraph of the odd component Gi has even sum of
degrees 3|Gi | −mi , where mi is the odd number of edges connecting
this component to S .

So, o(G − S) = l is odd if and only if a is odd.

If the cut edges are inside components of S then we can use the same
argument as that given in a previous problem.

So, we consider the case where the cut edge(s) are between a
component and S .

If there is only one cut edge then 3(l − 2) + 1 ≤ a, otherwise
3(l − 2) + 2 ≤ a.

In either case, as l and a have identical parity, we have 3l − 4 ≤ a.

So, we have 3l − 4 ≤ a ≤ a+ b + 2c = 3|S |.
As 3|S | is divisible by 3 while 3l − 4 is not, either 3l − 4 < a or
b + 2c > 0.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 79
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Applications of Tutte’s theorem (cont.)

If 3l − 4 < a, then actually 3l − 2 ≤ a, since both a and l are odd or
both are even.

So, 3l − 2 ≤ 3|S |, or l ≤ |S |+ 2/3.

Otherwise, 3l − 4 = a and b+ 2c > 0, so actually b+ 2c ≥ 2, since b
is even.

Why is b even?

So, a = 3l − 4 ≤ 3l − 4 + b + 2c ≤ 3|S |, or 3l − 4 + 2 ≤ 3|S |, or
again l ≤ |S |+ 2/3.

A much shorter and simpler proof from Lovasz and Plummer’s book
“Matching Theory” is as follows.

An elegant and shorter proof is from [LP86] for the Theorem 3.4.1,
which was originally established by Petersen in his pioneering 1891
paper with a “somewhat tedious” proof, as mentioned in [LP86].
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Applications of Tutte’s theorem (cont.)

In the shorter proof, we assume for the sake of contradiction that
there is no perfect matching.

So, we focus on the bad set S , which must have the same parity as
o(G − S) (Why?), as well as violate Tutte’s condition, thereby
satisfying o(G − S) > |S |.
So, we must have o(G − S) ≥ |S |+ 2.

So, the odd components of G − S have a total of at least
3(o(G − S)− 2) + 2 edges to/from S ; at least 3 edges from all but
two odd components, and at least 1 from two odd components.

So, any odd component will require at least one (an odd number of)
edge(s) to land in the bad set S , but at most two such components
can have exactly one landing edge because there are at most two cut
edges.
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Tutte’s theorem Applications of Tutte’s theorem

Applications of Tutte’s theorem (cont.)

The set of all edges of G , incident on the vertices of an odd
component, is of odd cardinality, but edges that remain within the
induced subgraph of the odd component are even in number.

So, we have a total of at least 3|S |+ 2 edges from S connecting to
these odd components, which is absurd.
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Establishing Hall’s theorem using Tutte’s theorem

This proof is based on
https://math.stackexchange.com/questions/1803729/derive-halls-
theorem-from-tuttes-theorem

One way to visualize a perfect machine for a graph H is to look at an
induced complete subgraph H ′ of H that has a perfect matching.

Edges going out of H − H ′ into H ′ can then also have a matching
covering the vertices in H − H ′, thus completing a perfect matching
for H.

We wish to now show how Hall’s theorem follows from Tutte’s
theorem.

Let G be a bipartite graph of n vertices with partites X and Y .

Consider the graph H obtained from G by adding an extra vertex to
the partite set Y if n is odd, and then adding edges between vertices
in Y to make Y a complete induced subgraph.
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Tutte’s theorem Deriving Hall’s theorem using Tutte’s theorem

Establishing Hall’s theorem using Tutte’s theorem (cont.)

So, if n = 2m then H = G has n vertices, with Y having an odd
(even) number k of vertices if X has an odd (even) number n − k of
vertices.

If n = 2m + 1 then H has 2m + 2 vertices with X having an odd
(even) number k of vertices and Y has 2m + 2− k , an odd (even)
number of vertices.

It is easy to see that G has a matching of size |X | if and only if H has
a perfect matching.

Assume that G has a matching of size |X |.
Since G is bipartite, each of the |X | edges of the matching has one
endpoint in X and the other in Y , leaving the remaining vertices in
H(Y ) to form a perfect matching (in the remaining complete
subgraph) H(Y ), thus yielding a perfect matching for H.

Suppose now that H has a perfect matching.
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Tutte’s theorem Deriving Hall’s theorem using Tutte’s theorem

Establishing Hall’s theorem using Tutte’s theorem (cont.)

Since H[X ] is independent, a perfect matching in H saturates X .

What more we need to show now is that if G satisfies Hall’s
condition, then H satisfies Tutte’s condition.

Suppose that G satisfies Hall’s condition. To verify that H satisfies
Tutte’s condition, we must show that o(H − T ) ≤ |T | for every
subset T of V (H).

Since H[Y ∩ T ] is a clique, the odd components of H − T are the
vertices of X all of whose neighbors lie in T , possibly along with
Y − T (only if T is chosen so that |Y − T | is odd).
Let S = {x ∈ X ,N(x) ⊆ Y ∩ T} (i.e. the vertices of X which
become isolated upon the deletion of T from H ).

Since G satisfies Hall’s condition, we have that |S | ≤ |T ∩ Y | ≤ |T |,
and thus o(H − T ) ≤ |T |+ 1.
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Tutte’s theorem Deriving Hall’s theorem using Tutte’s theorem

Establishing Hall’s theorem using Tutte’s theorem (cont.)

However, since H is of even order, o(H − T ) and |T | must have the
same parity, and we obtain o(H −T ) ≤ |T |. Thus, H satisfies Tutte’s
condition.

With the preceding steps/arguments, it is evident that Hall’s theorem
follows from Tutte’s theorem.

The necessity of Hall’s condition is obvious (to have a matching
which saturates X , any subset of X must have at least as many
neighbors as elements in order to be completely matched).

To see why sufficiency of Hall’s theorem follows from Tutte’s
theorem, let H be the auxiliary graph considered throughout this
proof. Since G satisfies Hall’s condition (by assumption), H satisfies
Tutte’s condition as shown above.

Since H satisfies Tutte’s condition, it has a perfect matching (by
Tutte’s theorem).
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Establishing Hall’s theorem using Tutte’s theorem (cont.)

Finally, since H has a perfect matching, we may conclude that G has
a matching of size |X |, as shown above in the beginning.
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Hamiltonian circuits and paths

Hamiltonian circuits

Study Theorems 4.2, 4.3 and 4.4 from [BM76]. Lemmas 4.4.1 and
4.4.2 in [BM76] are supporting results.

Hamiltonian paths (or circuits) have all the vertices of the connected
graph.

Note that adding edges to the input graph G would not decrease
vertex degrees.

Addition of edges would also preserve Hamiltonian circuits.

We add edges to G arbitrarily to create a graph G ′ which is
non-Hamiltonian but on addition of any edge e, G ′+ e is Hamiltonian.

For the sake of contradiction, we will assume that G is not
Hamiltonian.
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Hamiltonian circuits and paths

Hamiltonian circuits (cont.)

With these assumptions we will demonstrate the presence of two
vertices in the input graph G whose degrees in G add up to a number
strictly less than n, thereby contradicting the initial assumption that
δ(G ) ≥ n

2 .

This would mean that the graph G is Hamiltonian, given that the
minimum vertex degree in G is at least half the number of nodes in
the graph.

This result is by Dirac. See [Wes00; Sur10].

Since G ′ is assumed to be maximally non-Hamiltonian, we also know
that G ′ is not complete.

So, we take a pair uv where uv is not an edge of G ′. However,
G ′ + uv is Hamiltonian.

Any spanning cycle of G ′ must pass through uv in G ′ + uv ,
otherwise, we will get a spanning cycle in G ′.
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Hamiltonian circuits (cont.)

So, omitting uv from G ′ + uv , we get a Hamiltonian path
u = v1, v2, ..., vn = v in G ′.

We collect in a set S , every vertex vi if v1vi+1 is an edge.

We also collect in a set T , all vertices vi which are neighbours of
v = vn.

Suppose a vertex vi is common to S and T .

Consider v1, v2, ..., vi , vn, vn−1, ..., vi+1, v1.

This is a Hamilton cycle in G ′ because vivn is an edge by virtue of
vi ∈ T , and vi+1v1 is an edge by virtue of vi ∈ S .

But this contradicts our assumption that G ′ is non-Hamiltonian.

So, S and T must not share any element.

Now d(u) = |S | and d(v) = |T |.
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Hamiltonian circuits (cont.)

But S and T together have strictly less than n vertices (as neither S
nor T can have vn), a contradiction because each vertex degree in G ′

is at least n
2 .

This also contradicts the fact that the initial input graph G has
minimum vertex degree at least n

2 .

Therefore, the assumption that G is not Hamiltonian is contradicted.

The case of n = 2 is excluded here. So, we assume that the graph has
at least three vertices.

Note that we only used the sum of degrees of two vertices
unconnected in G , which were at the two ends of the longest path,
when we compared the sum of degrees with n.

So, the minimum degree condition can be weakened/ generalized
somewhat.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 91



Hamiltonian circuits and paths

Hamiltonian circuits (cont.)

So, we may now state a sufficient condition as follows. If n > 3 and
the degree sum of any two non-adjacent vertices is at least n, then G
contains a Hamilton circuit.

This result is due to Ore. See [Wes00; Sur10].
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Properties of the universal set of vertices of a maximally saturated
graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching

Let V1 be the set of vertices connected to all other vertices by edges
in G ′.

Let V2 = V \ V1.

We want to show that if a, b, c ∈ V2, and b is adjacent to both a and
c , then a is adjacent to c.

This means vertices in V2 have adjacency as an equivalence relation,
and therefore V2 is partitioned into complete subgraphs.

Suppose this is not the case.

Since b ∈ V2, there is a fourth point d which is not adjacent to b, as
b would be in V1 if it were adjacent to all vertices outside V1.

So, ac and bd are not in G ′.

By the maximality argument, G ′ + ac has a 1-factor F1 and G ′ + bd
has a 1 factor F2.
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Properties of the universal set of vertices of a maximally saturated
graph with no perfect matching

Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

Clearly, ac is a perfect matching edge in G ′ + ac, and bd is a perfect
matching edge in G ′ + bd . Otherwise, G ′ would have had a perfect
matching, which is not the case.

Observe F1 ∪ F2.

This union has common edges and alternating circuits, ac on say C1

and bd on say C2.

If C1 and C2 are distinct circuits then we get a 1-factor for G ′ (a
contradiction), by replacing the edges of F1 by the edges of F2 inside
the circuit C1 (thereby removing the edge ac of F1 from G ′ + ac),
and yielding a (new) perfect matching in G ′.
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Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

Note that bd was not there in G ′, and the F2 edge bd in C2 is not in
C1. So, the above switching will give a perfect matching in G ′, as ac
is dropped in C1, and edges of F2 in C1 now included in the new
matching are all in G ′.

Thus F1, a perfect matching for G ′ + ac was modified to generate a
new perfect matching for G ′ of the same size, a contradiction.

The only other case is if C1 = C2.

In the cycle C1 = C2 let us start from b through bd till we eventually
hit ac, without loss of generality reach a before we hit c .

This traversal b, d , ..., a, c is a path from b to a, starting at F2 edge
bd , and ending at a in another F2 edge, because ac is in C1 = C2 in
F1.
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Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching (cont.)

So, this (b, a) path P, plus the {a, b} edge forms the cycle K + ab,
with alternating edges of F2.

Replace edges of K in F2 by edges of K not in F2. This will give a
new perfect matching in G ′ as bd of F2 is dropped to get the new
matching and bd was never in G ′.

We thus replace F2 edges in this circuit K + ab by an equal number
of “other” alternating edges in K + ab to get a 1-factor of G ′,
whereby we drop {b, d}, which was not in G ′ anyway, and add {a, b},
which was in G ′.

Thus we get a new perfect matching for G ′, by modifying the perfect
matching F2 for G ′ + bd .

However, G ′ does not have a 1-factor as we stated in our premise.
So, we conclude that V2 is an equivalence relation due to {a, c} being
in G ′.
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Perfect graphs

Perfect graphs

Local conditions can lead to lower bounding the chromatic number
though chromatic number can grow even if girth is high, as the graph
grows.

So, global conditions influence growth of chromatic number.

However, in perfect graphs we have some checks.

We define perfect graphs as those graphs G such that χ(H) = ω(H)
for every induced subgraph H ⊆ G .

By this definition it is implied that induced subgraphs of perfect
graphs are perfect.

Since induced subgraphs of perfect graphs are perfect, it is natural to
characterize perfect graphs using forbidden induced subgraphs.

So, we can say that there is a set F of imperfect graphs such that any
graph is perfect if and only if it has no induced subgraph isomorphic
to any graph in F .
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Perfect graphs

Perfect graphs (cont.)

Here, F could be the set of all imperfect graphs but we would like to
have a small set F .

The most famous conjecture till 2005, due to Berge, from 1966, was
that F is the set of all odd cycles of size least 5 and their
complements.

Such cycles and their complements are not perfect.

So we can rephrase the conjecture – a graph G is perfect if and only
if neither G nor its complement G ′ has an odd cycle of length 5 or
more as an induced subgraph.

This was the strong perfect graph conjecture (SGPC) which was
settled as a theorem in 2005 [CRST06].

Such graphs were known as Berge graphs, which we know now thus
as exactly the perfect graphs.
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Perfect graph theorem (PGT)

The perfect graph theorem (PGT) states that a graph is perfect if
and only if its complement is perfect.

The SPGC clearly implies PGT.

The PGT was proved by Lovasz in 1972. This proof involves two
stages.
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Generating perfect graphs by connecting two cliques

Let G have two complete disjoint graphs and some edges between
them. Then χ(G ) = ω(G ).

See Theorem 8.1 in [GGL95]; the complement graph of G is bipartite.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 100
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Generating perfect graphs by extension of a vertex

Furthermore, in order to prove PGT, we require the following result
(see Lemma 5.5.4 of [Die17]).

The graph obtained by expanding a vertex of a perfect graph is also
perfect.

A vertex x in a graph G is expanded by adding a new vertex x ′ and
connecting x ′ to x and all neighbours of x in G , thus obtaining the
expanded graph G ′.

This result is established using induction on the number of vertices.
Later PGT is also established using induction and using this vertex
expansion result.

Coming to expanding G at vertex x , introducing edge xx ′ by adding
the new vertex x ′, we get graph G ′, where x ′ connects to all
neighbours of x in G .

We show that G ′ is perfect if G is so.
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Generating perfect graphs by extension of a vertex (cont.)

We use induction, with the basis case of expansion of K1 to K2,
which are both perfect.

Now G is perfect so for G ′ to be shown perfect we need only show
χ(G ′) ≤ ω(G ′).

This is so because every proper induced subgraph H of G ′ is either
isomorphic to some induced subgraph of G (and therefore perfect
with χ(H) ≤ ω(H)), or created from a proper induced subgraph of G
by the expansion of G .

If it is the second case above then the induced subgraph H of G ′ must
have x ′, and a proper induced subgraph K of G , with or without x .

If x is not there then H = K + {x ′} is just like an isomorph of a
proper induced subgraph K + {x} of G where x ′ acts just like x .

Otherwise we have the non-trivial case where both x and x ′ are in H !
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Generating perfect graphs by extension of a vertex (cont.)

In this case the subgraph H of G ′ is perfect, by the induction
hypothesis and the expansion construction. Why?

This is because we can use induction for showing that the extension
of a proper induced perfect subgraph of G at the vertex x , yields a
perfect graph H, even if it has both x and x ′ !

So now we have shown that in all the possible cases for a proper
subgraph H of G ′, H is indeed perfect and therefore has a ω(H)
coloring.

Therefore, now we only need to further show that χ(G ′) ≤ ω(G ′).

Let w = ω(G ), then ω(G ′) is either w or w + 1.

The easier case is when the maximum clique size is w + 1.

Then χ(G ′) ≤ χ(G ) + 1 = w + 1 = ω(G ′), because we may need just
one more colour and G is perfect.
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Generating perfect graphs by extension of a vertex (cont.)

However if ω(G ′) = w , then note that x is not in any Kw of G , as
otherwise, together with x ′, that would yield a Kw+1 in G ′, a
contradiction to ω(G ′) being w .

Observe that our definition of extension of G to G ′ at x by x ′ now
helps us in using this trump card.

Now G being perfect we color G with ω(G ) colors.

But x misses all Kw of G , though the color class X of x would not
miss any Kw of G . Why?

See the induced subgraph H = G − (X \ {x}), which misses the color
class X but not x , and has ω(H) < w .

By the induction hypothesis (H being a proper induced subgraph of
G , and thus being perfect), we can color H with w − 1 colors !
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Generating perfect graphs by extension of a vertex (cont.)

Now X is an independent set but observe from the expansion
construction of x ′ that X ′ = (X \ {x}) ∪ {x ′} is also an independent
set as x and x ′ play similar connectivity roles, and this set X ′ is
exactly all vertices in G ′ but not those in H by definition of H, X and
x ′ !

So the (w − 1)-coloring of H can be extended to a w -coloring of G ′

by using only one additional color.
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Generating a perfect graph by the extension at vertices
with perfect graphs

We will now establish a result by Lovasz of 1972 about graph
extension where each vertex is extended by replacing it with some
perfect graph.

We will use the characterization of perfect graphs that uses the fact
of an independent set in each and every induced subgraph meets all
the maximum cliques in that induced subgraph.

Imagine a vertex x0 being replaced in G by some perfect graph G (x0)
for constructing the extension G ′ of G at the vertex x0.

We can show that G ′ is perfect by only showing that χ(G ′) ≤ ω(G ′);
structurally, all induced subgraphs of G ′ are similar to G ′ and
therefore all the arguments applying to G ′ also apply similarly to
these induced subsets.
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Generating a perfect graph by the extension at vertices
with perfect graphs (cont.)

Let S be a color class in a χ(G )(= ω(G ))-coloring of the perfect
graph G containing x0.

Let S1 be an independent set of Gx0 , that meets all maximum cliques
of Gx0 .

Why is (S − x0) ∪ S1 an independent set in G ′?

Firstly x0 is not in G ′ but S is an independent set, a color class of G ’s
optimal coloring.

And S1 is a local independent set in Gx0 .

Since S is the color class of x0, no vertex in the replacement G (x0) is
adjacent to any vertex of S .

Suppose we take any maximum clique T of G ′. Does T meet
(S − x0)) ∪ S1? Yes. Why?

Hint: Both G and Gx0 are perfect.
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Generating a perfect graph by the extension at vertices
with perfect graphs (cont.)

So now that we have seen how the extension G ′ of a perfect graph G
is also perfect, we will proceed with proving PGT.

Department of Computer Science and Engineering, IIT Kharagpur Sudebkumar Prasant Pal 108



Perfect graphs Proving PGT as in [Die17; GGL95]

Proving PGT as in [Die17; GGL95]

Induced subgraphs of perfect graphs are perfect.

It suffices to show that given a perfect graph G , the complement
graph Ḡ satisfies χ(Ḡ ) = ω(Ḡ ), because by the induction hypothesis,
we know that every proper induced subgraph of Ḡ is also perfect
because every induced subgraph of G is perfect.

Let us consider the complete subgraph of K of G that meets all the
maximum independent sets of G of size α(G ) = α. Indeed there is
such a subgraph K of G as we show below.

Note that we have characterized perfect graphs as graphs G whose
each induced subgraph H has an independent set in H that meets all
maximum cliques of H.

Observe that G and its induced subgraphs are perfect, and that the
complements of the induced subgraphs of G are perfect, by the
induction hypothesis.
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Proving PGT as in [Die17; GGL95] (cont.)

So, we have ω(Ḡ − K ) = α(G − K ) < α(G ) = ω(Ḡ )

The strict inequality above follows because the independent set K in
Ḡ meets all the maximum cliques of Ḡ .

In other words, each maximum independent set in G loses a vertex
when K is dropped from G .

Now let us start with a minimum proper vertex coloring with
χ(Ḡ − K ) colors for Ḡ − K and add the independent set K of Ḡ to
Ḡ − K .

Since K meets each maximum clique of Ḡ , we may need a new color
for the vertices in K for a minimum proper vertex coloring of Ḡ in
addition to the χ(Ḡ − K ) colors required for Ḡ − K .

So, χ(Ḡ ) ≤ χ(Ḡ − K ) + 1 = ω(Ḡ − K ) + 1 ≤ ω(Ḡ )

The equality above is by the induction hypothesis.
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Proving PGT as in [Die17; GGL95] (cont.)

Now all we need to do is show that there is a complete subgraph K in
G that meets all the maximum independent sets in G .

For the sake of contradiction we assume to the contrary that there is
no such complete subgraph K .

Then for every complete subgraph K of G we must have some
maximum independent set AK of G so that K ∩ AK = ϕ.

We will also require notation K for the set of all cliques K1,K2, ...,Kt

of G .

For each vertex x of G , we count the number of K ∈ K such that x is
a vertex in AK , and call this count as k(x); this will be the size of the
clique that extends G at the vertex x in G .

k(x) = |{K ∈ K|x ∈ AK}|
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Proving PGT as in [Die17; GGL95] (cont.)

So, vertex x of G may vanish in the extension of G if k(x) = 0 but
this does not affect perfectness of the extension.

Now we determine ω(G ′) as the number of vertices of some maximum
clique of G ′, where X is the corresponding maximum clique of G .

We recall that the extension G ′ must be perfect because G is perfect
and therefore χ(G ′) ≤ ω(G ′).

We know that ω(G ′) must be the sum of all k(x) such that x ∈ X ,
that is

w(G ′) =
∑
x∈X

k(x)

which is the number of (x ,K ) pairs, where x ∈ X , and K ∈ K such
that x ∈ AK .

This can be abbreviated as the sum over all K ∈ K of |X ∩ AK |, that
is,

∑
K∈K |X ∩ AK |.
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Proving PGT as in [Die17; GGL95] (cont.)

We also know that |G ′| must be the sum of k(x) over all vertices x in
G , which is the number of (x ,K ) pairs over all K ∈ K and x ∈ V ),
such that x ∈ AK , abbreviated as the sum over all K ∈ K of
|V ∩ AK |, which is clearly |K|.α(G ).

Therefore, the easier part is to show that |G ′| is exactly |K|α(G),
thereby χ(G ′) ≥ |G ′|

α(G ′) ≥
G ′

α(G) = |K|.
Why is α(G ′) ≤ α(G )?

The interesting part is showing that
ω(G ′) =

∑
x∈X k(x)=

∑
k∈K |X ∩ AK | ≤ |K| − 1, thus deducing

χ(G ′) ≥ |K| > |K| − 1 ≥ ω(G ′).

Now X being a complete subgraph cannot contribute more than one
vertex to any AK for K ∈ K, where as X ∩ AX = ϕ, whence
ω(G ′) ≤ |K| − 1.

So we get ω(G ′) < χ(G ′), contradicting perfectness of G ′.
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Chordal graphs are perfect

See Propositions 5.5.1 and 5.5.2 in [Die17].
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Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set

Note that the very definition of perfect graphs (in terms of the
equality of the chromatic number and the maximum cliques size of
induced subgraphs) implies that proper induced subgraphs of perfect
graphs are also perfect.

Suppose G is a perfect graph and G ′ is a proper induced subgraph of
G .

So, G ′ being perfect as well, we have χ(G ′) = ω(G ′).

Therefore, any color class S of a χ(G ′) coloration must meet every
maximum clique of G ′.

Otherwise, S misses some maximum clique say C of G ′ and therefore
|C | = ω(G ′) < χ(G ′), contradicting the perfectness of G ′.

So, G being perfect, we see that every induced subgraph G ′ of G has
an independent set that meets every maximum clique of G ′.
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Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

Conversely, suppose every proper induced subgraph G ′ of G has an
independent set that meets all the maximum cliques of G ′.

We show that χ(G ′) ≤ ω(G ′) for the induced subgraphs G ′ by
induction on the number of vertices in G ′.

Let S be an independent set in G ′ that meets every maximum clique
in G ′.

Consider the induced subgraph G ′ − S .

Clearly, any proper coloration of G ′ will not require at most one more
color than χ(G ′ − S).

So, χ(G ′) ≤ χ(G ′ − S) + 1.

Also, since S meets every maximum clique of G ′, adding S to G ′ − S
will give cliques of size ω(G ′) ≥ ω(G ′ − S) + 1 in G ′; S eats away at
least one vertex from every maximum clique of G ′.
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Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

Thus, we have ω(G ′) ≥ ω(G ′ − S) + 1 = χ(G ′ − S) + 1 ≥ χ(G ′).

The equality is due to the induction hypothesis.

Now we will view the same result in a different way.

For a perfect graph G , let H be any induced subgraph of G .

Let A be any color class of a χ(H)(= ω(H)) coloration of H.

So, the induced subgraph H − A can be colored with strictly less than
χ(H) colors, since a color class is fully deleted.

Also, H − A is perfect. So, ω(H − A) = χ(H − A) < χ(H) = ω(H).

Conversely, we show that if G is such that for every induced subgraph
H of G , there exists an independent set A in H such that
ω(H − A) < ω(H), then G is perfect.

If H is a proper induced subgraph of G then by the induction
hypotheses H is perfect as H satisfies the premise of the converse.
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Characterizing perfect graphs using overlaps of all
maximum cliques with an independent set (cont.)

So, we only need to consider G itself.

So, assume that A is an independent set in G such that
ω(G − A) < ω(G ).

But χ(G − A) = ω(G − A) < ω(G ), and also
χ(G ) ≤ χ(G −A) + 1 ≤ ω(G ), since G −A is perfect and G needs at
most one more color than G − A for a proper coloration.
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Another characterization of perfect graphs by Lovasz
(1972)

A graph G (V ,E ) is perfect if and only if |V (H)| ≤ α(H)ω(H) for
ever induced subgraph H of G . Here, V (H) is the vertex set of H.

We will consider only the sufficiency part here as in Theorem 5.5.5
[Die17].

The graph G may be assumed to be not perfect for the sake of
contradiction, whereas the premise |V (H)| ≤ α(H)ω(H), holds for all
induced subgraphs of G , including G itself.

Also, by the induction hypothesis, each proper induced subgraph of G
is perfect.
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Another characterization of perfect graphs by Lovasz
(1972) (cont.)

(Equality 1:) For any non-empty independent set U of G , G − U has
the same values for chromatic number χ(G − U) and the maximum
clique size ω(G −U), and this must be equal to say ω = ω(G ). Why?
This naturally holds also for singleton vertex sets U = {u}, for
u ∈ V (G ).

Any u ∈ V (G ) may or may not be in a maximum clique Kω, called K
of G for brevity.

(Fact 2:) If u /∈ K then K meets all the ω color classes of G − u.
Why? Neither G −u nor K have u, so K must have exactly one vertex
from each color class of a proper vertex coloring of G − u of ω colors.

(Fact 3:) If u ∈ K , then K meets all the ω color classes of G − u
except one color class. Why? The vertex u ∈ K is in one color class
of a proper coloring of G − u, so K can cover one vertex from only
ω − 1 more color classes.
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Another characterization of perfect graphs by Lovasz
(1972) (cont.)

Now starting from a maximum independent set
A0 = {u1, ..., uα(G)=α} of G , we have ω(G ) color classes A1, ...,Aω of
a ω-coloring of G − u1, as many color classes Aω+1, ...,A2ω of a
ω-coloring of G − u2, and so on, a total of α(G )ω(G ) sets, A1

through Aαω.

For each of the αω + 1 such independent sets Ai , i ∈ {0, 1, 2, ..., αω},
we know that G − Ai has a Kω, say Ki [by Equality 1].

(Fact 4:) However, for each of the possibly multiple Kw ′s, say K in
G , we have K ∩ Ai = ϕ for exactly one i ∈ {0, 1, 2, ..., αω}.
To see why Fact 4 holds, we use Facts 2 and 3.

Observe that by Fact 2 above, if K ∩ A0 = ϕ, that is, each of
ui , 1 ≤ i ≤ α, misses K , then every color class of G − ui meets K , as
follows.
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Another characterization of perfect graphs by Lovasz
(1972) (cont.)

K ∩ A(i−1)α+ȷ ̸= ϕ, for all j , 1 ≤ j ≤ ω.

On the other hand, if K ∩ A0 ̸= ϕ, then |K ∩ A0| = 1, and
K ∩ Ai = ϕ for exactly one i , 1 ≤ i ≤ αω.

This happens as follows by using Facts 2 and 3.

Let K meet A0 at the unique vertex ui . Apply Fact 3 to this unique
vertex ui ∈ K ∩ A0 (where only one of the color classes of G − ui ,
that is, A(i−1)ω+j would be missed by K ), and apply Fact 2 to all the
other vertices of A0.

Now define A as a matrix of row incidence vectors for Ai , and B as a
matrix of column incidence vectors of Kj .

Why is AB = J, where J is a (αω + 1)X (αω + 1) matrix of all ones
except the diagonal, which is all zeros? Hint: See how Ki is defined
with respect to Ai .
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Another characterization of perfect graphs by Lovasz
(1972) (cont.)

Are AB and thus A (B) non-singular?

Why is the rank of A αω + 1?

Why is |V (G )| ≥ αω + 1? This contradicts the premise
(|V (G )| ≤ αω), and therefore G must be perfect.
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Bipartite graphs and their complements

Are bipartite graphs perfect?

Are complements of bipartite graphs also perfect?

The Konig-Egervary theorem along with Gallai’s theorem imply

(i) β(G ) = α′(G ) (Konig-Egervary theorem)=,

(ii) n − α(G ) (independent sets and vertex covers in G are
complements of each other)=,

(iii) n − ω(G ′) (independent sets in G are cliques in the complement
graph G ′)=,

(iv) n − β′(G )(Gallai’s theorem)=,

(v) n − χ(G ′) for a bipartite graph G and its complement G ′,
provided we show that,

(vi) β′(G ) = χ(G ′).

Also, we have α(G ) = β′(G ) due to the Konig-Egervary theorem and
Gallai’s theorem.
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Bipartite graphs and their complements (cont.)

Is there a α(G ) = β′(G ) = ω(G ′) vertex coloration for G ′, the
complement of the bipartite graph G ?

This above question would show χ(G ′) = ω(G ′) for the complement
G ′ of a bipartite graph G .

Take this as a homework problem.

Firstly, V (G ) can be covered by α(G ) = β′(G ) edges from the
minimum edge cover of G , assuming G has no isolated points.

The edge cover (clique cover) in G is made of as many stars as
α′(G ) = β(G ).

The minimum clique cover (edge cover) of size
α(G ) = β′(G ) = ω(G ′) in G corresponds to the minimum cover with
independent sets in G ′, with as many colors required for a
χ(G ′) = α(G ) = β′(G ) = ω(G ′) coloration.
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Bipartite graphs and their complements (cont.)

Incidentally, the centres the stars of the edge cover in G constitute a
minimum vertex cover in G and single edges from the stars make a
maximum matching in G .
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Coloring

We observe that edge coloring chromatic number χ′(G ) of a graph G
is the same as the vertex coloring chromatic number χ(L(G )) of the
line graph L(G ) of G .

The edges e = {u, v} of G incident at a vertex v of G form a clique
Cv in L(G ) where each edge of e of G is a vertex ve in L(G ) of the
clique Cv .

A trivial lower bound for χ′(G ) is ∆(G ), with equality attained (see
Exercise 22 of Chapter 3 in [Bol98]) for bipartite graphs.

Another lower bound is ⌈ e(G)
β(G)⌉.

We note that a complete graph G requires to have
(
χ(G)
2

)
edges.

It is also the case that any graph G has at least
(
χ(G)
2

)
edges.

Suppose we construct a graph G vertex by vertex by adding edges
incident on the new vertex at each step of vertex inclusion, where we
call the current graph G ′ at each step.
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Coloring (cont.)

So, there will be steps of vertex inclusion when the chromatic number
χ(G ′) is incremented.

In these steps the new vertex must have been adjacent to vertices of
as many as χ(G ′) different colors in any proper coloration of G ′.

So, the number of edges should increase by at least χ(G ′) to at least

χ(G ′) +
(
χ(G ′)

2

)
=

(
χ(G ′)+1

2

)
in the new graph.

A better way of looking at this is to visualize the χ(G ) color classes,
each of which is an independent set, and unless there are edges
between two color classes, we can always merge the two into one
class.

Also, the sum of the vertex coloring numbers of a graph and its
complement is no more than n+ 1, where n is the number of vertices.
(Exercise 5 of Chapter 5 in [Bol98])
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This problem can be solved as in [Lov93] using a result of R. P.
Gupta, in: Theory of Graphs. Proc. Int. Coll. Rome, Gordon and
Breach, 1969.

It is easy to see that we will need at least as many as n(G)
α(G) colors for

proper vertex coloring.

So, in any induced subgraph H of a perfect graph G , we have
χ(H) = ω(H) ≥ n(H)

α(H) .

This is also a sufficient condition for perfectness of G , and this also
implies the perfect graph theorem PGT which says that a graph is
perfect if and only if its complement graph is perfect.

We may need more colors if there are vertices of high degree.

However, it is easy to show that χ(G ) will not exceed ∆(G ) + 1 in a
greedy proper coloring.
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For the complete graph and the odd cycle, this is the best we can do
as Kn has maximum degree n − 1 and C2k+1 has maximum degree 2.

Szekeres and Wilf (1968) gave an upper bound for chromatic number
as follows. For any graph G , χ(G ) ≤ 1 + max δ(G ′), where the
maximum is taken over all induced subgraphs G ′ of G .

So, for Kn, we have χ(Kn) = (n − 1) + 1. For C2k+1 the chromatic
number is 2+1.

So, much for these extreme cases of regular graphs.

Now consider a non-regular graph K4 − {e}. where e is any edge in
K4.

This graph has 4 vertices, 5 edges, and 15 non-empty vertex subset
induced subgraphs, of which the four singleton vertex subset
subgraphs have minimum vertex degree 0, five 2-vertex subgraphs
have minimum degree 1, one 2-vertex subgraph has 0, two 3-vertex
subgraphs 2, two 3-vertex subgraph 1, and one 4-vertex graph 2.
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So, we see that χ(K4 − {e}) = 1 + 2, satisfying the upper bound
inequality for χ(G ) tightly.

Let k = max δ(G ′), where G ′ is any induced subgraph of G .

So, the graph G must have a vertex of degree at most k .

This is subtle and deep, and would require some thought. So, we give
a few examples.

In the case G = Kn, k = n − 1 and this is also the degree of a vertex
in the minimal subgraph of Kn with chromatic number χ(Kn) = n.

For G = K4 − {e}, k = 2, and this is also the degree of a vertex in
the minimal subgraph of Kn − {e} with chromatic number
χ(Kn − {e}) = 3.

Another example is the wheel graph W6, which has a 5-cycle and a
5-star, 10 edges, 6 vertices, girth 3, maximum clique size 3, chromatic
number 4, and the minimum degree of all its proper induced
subgraphs is at most 2, whereas minimum degree of W6 is 3.
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So, χ(G ) ≤ 1 + max δ(G ′) = 1 + 3 = 4, over all induced subgraphs
G ′ of G = W6.

Note that W6 has no K4 but has chromatic number 4.

However, like W6, W7 too has all its proper induced subgraphs of
minimum degree at most 2, whereas W7 has minimum degree 3, with
chromatic number 3 ≤ 1 + 3, loosely satisfying the inequality.

So, W7 fits the inequality χ(G ) ≤ 1 + max δ(G ′), over all induced
subgraphs G ′ of G = W7, loosely.

Now suppose in an arbitrary connected graph G , let xn be a vertex
that has degree no more than the maximum of the minimum vertex
degree, k = max δ(G ′), over all induced subgraphs G ′ of G .

Observe that by the definitions, it holds that G has such a vertex xn.

Set Hn−1 = G − {xn}.
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Coloring (cont.)

Further observe that Hn−1 too has a vertex of degree at most k . Let
xn−1 be such a vertex.

Set Hn−2 = Hn−1 − {xn−1} = G − {xn, xn−1}.
In this way we enumerate all the vertices of G .

Observe that greedily coloring vertices in the order of this ingenious
sequence x1, x2, ..., xn, each xj connected by an edge to at most k
vertices preceding it in the sequence.

This result is deep and can be exploited in the case of connected
graphs that are not ∆-regular where ∆ is the maximum vertex degree.

Observe the subtle property that in such cases, max δ(H) over all
induced subgraphs H of G is at most ∆− 1, making χ(G ) ≤ ∆.

So, we need to consider now only ∆-regular connected graphs G for
showing that χ(G ) ≤ ∆, for establishing Brooks’ theorem.

This is shown in Theorem 3, Chapter 5 in [Bol98] as follows.
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A graph can be disconnected or may have a cut vertex or, contain a
complete subgraph whose vertex set disconnects the graph, as in
chordal graphs.

In such cases we can colour each part separately and then combine
these colourings to produce a colouring of the whole graph.

Therefore, we may assume without loss of generality that G is
2-connected and ∆-regular.

Here, we drop the case of ∆ = 2 because a connected 2-regular
3-chromatic graph is an odd cycle.

So, we assume ∆ ≥ 3.

If G is 3-connected, let xn be any vertex of G and let xl , x2 be two
nonadjacent vertices in G − {xn} in the neighbourhood of xn in G .

Such vertices exist since G is regular and not complete.
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Coloring (cont.)

If G is not 3-connected, let xn be a vertex for which G − {xn} is
separable, and thus has at least two blocks.

Since G is 2-connected, each endblock of G − {xn} has a vertex
adjacent to xn.

Let x1, x2 be such vertices belonging to different endblocks.

In either case, we have found vertices xl , x2, xn such that G − {x1, x2}
is connected, x1x2 is not an edge of G , xn has edges to x1 and x2.

Let xn−1 ∈ V − {xl , x2, xn} be a neighbour of xn, let xn−2 be a
neighbour of xn or xn−1, etc.

Then the order xl , x2, x3, ..., xn is such that each vertex other than xn
is adjacent to at least one vertex following it.

Thus the greedy algorithm will use at most ∆(G ) colours, where x1
and x2 get the same colour.
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Coloring (cont.)

Here, xn is the only vertex with ∆ neighbours preceding it, xn being
adjacent to both x1 and x2, whereas while coloring each of the other
n− 1 vertices greedily we have at most ∆− 1 neighbours to consider.

We now present an alternative proof of the Szekeres-Wilf result as in
[Har69].

Let χ(G ) = k and let H be a minimal induced subgraph of G with
χ(H) = k.

Let v be any vertex of H.

Then χ(H − v) = k − 1.

So, d(v) ≥ k − 1 and δ(H) ≥ k − 1.

So, the maximum of δ(H ′) over all induced subgraphs H ′ of H is at
least k − 1.

It is now easy to see that max δ(G ′) over all induced subgraphs G ′ of
G is also at least k − 1.
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Hypergraph theory

Let us consider a set system or a hypergraph H = (V (H),E (H)).

A subset A ⊆ V (H) is called shattered if for every B ⊆ A, there exists
an E ∈ E (H) such that E ∩ A = B.

The Vapnik-Chervonenkis dimension VC − dim(H) of H is defined as
the cardinality of the largest shattered subset of V (H).

If VC − dim(H) is d then we show that |E (H)| ≤
(n
0

)
+
(n
1

)
+ ...+

(n
d

)
.

This is trivial if d = 0 and n ≤ d . Why?

For d = 0 and n < d , it is vacuously true.

For n = d , we have all possible subsets of V (H) realized as edges in
E (H). See [PA11].

We use strong induction on both d and n.

We must drop a vertex to do induction on n; to do induction on n
and d simultaneously, we must drop a vertex as well as edges which
did not have the vertex.
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Hypergraph theory

Hypergraph theory (cont.)

In the former case we just take the proper induced hypergraph by
dropping a vertex x ∈ V (H).

In the latter case, we retain only those E ∈ E (H) edges that do not
have the deleted vertex x but E ∪ {x} ∈ E (H).

Naturally, these two sets E (H1) and E (H2), are such that
|E (H1)|+ |E (H2)| = |E (H)| ≤ Σd

i=0

(n−1
i

)
+Σd−1

i=0

(n−1
i

)
= Σd

0

(n
i

)
.

In the latter case the VC dimension too falls with the deletion of the
vertex and edges.

This because if E (H2) shatters a set A ⊆ V (H)− {x} then E (H)
shatters the set A ∪ {x}.
SupposeB ⊆ A is such that B = h ∩ A for some h ∈ E (H2), then
B ∪ {x} = (h ∪ {x}) ∩ (A ∪ {x}).
This means that the upper bound on the number of edges forces the
VC dimension to rise as we add edges.
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Hypergraph theory (cont.)

The vertex cover number or transversal number τ(H) is naturally
defined by extending the similar notions in graphs.

The packing number or matching number ν(H) is the dual
counterpart, whereby ν(H) ≤ τ(H).
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Planarity

Planarity

See Proposition 6.1.2 in [Wes00].

For any planar drawing without crossings for a graph, we can start
drawing a spanning cycle first (if any), in a closed loop, and then
draw internal and external chords for remaining edges judiciously,
without crossings.

We can show that Kuratowski’s two graphs are not planar by showing
that it is impossible to embed the graphs thus, by analysis of the
various exhaustive cases.

The easier part of Kuratowski’s theorem is to show that the presence
of homeomorphs of K5 or K3,3 as subgraphs would make a graph
non-planar.

We achive this by (i) showing that K5 and K3,3 are non-planar, and
(ii) the presence of a homeomorph of a non-planar graph causes
non-planarity.
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Planarity (cont.)

A graph G is a homeomorph of another graph H if G can be obtained
by repeatedly adding degree-2 vertices w by deleting edge {u, v}, and
adding edges {u,w} and {w , v}.
Note that H is planar if and only if its homeomorph G is planar.

The necessary condition in Kuratowski’s theorem is that
homeomorphs of none of the two Kuratowski’s graphs can appear as
subgraphs in a planar graph.

The tougher (sufficiency) part of Kuratwoski’s theorem is to show
that a graph is planar if it does not have subgraphs homeomorphic to
the any of the two Kuratowski graphs.

We can show that a connected simple planar graph with m edges, n
vertices and girth g satisfies m ≤ g(n−2)

g−2 .

The dual of a planar embedding of a planar graph is such that the
sum of degrees of the faces in the planar embedding is 2m, exactly
the same as the sum of degrees of the vertices.
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Planarity (cont.)

The degree of a face is the number of its bounding edges.

So, 2m ≥ gf where f is the number of faces.

Now use Euler’s equation n+ f = m+ 2. For K3,3, m = 9, g = 4 and
n = 6, this inequality is violated.

The thickness of G is the least integer k so that G has planar
partition [G1,G2, ...,Gk ].

A planar partition of G is a collection G = [G1,G2, ...,Gk ] of
edge-disjoint spanning subgraphs of G , whose union is G .

We can derive a lower bound for the thickness θ(G ) of G in terms of
the number m of edges of G , the girth g of G , and the number of
vertices n of G .

Blocks of a graph must be planar for a graph to be planar. So,
planarity of blocks is a necessity.

Is this also sufficient? See Theorem 11.2 in [Har69].
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Planarity (cont.)

The following notations and definitions are from [Har69].

Cutpoints are cut vertices whose removal increases the number of
components.

A nonseparable graph is nontrivial, connected and has no cutpoints.

Note that complete graphs are nonseparable. A block is a maximal
nonseparable graph. Bridges are cut edges.

Reading exercises: Theorems 3.1 through 3.4 from [Har69] on cut
vertices and cut edges.

Work out Problems 3.12 and 3.13 from [Har69] on the number of
blocks and cut vertices, respectively.

Following [Par94], we proceed as follows restricting our attention to
3-connected graphs and blocks.

Corollary 6.8 in [Par94] is the simpler part of necessity, stating that
any graph containing a homeomorph of K5 or K{3,3}, is non-planar.
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Planarity (cont.)

The sufficiency can be established by just proving the converse for
3-connected graphs, using Lemma 6.2 of [Par94], which says that a
non-planar graph G with the minimal number of edges that contains
no subdivision of the two Kuratowski graphs, is simple and
3-connected.

This Lemma 6.2 of [Par94] is stated equivalently in Lemma 6.2.7 of
[Wes00] as“If G is a graph with fewest number of edges among all
non-planar graphs without Kuratowski subgraphs, then G is
3-connected.”

We know that a minimal non-planar graph is a block.

For the sake of contradiction for Lemma 6.2 of [Par94], suppose the
non-planar given graph G , with a minimal number of vertices, has a
2-vertex cut S = {u, v}, and is thus not 3-connected.

Let G − S have G1 and one connected component and G2 as the
union of the rest of the connected components.
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Planarity (cont.)

Let H1(H2) be the induced subgraph with vertex set V (G1) ∪ S
(V (G2)∪ S), with both graphs added with an additional edge e = uv .
What happens in the other case where uv is an edge of G?

Also, we will now show that at least one of H1 and H2 is non-planar
because G is non-planar, which is easy to see as in [Par94].

For the sake of contradiction, suppose the H1 is non-planar. What if
instead H2 is non-planar?

Then, the non-planar graph H1 not being a subgraph of G (as xy is
not an edge of G ), but H1 being smaller than G in the number of
edges, H1 must have a subdivision K of one of the two Kuratowski
graphs, by the minimality of G .

However, K must necessarily have e because K ⊆ G would contradict
our assumption that G has no subdivision of any of the two
Kuratowski graphs.
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Planarity (cont.)

Now, replace e of K by a u to v path in H2 to get a homeomorph of
K in G , a contradiction.

So, G must have no 2-vertex cut and so G must be 3-connected.

The case where xy is an edge of G can be very similarly argued.

Now we can show that the sufficiency condition for planarity holds for
3-connected graphs and that would be enough to do. Why?

So, let G be a connected non-planar graph which is 3-connected. We
discuss the proof of Thomassen’s result as stated in the proof of
Theorem 6.2 in [Par94] after we state a few more elementary results.

See Section 6.2 of [Wes00], Lemmas 6.2.7, 6.2.6, 6.2.5 and 6.2.4, in
that order for a detailed top-down presentation of the main result
about considering only 3-connected graphs, as in Lemma 6.2 of
[Par94].

Definition 6.2.3 for “Kuratowski subgraphs”, “minimal non-planar
graphs” in [Wes00], and Definition 5.2.19 in [Wes00] will be useful.
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V1 V2

V3V4

Figure: T 3
4 (12), the Turan graph of 12 vertices, 4-partite, with three vertices in

each partite and thus also the K 3
4 . This graph has multiple K4’s but is just one

edge deficient from possessing a K5.
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C

u ve u ve

Figure: The non-planar cases of K3,3 and K5 respectively, appearing as illustrated
in Figure 6.7(a) [Par94].
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Planarity Another proof of Kuratowski’s theorem

u
v

e

G

w

ϕ

H ′

G|e

u

v

Redrawn G

w

Figure: The transformations not violating planarity in the planar case, as
illustrated in Figure 6.7(b) [Par94].
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Planarity Another proof of Kuratowski’s theorem

Another proof of Kuratowski’s theorem

Let G be a minimal non-planar graph with all vertices having degrees
at least three. [By minimality we mean that each proper subgraph of
G is planar.]

1 We first how that G is 3-connected. (Part (a)). (Problem 5.37(a)
[Lov93].)

2 For the sake of contradiction, assume that G is not 3-connected.
However, it is trivially 2-connected as the minimum degree is three in
the connected graph G .

3 So take any a two-vertex separator S = {x , y} in G . Then, we can
define two separated graphs as follows, which are both planar and then
use their planar embeddings to get a planar embedding for G , a
contradiction.

4 Let G1 and G2 be such that G = G1 ∪G2 and V (G1)∩V (G2) = {x , y}.
5 Let P1 (P2) be an (x , y)-path in G1 (G2) and H1 = G1 + P2

(H2 = G2 + P1).
6 Observe that H1 and H2 are both planar !
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Planarity Another proof of Kuratowski’s theorem

Another proof of Kuratowski’s theorem (cont.)

7 Now deleting the two paths P1 and P2 between x and y , we get a
planar embedding of G , a contradiction.

8 Now we further show that G has a cycle with a chord. (Problem
5.37(b) [Lov93]). (Part (b)).
[Hint: Observe a longest path and that its first vertex has two more
neighbours in the same longest path.]

9 Also, G must be isomorphic to a K5 or a K3,3. (Problem 5.37(c)
[Lov93]). (Part (c)).
[Hint: Use circuits and chords: Remove the chord xy of the circuit C
that encloses the largest number of connected components of G − C .
All such components must be inside C . Prove that the graph has only
chords outside the circuit. Now consider the bridges inside the circuit
and flap out those that are flapable outside C . Show that there now
must be a bridge that forms a K5 or a K3,3 along with xy .]
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Planarity Another proof of Kuratowski’s theorem

Another proof of Kuratowski’s theorem (cont.)

10 Show that a graph G that is non-planar must have a subdivision of a
Kuratowski subgraph. (Problem 5.37(d) [Lov93]).
[Hint: A planar graph cannot have any Kuratowski subgraph. However,
we must now show that a non-planar graph must have a subdivision of
a Kuratowski subgraph. Use Parts (a), (b) and (c) above.]
[Solution sketch: If G is not planar then G contains a minimal
non-planar graph G0. If we get rid of the vertices of degree 2, we get
another minimal non-planar graph, now with vertex degrees at least
three. This graph is must be either of the two Kuratowski graphs. So,
G0 must be a subdivision of one of the two Kuratowski graphs.]
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The Kuhn-Munkres theorem and the Hungarian algorithm

The Kuhn-Munkres theorem

We start with the initial feasible labeling l(x) = maxyw(x , y), of
vertices in the complete bipartite graph G (X ,Y ,E ), with
non-negative weight edges, where y ∈ Y for each x ∈ X , and
l(y) = 0, for all y ∈ Y .

It is easy to see that this is a feasible labeling, that is,
l(x) + l(y) ≥ w(x , y), for every edge (x , y) ∈ E .

Moreover, each x ∈ X is connected to at least one vertex y ∈ Y
where the equality holds (actually, to all the vertices in Y for which
the maximum outgoing weight from x is assigned to l(x)).

Therefore, the equality graph Gl(X ,Y ,El) is not empty, to begin with.

However, we do not know how many edges of G(X,Y,E) are there in
El or whether Gl has a perfect matching.

We can definitely compute the maximum (cardinality) matching in
Gl , which may not be a perfect matching.
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The Kuhn-Munkres theorem and the Hungarian algorithm

The Kuhn-Munkres theorem (cont.)

We plan to compute a perfect matching in Gl .

If Gl has no perfect matching, we may improve the labeling l of
vertices to compute another feasible labeling l such that it now
contains more “useful” edges.

Some edges may be lost as we go from Gl to Gl ′ , and some edges
may be added.

We may then again compute the maximum matching in the new
equality graph Gl ′ and see if this matching is a perfect matching,
because Gl ′ would have an augmenting path, with respect to the
maximum matching of Gl .

Kuhn–Munkres Theorem: Let l be a feasible labeling of G . If M is a
perfect matching in Gl , then M is a maximum matching in G .
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The Kuhn-Munkres theorem and the Hungarian algorithm

The Kuhn-Munkres theorem (cont.)

Let M be any matching in G . We then have
w(M) =

∑
(x ,y)∈M w(x , y) ≤

∑
(x ,y)∈M [l(x) + l(y)] ≤∑

x∈X l(x) +
∑

y∈Y l(y) =
∑

v∈V l(v), by the feasibility requirement
of vertex labels/weights.

So, we have two equalities sandwiching two inequalities.

The first inequality is because the l function is perhaps not yet
optimized.

The second inequality is because M may not be a perfect matching in
Gl .

If M is a perfect matching in Gl , it matches all vertices in V .

Therefore, for a perfect matching M of Gl , we have
w(M) =

∑
(x ,y)∈M w(x , y) =

∑
(x ,y)∈M [l(x) + l(y)] =∑

x∈X l(x) +
∑

y∈Y l(y) =
∑

v∈V l(v), because forcing the second
inequality into an equality, forces also the first inequality to become
an equality.
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The Kuhn-Munkres theorem and the Hungarian algorithm

The Kuhn-Munkres theorem (cont.)

Now consider forcing the first inequality
w(M) =

∑
(x ,y)∈M [l(x) + l(y)]. Then, we show that M is a perfect

matching in Gl . This is intuitively so because the equality
w(x , y) = l(x) + l(y) will now hold for each edge (x , y) in M, making
M a perfect matching in the equality graph Gl . This is due to the
fact that all w(x , y), l(x) and l(y) are non-negative. See Lemma
3.2.7 in [Wes00].

A more rigorous argument is there in Lemma 13.2.2 in [Jun99].
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The Hungarian algorithm

Enhancing the equality graph requires looking for an edge that
minimally violates the equality.

So, we build the “alternating tree” that finally gives an augmentation,
and this is carried on until we get a perfect matching in the equality
graph.
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