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Abstract

Training vision-based Autonomous driving models is a
challenging problem with enormous practical implications.
One of the main challenges is the requirement of storage
and processing of vast volumes of (possibly redundant)
driving video data. In this paper, we study the problem
of data-efficient training of autonomous driving systems.
We argue that in the context of an edge-device deploy-
ment, multi-criteria online video frame subset selection is
an appropriate technique for developing such frameworks.
We study existing convex optimization based solutions and
show that they are unable to provide solution with high
weightage to loss of selected video frames. We design a
novel multi-criteria online subset selection algorithm, TM-
COSS, which uses a thresholded concave function of selec-
tion variables. Extensive experiments using driving simula-
tor CARLA show that we are able to drop 80% of the frames,
while succeeding to complete 100% of the episodes. We
also show that TMCOSS improves performance on the cru-
cial affordance “Relative Angle” during turns, on inclusion
of bucket-specific relative angle loss (BL), leading to selec-
tion of more frames in those parts. TMCOSS also achieves
an 80% reduction in number of training video frames, on
real-world videos from the standard BDD and Cityscapes
datasets, for the tasks of drivable area segmentation, and
semantic segmentation.

1. Introduction
Many A.I.-based autonomous driving applications e.g.

affordance-based driving models [21], semantic segmenta-
tion models [5], drivable area detection [24], etc., need to
collect a large amount of video data from edge devices for
training machine learning models. However, much of the
input video contains redundant information from the task
point of view. For example, in the case of affordance-based
driving models, training using many frames on straight road
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Figure 1: Data subset selection framework on edge de-
vices for reduced training dataset collection.

sections may not be necessary; while one may need a lot of
frames in the turns for training. In this paper, we are inter-
ested in developing an online subset selection (OSS) algo-
rithm [13] which can be deployed on edge devices, and can
select the most informative video frames used for training
one or more models. Figure 1 shows an overview of our
application scenario.

The problem of video frame subset selection has been
studied in various contexts, including video summarization
[13, 19], video recognition[23], video fast forwarding [17],
etc. Deep reinforcement learning based methods, which
learn a frame skipping network, with reward for better per-
formance [17, 22], or more confidence [23] on the end task
are infeasible for deployment on edge devices since they
require multiple evaluations of the end task objective (e.g.
error on a validation set or fraction of test episodes com-
pleted), for learning the parameters of the skipping net-
work. The external criteria based methods which optimize
a global criterion between selected frames and whole video,
e.g. perceptual similarity [13], manifold spanning [15], etc
are appropriate for our setting, but do not incorporate sig-
nals from A.I. tasks, e.g. loss from the currently trained



models. [12] ensures compatibility between the consecu-
tive selected video segments through a Markov Model. The
OSS framework [13] was extended to incorporate pointwise
loss of the selected frames in a composite criteria [9], and
is the most appropriate for our setting.

In this paper, we build on the multi-criteria OSS frame-
work (MCOSS) [9], where at each step, an existing set of se-
lected frames is supplemented by the most relevant frames
from an incoming set, based on the sum of total dissimilar-
ity between selected frames and incoming frames, and the
pointwise loss incurred by incoming selected frames. How-
ever, through a rigorous analysis, we show that, additive
incorporation of pointwise loss criteria in [9] suffers from
selection of fewer frames from incoming set as we provide
higher weightage to the pointwise criteria. This is due to the
fact that additive incorporation suffers from multiple count-
ing of loss of selected points thus leading to selection of
fewer frames. We propose a novel thresholded MCOSS for-
mulation (TMCOSS) which alleviates this problem while
retaining the convexity of the optimization problem. We
also propose SubMCOSS, which to the best of our knowl-
edge, is the first submodular set function-based formulation
for online subset selection incorporating pointwise criteria.

We evaluate the video frame selection performance of
TMCOSS using the autonomous driving simulator CARLA
[11] for the CAL driving model [21] task, as well as on
real-world datasets of Berkeley Deep-drive (BDD) [24] for
drivable area segmentation task and Cityscape dataset [8]
for semantic segmentation tasks, using DeepLabv3+ model
[5].

For the CAL model task, we define a novel bucket-
specific loss (BL) for the crucial relative angle affordance.
We show that TMCOSS along with bucket-specific loss
(BL), called TMCOSS-BL, can achieve a 100:20 compres-
sion (selecting 1 in 5 frames) while completing 10 out of 10
episodes in 4 different driving conditions, though models
trained on data collected from MCOSS can can only com-
plete 7 episodes for the same compression ratio. Empiri-
cally, we also show that both on synthetic data, as well as
data from selection of video frames for autonomous driving,
TMCOSS performs better than approximation algorithms
for submodular maximization [1, 2] using SubMCOSS.
On the semantic segmentation task, TMCOSS achieves a
100:20 compression with a 1% decrease in overall mIoU
score, while MCOSS suffers a decrease 8% in mIOU. Fi-
nally, on drivable area segmentation task, we achieve a com-
pression 100:20 with only 1% decrease mIoU, compared to
5% decrease for MCOSS. In all cases, datasets selected us-
ing TMCOSS are more informative than any of the individ-
ual criteria. To summarize, our main contributions are:

• We introduce the problem of designing data-efficient
autonomous driving platforms, with a key challenge
being multi-criteria OSS.

• We propose two novel multi-criteria OSS methods.
The convex relaxation based method, TMCOSS is the-
oretically motivated and empirically superior to multi-
ple recent state-of-the-art baselines.

• We propose a novel bucket specific relative angle loss
(BL), which when used with TMCOSS (TMCOSS-
BL), provide state-of-the-art compression on CAL
driving model task. TMCOSS also demonstrates
significant savings in training data requirements on
benchmark real-world datasets.

1.1. Related Work

We describe two broad classes of relevant prior works:
(a) Applications related to self-driving tasks and (b) Video
frame Subset selection. CARLA [11] is an well-established
driving simulator for the task of autonomous driving.
Codevilla et al. [6] proposed imitation learning based ap-
proaches, which were then bettered by the Conditional Af-
fordance Learning (CAL) model [21]. Recently, [7] pro-
posed a conditional imitation learning model, CILRS, and
a reinforcement learning approach for collecting better on-
policy data [20], both of which reportedly perform better
than CAL [21]. For the purpose of demonstrating the ef-
fectiveness of TMCOSS, we have used the CAL [21] as a
driving model which in our opinion is still a good model for
training driving models on CARLA simulator. We reiterate
that TMCOSS can be used with any imitation learning ap-
proach including [7]. We also studied the effect of subset
selection on tasks of drivable area detection [24] [18] which
is essentially segmenting drivable roads and alternate driv-
able roads, and semantic segmentation [4] [5] [16] on driv-
ing datasets. We used DeepLabV3+ [5] for both tasks for its
consistent robust performance over other existing models.
Video frame subset selection:
Recent online subset selection approaches can be divided
into two broad classes (1) deep learning based, and (2)
based on optimization of some input criteria. The first
class of techniques [17], [22] [23] depend on selection net-
works added to the pipeline of existing tasks and are trained
jointly. They are able to learn complex selection criteria
through deep models, but do not come with any stated se-
lection criteria, w.r.t. which the selection is optimal. These
methods are jointly trained with the end objective, e.g.
video recognition for [22] and [23], and are typically too
expensive to be deployed on edge devices.

The second class of techniques, which are also closest
to our approach, selects the data points based on different
defined criteria. These criteria include reconstruction er-
ror [3], linear dependency [15], perceptual similarity [13]
or criteria based on end tasks such as distinctiveness and
uncertainty [14] [9]. [15] recently proposed an online ap-
proach based on linear dependence criteria. However for
the current problem, we build on the pairwise criteria based



approach proposed in [13], and extend to include multiple
pairwise and pointwise criteria [9]. While these approaches
were used for the problems of video summarization [13]
and semantic segmentation [9], their setting provides flex-
ibility of incorporating multiple different types of criteria,
which is relevant to our application. We provide detailed
comparison with these approaches.

2. Data Efficient Autonomous Driving
In this section, we describe the problem of data efficient

training of autonomous driving models, with the core idea
being selection of relevant video segments in an online set-
ting. We formulate this problem as an online subset selec-
tion problem (OSS) for selecting subsets of video frames,
given input signals from existing selected video frames, and
the trained model, which involve multiple input criteria -
both for pairs of input frames and for single input frame.
Section 2.1 describes the setup of data efficient autonomous
driving and its connection to multi-criteria OSS problem
formulation. Section 2.2 points out a drawback with ex-
isting multi-criteria OSS formulation. Sections 2.3 and 2.4
describe our new formulations for the multi-criteria OSS
problem.

2.1. Problem setup and OSS

Training of vision based autonomous driving models
[21, 20] requires processing of large amounts of annotated
video data. In many cases, the videos are collected in
episodes over a period of time, leading to processing and
training of models in batches which are ordered in time.
Hence, the batchwise OSS scheme discussed in [13], is
an ideal setting for selection of video frames in this con-
text. We denote a complete dataset as D = {(xi, yi), i =
1, . . . , n} where n is the total number of datapoints (an-
notated video frames) in the dataset, xi are the features
extracted from video frames, and labels yi correspond-
ing to various learning tasks, e.g. affordances [21]. Let
Xt = {(xi, yi), i = 1, . . . ,m}, t = 1, . . . , T denote the
tth batch of episodes collected, where m denotes the num-
ber frames in a batch 1. Hence mT = n. We also define
the cumulative sets Ct = ∪ti=1Xi denoting all data col-
lected till batch t. We are interested in constructing repre-
sentative set Rt ⊆ Ct, which consists of a representative
set of frames till batch t. The intention here is that an au-
tonomous driving model Mt trained on the cumulative set
Ct, should perform similar to another model M ′

t trained on
the representative set of frames Rt in terms of an end per-
formance metric, e.g. the episode completion metric used
in [21]. Furthermore, the size of Rt should be small so
that Rt uses lower storage space and communication band-
width, and training of M ′

t potentially takes lower time. An

1Equal batch size is for simplicity of exposition, not a requirement

algorithm for selection of Rt+1 from Xt+1, given Ct, and
M ′

t thus constitutes a data efficient scheme for training of
autonomous driving models, since we are only storing and
processing Rt’s. Note that, this scheme can also be used
in the reinforcement learning schemes for improvement of
driving policies such as the one described in [20], where Xt

can be taken from the replay buffer at iteration t.
For the OSS formulation, we focus on an input batch

of episodes Xt+1. The selection algorithm uses two in-
put sets of frames Rt and Xt+1, here referred to as the old
set (superscript o) and new set (superscript n) respectively,
following notation used in [13]. Let doij denote a dissimi-
larity measure between new frame i (from Xt+1) and old
frame j (from Rt), and dnij denote the dissimilarity between
new frames i and j (both from Xt+1). The OSS formula-
tion minimizes the composite criteria with two parts: (1)
total dissimilarity between the ”representative frames” (ei-
ther from new or old set) and the incoming frame it repre-
sents, and (2) number of representative frames from the new
set. Let zoij , z

n
ij be the relaxed binary assignment variables

(Zij ∈ [0, 1]), where zoij = 1 denotes that the representative
of ith new example ( (xi, yi) ∈ Xt+1) is jth old example
((xj , yj) ∈ Rt), and znij = 1 denotes that representative
of ith new example ((xi, yi) ∈ Xt+1) is the jth new ex-
ample ((xj , yj) ∈ Xt+1). Otherwise, zij = 0. Hence any
solution for optimal representative allocation should satisfy
the constraint:

∑|Rt|
j=1 z

o
i,j +

∑m
j=1 z

n
i,j = 1, asserting that

every frame i ∈ Xt+1 has exactly one representative. The
objective function can be written as:

L(zoij , z
n
ij) =

m∑
i=1

|Rt|∑
j=1

zoijd
o
ij +

m∑
i,j=1

znijd
n
ij + λ

m∑
j=1

∥[zn1,j . . . znm,j ]∥p

Das et al. [9] has incorporated both pairwise scores (e.g.
distance dij between pairs of frames i, j) and pointwise
scores (e.g. negative loss −Li for the frame i). The modi-
fied cumulative dissimilarity function Qij is a weighted sum
of dij and Lj - the loss incurred by the representative point.
Thus Qij = ρdij − (1− ρ)Lj . Let Ln

i denote the pointwise
attribute (here loss value) for datapoint i in Xt+1 and anal-
ogously for Lo

i (denoting loss for datapoint i in Rt). The
final formulation is:

min
zoij ,z

n
ij

m∑
i=1

|Rt|∑
j=1

zoijQ
o
ij +

m∑
i,j=1

znijQ
n
ij + λ

m∑
j=1

∥[zn1,j . . . znm,j ]∥p

s.t.

|Rt|∑
j=1

zoi,j +

m∑
j=1

zni,j = 1, ∀i ∈ Xt+1

zni,j , z
o
i,j ∈ [0, 1], ∀i, j (1)

where Qn
ij = ρdnij − (1 − ρ)Ln

j and Qo
ij = ρdoij − (1 −

ρ)Lo
j . This is a convex optimization problem which can be

solved efficiently for moderate sizes of sets Xt+1 and Rt

using off-the-shelf solvers, e.g. CVXPY [10]. We call this
formulation multi-critria OSS (MCOSS).



2.2. Analysis of Multi-Criteria OSS

While applying MCOSS to our problem, we noticed that
as we give higher weightage to the pointwise component by
choosing lower value of ρ, the number of selected points de-
creases. From an application point of view, this allows the
pointwise score to have a limited impact on the set of points
selected. This might be tolerable in certain applications,
e.g. semantic segmentation where the perceptual dissimilar-
ity measure contains sufficient information for frame subset
selection. However for the application of autonomous driv-
ing, we find that task-wise and situation-wise losses have
much more impact on the quality of frames selected.

To understand the mechanism through which this prob-
lem arises, we observe that using only pointwise metric
yields a maximum of one representative for all images be-
longing to incoming set Xt+1. This is the setting when ρ
= 0. We have Qo

ij = −(1 − ρ)Lo
j and Qn

ij = −(1 − ρ)Ln
j ,

both of them are constant across i. The representative j of
any instance i ∈ Xt+1 (i = 1, ...,m) will be from Xt+1 if
Ln
j > Lj′∀j′ ∈ Xt+1 in which case only one point will be

selected (see Corollary 1.1). Otherwise the representative
will be from Rt, in which case no points are selected.

While the above intuitions are motivated for special case
of ρ = 0, the ideas also apply to more general values of
0 < ρ ≤ 1. We further illustrate this by characterising the
solution of formulation 1 in the following theorem.

Theorem 1 Let zoij and znij be the optimal solution for for-
mulation 1. A new frame j ∈ Xt+1 is selected as a repre-
sentative frame for at least one incoming frame i ∈ Xt+1,
i.e. znij = 1, only if BOTH these conditions hold:

• For some incoming frame i ∈ Xt+1 , Qn
ij < Qn

ij′ , for
all j′ ∈ Xt+1 and j′ ̸= j

• For some incoming frame i ∈ Xt+1, Qn
ij <∑m

i′=1
zo
i′,kQ

o
i′k+λ∥[zn

1,j ...z
n
m,j ]∥p

∥zn
j ∥1

where k = argminj

∑m
i=1 z

o
i,jQ

o
i,j , and ∥znj ∥1 =∑m

i′=1 z
n
i′j

Due to space constraints, we provide the formal proof
in the supplementary material. Note that the first condition
states that there is at least one frame i in the incoming set
whose cumulative dissimilarity Qn

ij is lower than all other
points. The second condition signifies that cumulative dis-
similarity Qn

ij between a representative j and the point it is
representing i is lower than minimal contribution from a po-
tential representative k from existing set of selected exam-
ples k ∈ Rt. Next, we provide two corollaries to illustrate
our point. Corollary 1.1 illustrates the conditions in Theo-
rem 1 for the special case of ρ = 0. Since, the dependence
on i is removed, it is easy to see that at most one j ∈ Xt+1

will satisfy the condition.

Corollary 1.1 Let zoij and znij be the optimal solution for
formulation 1. A new frame j ∈ Xt+1 is selected as a rep-
resentative frame for at least one incoming frame i ∈ Xt+1,
i.e. znij = 1, only if BOTH these conditions hold:

• Ln
j > Ln

j′ for all j′ ∈ Xt+1 and j′ ̸= j

• Ln
j >

∑m
i=1 zo

i,kL
o
k−λ∥[zn

1,j ...z
n
m,j ]∥p

∥zn
j ∥1

where k = argminj

∑m
i=1 z

o
i,jQ

o
i,j , and ∥znj ∥1 =∑m

i′=1 z
n
i′j

Corollary 1.2 Let ∆d(i, j) = ∥znj ∥1dnij −
∑m

i′=1 z
o
i′kd

o
i′k

and ∆L(j) = ∥znj ∥1Ln
j −

∑m
i′=1 z

o
i′kL

o
k. If ∆d(i, j) <

−∆L(j) for all znij , z
o
ij , and for ρ = 0, j ∈ Xt+1 is not a

representative frame, then for some ρ ≥ 0, Theorem 1 will
not be satisfied by any pair i, j ∈ Xt+1.

Corollary 1.2 states that if a frame j ∈ Xt+1 is not a
representative, and satisfies the conditions on ∆d(i, j) and
∆L(j), then it will stop being a representative for some
value of ρ ≥ 0. By rearranging the terms in second con-
dition of theorem 1, we get: ρ∆d(i, j) − (1 − ρ)∆L(j) ≤
λ

∥zn
j ∥p

∥zn
j ∥p

. For p = 1 the RHS is constant, but LHS decreases
with ρ. Hence the second condition of Theorem 1 is not
satisfied by any i ∈ Xt+1 for the given candidate represen-
tative frame j ∈ Xt+1. These results motivate us to look
for better formulations of multi-criteria OSS problem.

2.3. Submodular Multi-Criteria OSS

In this section, we describe an algorithm for multi-
criteria OSS problem based on submodular optimization.
The problem can be posed as a set function incorporating
both pairwise and pointwise attributes and can be solved us-
ing submodular optimisation. The natural criteria used for
selection is the pre-defined modified cumulative dissimilar-
ity function Qij .

For every set S, the set function f(S) can be defined as:

f(S) =
∑
i∈X

min{minj∈RQij ,minj∈SQij} (2)

Here, the problem is solved by selecting a representative
j which contributes the least dissimilarity value Qij to the
incoming instances i ∈ X . By definition, we can say

Remark 1 -f(S) is submodular.

For proof, see supplementary. We can thus pose it as a
submodular maximisation problem by solving the problem
minS⊆Xf(S). We call this formulation submodular multi-
criteria OSS (SubMCOSS). We define a greedy submodular
maximisation approach for solving the optimisation prob-
lem in Algorithm 1. The algorithm is a randomised greedy
algorithm that examines the dataset k times to select the rep-
resentatives for incoming data. We then show a thresholded
convex approach for solving multi-criteria OSS problem.



Algorithm 1 : Submodular Multi-Criteria OSS

1: Input:
2: S0: Initial representative set = ϕ
3: X: Incoming Set of Instances
4: k: Subset cardinality , f(S): Objective function
5: Process:
6: for i = 1,2, . . ., k do
7: for each x ∈ X \Si−1 do
8: fvx ← f(Si−1 ∪ x)
9: end for

10: Let Mi ∈ X \Si−1 be subset of top k elements
maximising

∑
m∈Mi

fvm
11: Let ui be randomly sampled from Mi

12: Si ← Si−1 ∪ ui

13: end for
14: Output:
15: Sk : Subset of size k

2.4. Thresholded Convex multi-criteria OSS

SubMCOSS , described in previous section uses the nat-
ural formulation of weighted linear aggregation of point-
wise and pairwise loss function. However, the algorithm
for submodular optimization is a randomized approxima-
tion algorithm, and also computationally expensive due to
multiple sampling runs required for a good optimal sub-
set. In this section, we describe a novel convex formula-
tion of multi-criteria OSS which alleviates the problems of
MCOSS (Equation 1) as well as SubMCOSS (Algorithm 1).

The key observation which helps us in designing the
novel algorithm is that in MCOSS (Equation 1), it is pos-
sible for a frame j ∈ Xt+1 to contribute −m(1 − ρ)Ln

j

by becoming a representative for every point i ∈ Xt+1

(see that the terms involving pointwise loss add up to
−(1 − ρ)(

∑m
i=1 z

n
ij)L

n
j ). However, in reality it only adds

one data point to the training set with the pointwise score
of −Ln

j . This problem is alleviated by using a coefficient
of Ln

j which is an indicator of whether j is a representa-
tive point or not, rather than (

∑m
i=1 z

n
ij) which counts the

number of points represented by j. This is achieved by us-
ing a concave function Sj of zij : Sj = 1

ϵ min(ϵ,
∑m

i=1 zij)
where ϵ is an input parameter. The modified objective func-
tion becomes: G(zoij , znij) = ρ(

∑m
i=1

∑|Rt|
j=1 z

o
ijd

o
ij(t) +∑m

i,j=1 z
n
ijd

n
ij(t))−(1−ρ)(

∑|Rt|
j=1 S

o
j ∗Lo

j+
∑m

j=1 S
n
j ∗Ln

j ),
where, So

j = 1
ϵ min(ϵ,

∑m
i=1 z

o
ij) , Sn

j = 1
ϵ min(ϵ,

∑m
i=1 z

n
ij).

Note that G is a convex function of zoij , z
n
ij since S is a con-

cave function. Also note that, each potential representative
j ∈ Xt+1 can contribute a maximum of its own pointwise
score Lj , since Sj can take a maximum value of 1. For
ρ = 0, and under representativeness constraint

∑
j zij = 1;∑

j LjSj is highest when zij = zi′j′ = 1 =⇒ j ̸= j′ if
i ̸= i′. Hence, Sj’s will also provide a non-trivial solution.

Another drawback of MCOSS (Equation 1) is that com-
pression ratio has no direct relation with the parameter λ.
We use a constraint based cardinality criteria in order to
have more precise control over the number of representative
selected. The user provided parameter frac specifies and
upper bound over the fraction of incoming frames to be se-
lected as representatives. Overcoming these drawbacks our
final convex optimisation based multi-criteria OSS problem
formulation is:

min
zoij ,z

n
ij

G(zoij , znij) (3)

s.t.

|Rt|∑
j=1

zoi,j +

m∑
j=1

zni,j = 1

zni,j , z
o
i,j ∈ [0, 1]

m∑
j=1

∥[zn1,j . . . znm,j ]∥p ≤ frac ∗m

This can be efficiently solved using any modelling lan-
guage for solving convex problems, e.g. CVXPY [10]. We
call this formulation thresholded multi-criteria OSS (TM-
COSS). ϵ is a user input which is designed to be the maxi-
mum value taken by the variable

∑
i zij , when none of the

zij denote a representative relation to be true. In an ideal
situation (when we achieve a {0, 1} solution to zij), any
positive value for ϵ is sufficient. In practise, we set ϵ to a
value less than 1, e.g. ϵ = 0.9. Next, we experimentally
demonstrate the utility of our method.

3. Experiments
In this section, we describe experimental results com-

paring the proposed TMCOSS and SubMCOSS algorithms
with MCOSS [9], OSS [13], and only loss (OL) based sub-
set selections. We compare the frame subset selection meth-
ods on both driving simulator and real-world driving videos
from Cityscapes [8] and Berkeley DeepDrive [24] datasets.
Section 3.1 describes the simulator setup, data from which
is used for driving model based comparison (Section 3.3)
and objective function value based comparison (Section
3.2) of proposed methods. Section 3.4 compares the pro-
posed methods using two real world tasks: (1) drivable area
segmentation on the standard BDD dataset [24] and (2) se-
mantic segmentation task on the Cityscapes dataset [8].

3.1. Experimental Setup - Simulator

Dataset: We use the open-source driving simulator
CARLA[11] for generating our driving dataset. The col-
lected data comprises of 262 driving episodes and a total of
100,000 video frames, collected using the CAL controller
[21] with the ground truth affordances as input. For each
video frame, we collect: (1) front center camera image,



and (2) six affordances (Discrete: Red Light, Hazard Stop,
Speed Sign ; Continuous: Relative Angle, Centerline Dis-
tance, Vehicle Distance). We use approximately 85% of the
video frames as the training data, and the remaining as test
set. We use Conditional Affordance Learning [21] (CAL)
model as the driving model for the experiments involving
simulated driving data.

Frame selection methods We compare the following
baseline video frame selection methods with the proposed
methods TMCOSS and SubMCOSS:

• WS: Entire collected set of video frames.

• US: Uniform sampling, frames sampled at regular in-
tervals depending on the compression ratio.

• OL: Only loss, subset with the highest total loss.

• OSS[13]: OSS based only on pairwise dissimilarity.

• MCOSS[9]: Multi-Criteria OSS based on additive
pairwise and pointwise dissimilarities.

We use SIFT dissimilarity as the pairwise dissimilarity met-
ric (dij) for all selection methods and two variants of losses
(Lj) as pointwise metric - total loss (TL), bucket spe-
cific relative angle loss (BL). TL is defined as the summa-
tion of loss (L) over each task/affordance t for a frame j.
TLj =

∑
t Ltj . BL is defined as the weighted summa-

tion of relative angle loss and other task losses. BLj =
(wrb ∗Lrb,j)+

1−wrb

t (
∑

t Lt,j) where wrb = weight for the
relative angle bucket to which the frame j belongs.

3.2. Comparison of TMCOSS and SubMCOSS
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Figure 2: Objective function values for MCOSS, SubM-
COSS and TMCOSS for (left) Synthetic data and (right)
CARLA driving data samples.

In this section, we compare the optimal subsets re-
ported by the baseline method MCOSS [9], SubMCOSS
and the proposed convex optimization based method TM-
COSS in terms of final objective function values. Figure 2
(Left) shows the objective function values for the three ap-
proaches, for 10 randomly synthesized problem instances
(d matrix of dimension 100 × 100 and L vector of dimen-
sion 100). For the submodular method, we report a box
plot of results over 100 runs of the algorithm to capture the

randomness. While all three methods find approximate so-
lutions, TMCOSS consistently finds lower values of objec-
tive function, followed by MCOSS, and SubMCOSS. We
report the same in Figure 2 (Right) for 10 episodes in our
collected driving data using CARLA. We can clearly ob-
serve that function values attained by our proposed convex
method, TMCOSS lies below that of the other approximate
methods, thus proving it to be an efficient approach.

Next, we discuss the application of the subset selection
methods on simulated and real world driving data.

3.3. Driving Simulator based Comparison of OSS

In this section, we will study the performance of differ-
ent selection techniques on the basis of episode completion
and affordance accuracies using simulated driving data. We
consider four tasks under episode completion which had
been originally defined in [11]: (1) Straight: All waypoints
lie on a straight road. (2) One-Turn: The waypoints pass
through 1-turn. (3) Straight Dynamic and (4) One-Turn Dy-
namic: similar to Straight and One-Turn tasks, but in the
presence of other vehicles and pedestrians.

We show in Table 1 the performance of CAL model[21]
trained on subsets, obtained by various selection techniques,
by simulating it with the CARLA [11] simulator. We report
number of successfully completed episodes (out of a total
of 10 episodes) for each subtask in training and test con-
ditions. We find that TMCOSS performs the best among
all frame selection methods by completing all episodes for
100:20 compression ratio and at least 8 episodes out of 10
for compression ratio of 100:7. We observe that the tasks
- Straight and Straight Dynamic are fairly easy to accom-
plish. The completion of episodes in One-turn and One turn
dynamic, depends on the affordance Relative Angle.We ob-
serve that Uniform Skip (US) performs poorly in turns since
it does not sample adequate number of important frames
near turns. While OSS and OL perform better than US,
they only complete 7 out of 10 episodes for 100:20 com-
pression. Suprisingly, MCOSS also performs similarly to
OSS despite using additional information from the model.
This may be attributed to the low importance given to point-
wise component of the criteria as explained in Section 2.

Figure 3 analyzes a typical example of episode with turn
towards the end. The left plot shows the ground truth and
predicted relative angles as a function of distance. The loca-
tion of the turn is clearly visible. It can be seen that model
trained by MCOSS starts to turn early, while the other mod-
els shown in the figure start at the appropriate time. The
center plot shows the error in prediction, again clearly sug-
gesting that the MCOSS model starts making early errors,
and recovers from it very late. Finally, the right plot shows
fraction of selected frames for different distance buckets.
Note that MCOSS selects a lot of frames much earlier be-
fore the turn, whereas TMCOSS selects more frames during



Table 1: Episode completion for models trained using data from different OSS methods for various tasks.

Compression
Ratio Methods

Training Conditions Test Conditions

Straight One-Turn
Straight
Dynamic

One-Turn
Dynamic Straight One-Turn

Straight
Dynamic

One-Turn
Dynamic

WS 10 10 10 10 10 10 10 10

100:20

US 9 3 8 3 9 5 9 5
OL 10 6 10 6 10 7 9 7
OSS 10 7 10 7 10 7 9 6
MCOSS 9 8 9 8 7 7 7 7
SubMCOSS 9 7 9 7 9 7 9 7
TMCOSS-TL 10 8 10 7 10 9 10 9
TMCOSS-BL 10 10 10 10 10 10 10 10

100:7

MCOSS 9 5 9 5 7 4 7 4
SubMCOSS 9 3 9 3 9 2 9 2
TMCOSS-TL 10 7 10 7 10 9 10 9
TMCOSS-BL 10 8 10 8 10 9 10 9
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Figure 3: Analysis of episode failed by MCOSS but completed successfully by TMCOSS. Left: relative angle vs dis-
tance travelled, center: error in relative angle, right: fraction of selected instances.

Table 2: Prediction accuracies for discrete affordances
(macro) and mean absolute errors for continuous affor-
dances for all OSS methods.

Method
Hazard
Stop

Red
Light

Vehicle
Distance

Centerline
Distance

WS 99.72 97.41 0.03 0.05
US 99.47 97.03 0.06 0.05
OL 99.6 91.08 0.09 0.08
OSS 99.57 96.07 0.09 0.08
MCOSS 98.39 89.73 0.05 0.06
SubMCOSS 99.60 93.91 0.05 0.06
TMCOSS-TL 99.61 96.05 0.05 0.05

TMCOSS-BL
99.71
(0.01%)

92.83
(4.58%)

0.04
(33.33%)

0.05
(0%)

the turn. This conclusively demonstrates that TMCOSS se-
lects more informative frames compared to MCOSS.

Table 2 compares the prediction performance of CAL
driving model trained using subsets obtained by different
OSS techniques for 100:20 compression ratio. We report
the prediction accuracies of two discrete affordances and er-
ror for two continuous affordances. We neglect speed sign,
since its prediction performance is not crucial to episode
completion. We also report the % difference in the per-
formance metric for TMCOSS-BL w.r.t. that of WS. We
notice that TMCOSS predicts the crucial Hazard stop af-

fordance satisfactorily with very little difference from WS.
Performance in prediction of vehicle distance and centerline
distance are also close to WS. Curiously, TMCOSS-TL per-
forms better than TMCOSS-BL on the Red light affordance
predictiondue to its absence in center camera during turns.

We observe that among all 6 affordances, relative angle,
which provides the steering angle of the car, is the most es-
sential affordance for episode completion. Hence, we study
it in greater detail in Figure 4. The entire range of Relative
Angle affordance can be divided into 20 buckets (ranging
from -1.0 to +1.0. in steps of 0.1). Buckets corresponding
to (-1.0 to -0.1), (-0.1 to 0.1) and (0.1 to 1.0) indicate the
left turn, straight road and right turn respectively. We
observe that the MAE for all OSS methods in straight road
buckets lie in a narrow range. This is due to the skewness
in data distribution for Relative Angle affordance (4 % Left,
92% Straight, 4% Right). We note that TMCOSS-TL and
TMCOSS-BL outperform all other methods in turn buckets,
which have lesser number of datapoints. We also observe
that TMCOSS-BL selects comparatively higher fraction of
instances for both Left and Right turns. We find that the
difference in MAE becomes more evident with increase in
compression ratio (see supplementary material). Next, we
study the effectiveness of the proposed method on real driv-
ing benchmark datasets for the task of segmentation which
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Figure 4: Fraction of selected instances (FOSI) and Mean Absolute Error (MAE) for 3 relative angle buckets.

is an important sub-task in autonomous driving.

3.4. Real-world Driving Tasks based Comparison
of OSS

In this experiment, we show the usefulness of the pro-
posed method in two other tasks which are equally sig-
nificant for autonomous driving - drivable area segmenta-
tion and semantic segmentation. We use the two bench-
mark datasets - Berkeley DeepDrive dataset (BDD)[24] for
the first task and Cityscapes[8] for the second. We use
DeepLabV3+[5] for both the tasks and report the standard
metric (IoU) for the important classes.

Table 3 compares performances of various OSS tech-
niques for compression ratio of 100:20. TMCOSS-TL per-
forms better than all baselines and achieves performance
close to WS. From Table 3-top, we observe that alternate
drive area is a harder task for OSS compared to drivable
area. We also note from Table 3 (bottom) that TMCOSS-
TL is able to segment the important classes better than the
baselines. For e.g., in the task of pedestrian detection (Per-
son class), TMCOSS-TL performs better than MCOSS.

Table 3: Prediction performances for Drivable Area seg-
mentation using BDD (top) and semantic segmentation
using Cityscapes (bottom) for various OSS techniques.

Method
Drivable
Area IoU
(%)

Alternate
Drive Area
IoU (%)

MIoU
(%)

WS 81.0 69.0 75.0
OL 77.0 62.0 69.5
OSS 75.0 59.0 67.0
MCOSS 76.0 59.0 67.5
TMCOSS 80.0 65.0 72.5

Method
Road
IoU
(%)

Wall
IoU
(%)

Side
walk
IoU(%)

Person
IoU(%)

Car
IoU
(%)

Bicycle
IoU
(%)

Mean
IoU
(%)

WS 98.0 50.0 83.0 81.0 94.0 76.0 80.33
OL 96.0 35.0 75.0 73.0 90.0 68.0 72.83
OSS 96.0 31.0 75.0 74.0 90.0 71.0 72.83
MCOSS 96.0 29.0 75.0 74.0 90.0 70.0 72.33
TMCOSS 98.0 50.0 82.0 79.0 93.0 74.0 79.33

Figure 5 analyses the selected frames by TMCOSS and
MCOSS, by reporting the fraction of selected instances

(Figure 5-left), as well as fraction of selected pixels (Fig-
ure 5-right). The fraction of pixels are important because
selecting a frame with a person in prominent visibility is
more useful than one with a person in a far corner. While
both the images will be marked as instances containing the
class Person, the former image will have more pixels, and
hence will be more useful for the person segmentation task.
We can see that the proposed method selects higher fraction
of instances as well as pixels for the difficult classes, thus
justifying its better performance in those classes in Table
3. Hence, we show that the proposed method performs bet-
ter than the baselines not only in simulated scenario (using
CARLA) but also in tasks involving real driving data (using
BDD and Cityscapes).
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Figure 5: Fraction of selected instances (left) and pixels
(right) for semantic segmentation on Cityscapes.

4. Conclusion
In this paper, we propose TMCOSS, novel thresholded

convex optimization based online video frame subset se-
lection technique incorporating pairwise dissimilarities be-
tween video frames and pointwise loss of video frames
on current models for a task. We study the effectiveness
of TMCOSS on tasks of driving model training measured
by episode completion on CARLA simulator, and seman-
tic segmentation in real world driving datasets of BDD and
Cityscape. We find that TMCOSS is effective for selec-
tion of relevant video frames, where even after dropping
80% of frames, we succeed in maintaining a performance
close to that of the whole set. We also compare TM-
COSS to a submodular set-function formulation proposed
here called SubMCOSS, concluding that TMCOSS outper-
forms SubMCOSS on episode completion in CARLA.
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