
Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Module 35: Programming in C++
Multiple Inheritence

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Module Objectives

• Understand Multiple Inheritance in C++

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Module Outline

1 Multiple Inheritance in C++
Semantics
Data Members and Object Layout
Member Functions – Overrides and Overloads
Access Members of Base: protected Access
Constructor & Destructor
Object Lifetime

2 Diamond Problem
Exercise

3 Design Choice

4 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Hierarchy

• TA ISA Student; TA ISA Faculty

class Student; // Base Class = Student

class Faculty; // Base Class = Faculty

class TA: public Student, public Faculty; // Derived Class = TA

• TA inherits properties and operations of both Student as well as Faculty

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Hierarchy

• Manager ISA Employee, Director ISA Employee, ManagingDirector ISA Manager,
ManagingDirector ISA Director

class Employee; // Base Class = Employee -- Root
class Manager: public Employee; // Derived Class = Manager
class Director: public Employee; // Derived Class = Director
class ManagingDirector: public Manager, public Director; // Derived Class = ManagingDirector

• Manager inherits properties and operations of Employee
• Director inherits properties and operations of Employee
• ManagingDirector inherits properties and operations of both Manager as well as Director
• ManagingDirector, by transitivity, inherits properties and operations of Employee
• Multiple inheritance hierarchy usually has a common base class
• This is known as the Diamond Hierarchy

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Semantics

• Derived ISA Base1, Derived ISA Base2

class Base1; // Base Class = Base1

class Base2; // Base Class = Base2

class Derived: public Base1, public Base2; // Derived Class = Derived

• Use keyword public after class name to denote inheritance
• Name of the Base class follow the keyword
• There may be more than two base classes
• public and private inheritance may be mixed

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Semantics

• Data Members

◦ Derived class inherits all data members of all Base classes
◦ Derived class may add data members of its own

• Member Functions

◦ Derived class inherits all member functions of all Base classes
◦ Derived class may override a member function of any Base class by redefining it with the

same signature
◦ Derived class may overload a member function of any Base class by redefining it with the

same name; but different signature

• Access Specification

◦ Derived class cannot access private members of any Base class
◦ Derived class can access protected members of any Base class

• Construction-Destruction

◦ A constructor of the Derived class must first call all constructors of the Base classes to
construct the Base class instances of the Derived class – Base class constructors are called
in listing order

◦ The destructor of the Derived class must call the destructors of the Base classes to destruct
the Base class instances of the Derived class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Data Members and Object Layout

• Data Members

◦ Derived class inherits all data members of all Base classes
◦ Derived class may add data members of its own

• Object Layout

◦ Derived class layout contains instances of each Base class
◦ Further, Derived class layout will have data members of its own
◦ C++ does not guarantee the relative position of the Base class instances and
Derived class members

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Data Members and Object Layout

class Base1 { protected:
int i_, data_;

public: // ...
};
class Base2 { protected:

int j_, data_;
public: // ...
};
class Derived: public Base1, public Base2 { // Multiple inheritance

int k_;
public: // ...
};

Object Layout

Object Base1 Object Base2 Object Derived

i

data

j

data

i

data

j

data

k

• Object Derived has two data members!

• Ambiguity to be resolved with base class
name: Base1::data & Base2::data

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
Member Functions – Overrides and Overloads

• Derived ISA Base1, Base2

• Member Functions

◦ Derived class inherits all member functions of all Base classes
◦ Derived class may override a member function of any Base class by redefining it
with the same signature

◦ Derived class may overload a member function of any Base class by redefining it
with the same name; but different signature

• Static Member Functions

◦ Derived class does not inherit the static member functions of any Base class

• Friend Functions

◦ Derived class does not inherit the friend functions of any Base class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
Member Functions – Overrides and Overloads

class Base1 { protected: int i_, data_;
public: Base1(int a, int b): i_(a), data_(b) { }

void f(int) { cout << "Base1::f(int) \n"; }
void g() { cout << "Base1::g() \n"; }

};
class Base2 { protected: int j_, data_;
public: Base2(int a, int b): j_(a), data_(b) { }

void h(int) { cout << "Base2::h(int) \n"; }
};
class Derived: public Base1, public Base2 { int k_;
public: Derived(int x, int y, int u, int v, int z): Base1(x, y), Base2(u, v), k_(z) { }

void f(int) { cout << "Derived::f(int) \n"; } // -- Overridden Base1::f(int)
// -- Inherited Base1::g()
void h(string) { cout << "Derived::h(string) \n"; } // -- Overloaded Base2:: h(int)
void e(char) { cout << "Derived::e(char) \n"; } // -- Added Derived::e(char)

};

Derived c(1, 2, 3, 4, 5);

c.f(5); // Derived::f(int) -- Overridden Base1::f(int)
c.g(); // Base1::g() -- Inherited Base1::g()
c.h("ppd"); // Derived::h(string) -- Overloaded Base2:: h(int)
c.e(’a’); // Derived::e(char) -- Added Derived::e(char)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Inheritance in C++:
Member Functions – using for Name Resolution

Ambiguous Calls Unambiguous Calls
class Base1 { public:

Base1(int a, int b);
void f(int) { cout << "Base1::f(int) "; }
void g() { cout << "Base1::g() "; }

};
class Base2 { public:

Base2(int a, int b);
void f(int) { cout << "Base2::f(int) "; }
void g(int) { cout << "Base2::g(int) "; }

};
class Derived: public Base1, public Base2 {
public: Derived(int x, int y, int u, int v, int z);

};
Derived c(1, 2, 3, 4, 5);

c.f(5); // Base1::f(int) or Base2::f(int)?
c.g(5); // Base1::g() or Base2::g(int)?
c.f(3); // Base1::f(int) or Base2::f(int)?
c.g(); // Base1::g() or Base2::g(int)?

class Base1 { public:
Base1(int a, int b);
void f(int) { cout << "Base1::f(int) "; }
void g() { cout << "Base1::g() "; }

};
class Base2 { public:

Base2(int a, int b);
void f(int) { cout << "Base2::f(int) "; }
void g(int) { cout << "Base2::g(int) "; }

};
class Derived: public Base1, public Base2 {
public: Derived(int x, int y, int u, int v, int z);

using Base1::f; // Hides Base2::f
using Base2::g; // Hides Base1::g

};
Derived c(1, 2, 3, 4, 5);

c.f(5); // Base1::f(int)
c.g(5); // Base2::g(int)
c.Base2::f(3); // Base2::f(int)
c.Base1::g(); // Base1::g()

• Overload resolution does not work between Base1::g() and Base2::g(int)
• using hides other candidates; Explicit use of base class name can resolve (weak solution)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
Access Members of Base: protected Access

• Access Specification

◦ Derived class cannot access private members of any Base class
◦ Derived class can access protected members of any Base class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
Constructor & Destructor

• Constructor-Destructor

◦ Derived class inherits all Constructors and Destructor of Base classes (but in a
different semantics)

◦ Derived class cannot overload a Constructor or cannot override the Destructor of
any Base class

• Construction-Destruction

◦ A constructor of the Derived class must first call all constructors of the Base classes
to construct the Base class instances of the Derived class

◦ Base class constructors are called in listing order
◦ The destructor of the Derived class must call the destructors of the Base classes to

destruct the Base class instances of the Derived class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Constructor & Destructor

class Base1 { protected: int i_; int data_;
public: Base1(int a, int b): i_(a), data_(b) { cout << "Base1::Base1() "; }

~Base1() { cout << "Base1::~Base1() "; }
};

class Base2 { protected: int j_; int data_;
public: Base2(int a = 0, int b = 0): j_(a), data_(b) { cout << "Base2::Base2() "; }

~Base2() { cout << "Base2::~Base2() "; }
};

class Derived: public Base1, public Base2 { int k_;
public: Derived(int x, int y, int z):

Base1(x, y), k_(z) { cout << "Derived::Derived() "; }
// Base1::Base1 explicit, Base2::Base2 default

~Derived() { cout << "Derived::~Derived() "; }
};

Base1 b1(2, 3);
Base2 b2(3, 7);
Derived d(5, 3, 2);

Object Layout

Object b1 Object b2 Object d

2

3

3

7

5

3

0

0

2

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Object Lifetime

class Base1 { protected: int i_; int data_;
public: Base1(int a, int b): i_(a), data_(b)

{ cout << "Base1::Base1() " << i_ << ’ ’ << data_ << endl; }
~Base1() { cout << "Base1::~Base1() " << i_ << ’ ’ << data_ << endl; }

};
class Base2 { protected: int j_; int data_;
public: Base2(int a = 0, int b = 0): j_(a), data_(b)

{ cout << "Base2::Base2() " << j_ << ’ ’ << data_ << endl; }
~Base2() { cout << "Base2::~Base2() " << j_ << ’ ’ << data_ << endl; }

};
class Derived: public Base1, public Base2 { int k_; public:

Derived(int x, int y, int z): Base1(x, y), k_(z)
{ cout << "Derived::Derived() " << k_ << endl; }
// Base1::Base1 explicit, Base2::Base2 default

~Derived() { cout << "Derived::~Derived() " << k_ << endl; }
};

Derived d(5, 3, 2);

Construction O/P Destruction O/P
Base1::Base1(): 5, 3 // Obj. d.Base1
Base2::Base2(): 0, 0 // Obj. d.Base2
Derived::Derived(): 2 // Obj. d

Derived::~Derived(): 2 // Obj. d
Base2::~Base2(): 0, 0 // Obj. d.Base2
Base1::~Base1(): 5, 3 // Obj. d.Base1

• First construct base class objects, then derived class object
• First destruct derived class object, then base class objects

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Diamond Problem

• Student ISA Person
• Faculty ISA Person
• TA ISA Student; TA ISA Faculty

class Person; // Base Class = Person -- Root
class Student: public Person; // Base / Derived Class = Student
class Faculty: public Person; // Base / Derived Class = Faculty
class TA: public Student, public Faculty; // Derived Class = TA

• Student inherits properties and operations of Person
• Faculty inherits properties and operations of Person
• TA inherits properties and operations of both Student as well as Faculty
• TA, by transitivity, inherits properties and operations of Person

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Diamond Problem

#include<iostream>
using namespace std;

class Person { // data members of person
public: Person(int x) { cout << "Person::Person(int)" << endl; }

};
class Faculty: public Person { // data members of Faculty

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
};
class Student: public Person { // data members of Student

public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
};
class TA: public Faculty, public Student {

public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }
};
int main() { TA ta(30);
}

Person::Person(int)
Faculty::Faculty(int)
Person::Person(int)
Student::Student(int)
TA::TA(int)

• Two instances of base class object (Person) in a TA object!

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
virtual Inheritance – virtual Base Class
#include<iostream>
using namespace std;
class Person { // data members of person

public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; } // Default ctor for virtual inheritance

};
class Faculty: virtual public Person { // data members of Faculty

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
};
class Student: virtual public Person { // data members of Student

public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
};
class TA: public Faculty, public Student {

public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }
};
int main() { TA ta(30); }

Person::Person()
Faculty::Faculty(int)
Student::Student(int)
TA::TA(int)

• Introduce a default constructor for root base class Person
• Prefix every inheritance of Person with virtual
• Only one instance of base class object (Person) in a TA object!

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++:
virtual Inheritance with Parameterized Ctor

#include<iostream>
using namespace std;

class Person {
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; }

};
class Faculty: virtual public Person {

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
};
class Student: virtual public Person {

public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
};
class TA: public Faculty, public Student {

public: TA(int x): Student(x), Faculty(x), Person(x) { cout << "TA::TA(int)" << endl; }
};
int main() { TA ta(30); }

Person::Person(int)
Faculty::Faculty(int)
Student::Student(int)
TA::TA(int )

• Call parameterized constructor of root base class Person from constructor of TA class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Ambiguity

#include<iostream>
using namespace std;

class Person {
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; }
virtual ~Person();
virtual void teach() = 0;

};
class Faculty: virtual public Person {

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
virtual void teach();

};
class Student: virtual public Person {

public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
virtual void teach();

};
class TA: public Faculty, public Student {

public: TA(int x):Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }
virtual void teach();

};

• In the absence of TA::teach(), which of Student::teach() or Faculty::teach() should be inherited?

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Multiple Inheritance in C++: Exercise

class A {
public:

virtual ~A() { cout << "A::~A()" << endl; }
virtual void foo() { cout << "A::foo()" << endl; }

};
class B: public virtual A {
public:

virtual ~B() { cout << "B::~B()" << endl; }
virtual void foo() { cout << "B::foo()" << endl; }

};
class C: public virtual A {
public:

virtual ~C() { cout << "C::~C()" << endl; }
virtual void foobar() { cout << "C::foobar()" << endl; }

};
class D: public B, public C {
public:

virtual ~D() { cout << "D::~D()" << endl; }
virtual void foo() { cout << "D::foo()" << endl; }
virtual void foobar() { cout << "D::foobar()" << endl; }

};

• Consider the effect of calling foo and foobar for various objects and various pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 22



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Design Choice: Inheritance or Composition

• Vehicle Hierarchy

• Wheeled Hierarchy and Engine Hierarchy interact
• Large number of cross links!
• Multiplicative options make modeling difficult

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 23



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Design Choice: Inheritance or Composition

• Vehicle Hierarchy

• Wheeled Hierarchy use Engine as Component
• Linear options to simplify models
• Is this dominant?

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 24



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Design Choice: Inheritance or Composition

• Vehicle Hierarchy

• Engine Hierarchy use Wheeled as Component
• Linear options to simplify models
• Is this dominant?

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 25



Module 35
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Objectives &
Outlines

Multiple
Inheritance in
C++

Semantics

Data Members

Overrides and
Overloads

protected Access

Constructor &
Destructor

Object Lifetime

Diamond
Problem

Exercise

Design Choice

Module Summary

Module Summary

• Introduced the Semantics of Multiple Inheritance in C++

• Discussed the Diamond Problem and solution approaches

• Illustrated the design choice between inheritance and composition

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 26


	Objectives & Outlines
	Multiple Inheritance in C++
	Semantics
	Data Members and Object Layout
	Member Functions – Overrides and Overloads
	Access Members of Base: protected Access
	Constructor & Destructor
	Object Lifetime

	Diamond Problem
	Exercise

	Design Choice
	Module Summary

