Module 37: Programming in C4++

Exceptions (Error handling in C++): Part 2

(€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++
by Prof. Partha Pratim Das

Intructors: Abir Das and Sourangshu Bhattacharya

E@?’! Module Objectives

e Understand the Error handling in C++

Objectives &
Outlines

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module Outline

@ Exceptions in C++

Bt @ try-throw-catch
Exception Scope (try)

Exception Arguments (catch)
Exception Matching
Exception Raise (throw)
Advantages
std: :exception

© Module Summary

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Expectations

: : e Separate Error-Handling code from Normal code
e Language Mechanism rather than of the Library
e Compiler for Tracking Automatic Variables
Excptions n e Schemes for Destruction of Dynamic Memory

e Less Overhead for the Designer

e Exception Propagation from the deepest of levels

e Various Exceptions handled by a single Handler

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Error Handling Dynamics: C and C++

Caller

C Scenario

#include <stdio.h>
#include <stdbool.h>
#include <setjmp.h>

Exceptions in
C++

int

main() {

if (setjmp(jbuf) == 0) {
printf("g() called\n");
g0;
printf("g() returned\n");

else printf("g() failed\n"); // On longjmp
return 0;

jmp_buf jbuf;

void g0 {
bool error = false;
printf("g() started\n");
if (error)

longjmp (jbuf, 1);

printf("g() ended\n");
return;

C++ Scenario

#include <iostream>
#include <exception>
using namespace std;

int

main() {

try {
cout << "g() called\n";
g0
cout << "g() returned\n";

catch (Excp&) { cout << "g() failed\n"; }
return 0;

class Excp: public exception {};
void gO) {

bool error = false;

cout << "g() started\n";

if (error)

throw Excp();
cout << "g() ended\n";
return;

}

€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya

E@;j try-throw-catch

Intructc \bir
Das and
Sourangsht

try-throw-catch|

Caller Callee
int main() { class Excp: public exception {};
try { void g() {
cout << "g() called\n"; bool error = false;
g0 cout << "g() started\n";

cout << "g() returned\n";

if (error)
throw Excp();

catch (Excp&) { cout << "g() failed\n"; } cout << "g() ended\n";

return O;

return;

(1) gO called

(2) gO successfully returned

g() called
g() started
g() ended
g() returned

(€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya 6

try-throw-catch

Caller Callee
Intru: bir
s H'mw“” int main() { class Excp: public exception {};
Bhattacharya try { class A {};
cout << "g() called\n"; void gO) { A a;
g0; bool error = true;

cout << "g() returned\n";

catch (Excp&) { cout << "g() failed\n"; }
try-throw-catch| return O;

cout << "g() started\n";
if (error)

throw Excp();
cout << "g() ended\n";
return;

(1) gO) called

(5) Exception caught by catch clause
(6) Normal flow continues

(2) Exception raised
(3) Stack frame of g() unwinds and destructor of a called
(4) Remaining execution of g() and cout skipped

g() called
g() started
g() failed

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

E@;j

try-throw-catch|

Exception Flow

#include <iostream> void £() { MyClass f_a;

#include <exception> try { gO;

using namespace std; bool okay = true; // Not executed

class MyException: public exception { };

class MyClass { public: “MyClass() { } }; // Catches exception from Line 3

void h() { MyClass h_a; catch (MyException) { cout << "MyException\n"; }
//throw 1; // Line 1 // Catches exception from Line 4
//throw 2.5; // Line 2 catch (exception) { cout << "exception\n"; }
//throw MyException(); // Line 3 // Catches exception from Line 5 & passes on
//throw exception(); // Line 4 catch (...) { throw; }
//throw MyClass(); // Line 5 } // Stack unwind, f_a.“MyClass() called

} // Stack unwind, h_a."MyClass() called
// Passes on all exceptions int main() {

void g() { MyClass g_a; try { £O;
try { hO; bool okay = true; // Not executed

bool okay = true; // lNot executed

// Catches exception from Line 5

// Catches exception from Line 1 catch (...) { cout << "Unknown\n"; }
catch (int) { cout << "int\n"; }

// Catches exception from Line 2 cout << "End of main()\n";

catch (double) { cout << "double\n"; } 1

// Catches exception from Line 3-5 & passes on
catch (...) { throw; }
} // Stack unwind, g_a."MyClass() called

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

E@;} try Block: Exception Scope

Intructc \bir
Das and
Sourangsht

Exception Scope
(try)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

catch Block

Intructc \bir
Das and
Sourangsht

Exception Arguments
(catch)

(€S20202: Software Engineering

. Exception Arguments

Intructors: Abir Das and Sourangshu Bhattacharya

10

try-catch: Exception Matching

“Dasand e Exact Match
Bhatiachane o The catch argument type matches the type of the thrown object
> No implicit conversion is allowed
¢ Generalization / Specialization
o The catch argument is a public base class of the thrown class object

e Pointer
o Pointer types — convertible by standard conversion

Exception Matching

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Intructol \bir

_Das and e In the order of appearance with matching

Bh:

e |f Base Class catch block precedes Derived Class catch block

o Compiler issues a warning and continues
o Unreachable code (derived class handler) ignored

e catch(...) block must be the last catch block because it catches all exceptions

e If no matching Handler is found in the current scope, the search continues to find a
matching handler in a dynamically surrounding try block

o Stack Unwinds

Exception Matching

e If eventually no handler is found, terminate() is called

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

E@ﬁ throw Expression: Exception Raise

Exception Raise
(throw)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

throw Expression: Restrictions

Dot e For a UDT Expression
‘ o Copy Constructor and Destructor should be supported
e The type of Expression cannot be an incomplete type or a pointer to an incomplete type
o No incomplete type like void, array of unknown size or of elements of incomplete
type, Declared but not Defined struct / union / enum / class Objects or
Pointers to such Objects

o No pointer to an incomplete type, except void*, const void#, volatile void,
const volatile voidx

Exception Raise
(throw)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

E@ﬁ (re)-throw: Throwing Again?

e Re-throw

o catch may pass on the exception after handling
o Re-throw is not same as throwing again!

Throws again Re-throw
try { ... } try { ... }
catch (Exception& ex) { catch (Exception& ex) {
// Handle and // Handle and
e - -
// Raise again // Pass-on
throw ex; throw;
// ex copied // No copy
// ex destructed // No Destruction

} }

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

Advantages

Intructol \bir
[|

: Destructor-savvy:
it ‘ o Stack unwinds; Orderly destruction of Local-objects
Unobtrusive:

o Exception Handling is implicit and automatic
o No clutter of error checks

Precise:

o Exception Object Type designed using semantics
Native and Standard:

AN o EH is part of the C++ language
o EH is available in all standard C++ compilers

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

16

| H Advantages

Intructc \bir
as and

Advant:

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

E@ﬁ Exceptions in Standard Library: std: :exception

Intructc \bir

std: :exception

All objects thrown by components of the standard library are derived from this class.
Therefore, all standard exceptions can be caught by catching this type by reference.

class exception {
public:
exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual “exception() throw();
virtual const char* what() const throw();

}

Sources: std::exception and std::exception in C++11, C++14, C++17 & C++20

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18

https://www.cplusplus.com/reference/exception/exception/
https://en.cppreference.com/w/cpp/error/exception

Exceptions in Standard Library: std::exception

std: :exception

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19

https://flylib.com/books/en/2.253.1/standard_library_exception_hierarchy.html

Exceptions in Standard Library: std::exception

std: :exception

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20

https://www.cplusplus.com/reference/exception/exception/
https://en.cppreference.com/w/cpp/error/exception

Fa=n1 Exceptions in Standard Library: std: :exception:

P2 C+198 C++11, C++14, C++17 & C+420

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21

E@;j Module Summary

e Discussed exception (error) handling in C++
e |llustrated try-throw-catch feature in C++ for handling errors
e Demonstrated with examples

Module Summary

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

	Objectives & Outlines
	Exceptions in C++
	try-throw-catch
	Exception Scope (try)
	Exception Arguments (catch)
	Exception Matching
	Exception Raise (throw)
	Advantages
	std::exception

	Module Summary

