Intructc \bir
Das and

Module 35: Programming in C++

Multiple Inheritence

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

E@?’! Module Objectives

e Understand Multiple Inheritance in C++

Objectives &
Outlines

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Objectives &
Outlines

Module Outline

@ Multiple Inheritance in C4++
@ Semantics
@ Data Members and Object Layout
@ Member Functions — Overrides and Overloads
@ Access Members of Base: protected Access
@ Constructor & Destructor
@ Object Lifetime

e Diamond Problem
o Exercise

© Design Choice

@ Module Summary

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

Multiple
Inheritance in
CH+

Multiple Inheritance in C++: Hierarchy

e TA ISA Student; TA ISA Faculty

student
TA
class Student; // Base Class = Student
class Faculty; // Base Class = Faculty

class TA: public Student, public Faculty; // Derived Class = TA

e TA inherits properties and operations of both Student as well as Faculty

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

Intructol Ab|
as and
irangsht

Bhattacharya

Multiple
Inheritance in
CH+

Manager ISA Employee, Director ISA Employee, ManagingDirector ISA Manager,

ManagingDirector ISA Director

r‘lamqivv]bi(edw

class Employee; // Base Class = Employee -- Root
class Manager: public Employee; // Derived Class = Manager
class Director: public Employee; // Derived Class = Director

class ManagingDirector: public Manager, public Director; // Derived Class = ManagingDirector
Manager inherits properties and operations of Employee

Director inherits properties and operations of Employee

ManagingDirector inherits properties and operations of both Manager as well as Director
ManagingDirector, by transitivity, inherits properties and operations of Employee
Multiple inheritance hierarchy usually has a common base class

This is known as the Diamond Hierarchy

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Semantics

Multiple Inheritance in C++: Semantics

e Derived ISA Basel, Derived ISA Base2

Basel
Devived
) Base2
]
class Basel; // Base Class = Basel
class Base2; // Base Class = Base2

class Derived: public Basel, public Base2; // Derived Class = Derived

Use keyword public after class name to denote inheritance
Name of the Base class follow the keyword

There may be more than two base classes

public and private inheritance may be mixed

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

Multiple Inheritance in C++: Semantics

o Data Members

infructors: Aol o Derived class inherits all data members of a// Base classes

Sourangsh o Derived class may add data members of its own

o Member Functions
o Derived class inherits all member functions of a// Base classes
o Derived class may override a member function of any Base class by redefining it with the
same signature
ST o Derived class may overload a member function of any Base class by redefining it with the
same name; but different signature
e Access Specification
o Derived class cannot access private members of any Base class
o Derived class can access protected members of any Base class
e Construction-Destruction
o A constructor of the Derived class must first call all constructors of the Base classes to
construct the Base class instances of the Derived class — Base class constructors are called
in listing order
o The destructor of the Derived class must call the destructors of the Base classes to destruct

€520202: So tbvaere @n?i%eeerisglass instances of the Derlvl?tducglrgslé:ir Das and Sourangshu Bhattacharya 7

E@ﬁ Multiple Inheritance in C++: Data Members and Object Layout

e Data Members
Bhattachans o Derived class inherits all data members of a// Base classes
o Derived class may add data members of its own
e Object Layout
o Derived class /ayout contains instances of each Base class
o Further, Derived class layout will have data members of its own

o C++ does not guarantee the relative position of the Base class instances and
Derived class members

Data Members

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Multiple Inheritance in C++: Data Members and Object Layo

class Basel { protected:
int i_, data_;

public: // ...

class Base2 { protected:
int j_, data_;

public: // ...
class Derived: public Basel, public Base2 { // Multiple inheritance
int k_;
public: // ...
Data Members }s
Object Layout
Object Basel Object Base2 Object Derived e Object Derived has two data_ members!
i- o Ambiguity to be resolved with base class
name: Basel::data_ & Base2::data-
[i | [3- |
| data_ | | data_ |

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Eéﬁ,! Multiple Inheritance in C++:

Member Functions — Overrides and Overloads

Derived ISA Basel, Base2

Member Functions
o Derived class inherits all member functions of a// Base classes
o Derived class may override a member function of any Base class by redefining it
with the same signature
o Derived class may overload a member function of any Base class by redefining it
o nd with the same name; but different signature

e Static Member Functions

o Derived class does not inherit the static member functions of any Base class
Friend Functions

o Derived class does not inherit the friend functions of any Base class

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Y

1tructc
D

%

Y|

Multiple Inheritance in C++:
Member Functions — Overrides and Overloads

class Basel { protected: int i_, data_;

public: Basel(int a, int b): i_(a), data_(b) { }
void f(int) { cout << "Basel::f(int) \n"; }
void g() { cout << "Basel::g() \n"; }

class Base2 { protected: int j_, data_;

public: Base2(int a, int b): j_(a), data_(b) { }
void h(int) { cout << "Base2::h(int) \n"; }

s

class Derived: public Basel, public Base2 { int k_;

public: Derived(int x, int y, int u, int v, int z): Basel(x, y), Base2(u, v), k_(z) { }
void f(int) { cout << "Derived::f(int) \n"; } // -- Overridden Basel::f(int)
// == Inherited Basel::g()
void h(string) { cout << "Derived::h(string) \n"; } // -- Overloaded Base2:: h(int)

void e(char) { cout << "Derived::e(char) \n"; } // -- Added Derived::e(char)
}s
Derived c(1, 2, 3, 4, 5);
c.f(5); // Derived::f(int) -- Overridden Basel::f(int)
c.g0); // Basel::g() -- Inherited Basel::g()
c.h("ppd"); // Derived::h(string) -- Overloaded Base2:: h(int)
c.e(’a’); // Derived::e(char) —— Added Derived::e(char)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Inheritance in C4+-+:

Member Functions — using for Name Resolution

Ambiguous Calls Unambiguous Calls

Intru Abir class Basel { public: class Basel { public:
Das and Basel(int a, int b); Basel(int a, int b);
“‘}M”““H“”‘ void f(int) { cout << "Basel::f(int) "; } void f(int) { cout << "Basel::f(int) "; }
: void g() { cout << "Basel::g() "; } void g() { cout << "Basel::g() "; }
class Base2 { public: class Base2 { public:
Base2(int a, int b); Base2(int a, int b);
void f(int) { cout << "Base2::f(int) "; } void f(int) { cout << "Base2::f(int) "; }
void g(int) { cout << "Base2::g(int) "; } void g(int) { cout << "Base2::g(int) "; }
class Derived: public Basel, public Base2 { class Derived: public Basel, public Base2 {
Overrides and public: Derived(int x, int y, int u, int v, int z); public: Derived(int x, int y, int u, int v, int z);

using Basel::f; // Hides Base2::f
using Base2::g; // Hides Basel::g

}s }s

Derived c(1, 2, 3, 4, 5); Derived c(1, 2, 3, 4, 5);
c.f(5); // Basel::f(int) or Base2::f(int)? c.f(5); // Basel::f(int)
c.g(8); // Basel::g() or Base2::g(int)? c.g(8); // Base2::g(int)
c.f(3); // Basel::f(int) or Base2::f(int)? c.Base2::£(3); // Base2::f(int)
c.g(); // Basel::g() or Base2::g(int)? c.Basel::g(); // Basel::gQ)

e Overload resolution does not work between Basel::g() and Base2::g(int)
e using hides other candidates; Explicit use of base class name can resolve (weak solution)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Eéﬁ,! Multiple Inheritance in C++:

%y Access Members of Base: protected Access

e Access Specification

o Derived class cannot access private members of any Base class
o Derived class can access protected members of any Base class

protected Access

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Eéﬁ,! Multiple Inheritance in C++:

N Constructor & Destructor

Intructc \bir

_Das and o Constructor-Destructor
Bl o Derived class inherits all Constructors and Destructor of Base classes (but in a
different semantics)
o Derived class cannot overload a Constructor or cannot override the Destructor of
any Base class

e Construction-Destruction

o A constructor of the Derived class must first call all constructors of the Base classes
to construct the Base class instances of the Derived class

o Base class constructors are called in /isting order

o The destructor of the Derived class must call the destructors of the Base classes to
destruct the Base class instances of the Derived class

oon

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Intructc \bir
Das and
Sourangsht

Constructor &
Destructor

Multiple Inheritance in C++: Constructor & Destructor

class Basel { protected: int i_; int data_;
public: Basel(int a, int b): i_(a), data_(b) { cout << "Basel::Basel() "; }
“Basel() { cout << "Basel::Basel() "; }

H

class Base2 { protected: int j_; int data_;

public: Base2(int a = 0, int b = 0): j_(a), data_(b) { cout << "Base2::Base2() "; }

“Base2() { cout << "Base2::Base2() "; }

H

class Derived: public Basel, public Base2 { int k_;
public: Derived(int x, int y, int z):
Basel(x, y), k_(z) { cout << "Derived::Derived() "; }
;) // Basel::Basel E)‘(pIICIE, Bz—}seQ: :Base2 default Object bl
Derived() { cout << "Derived::“Derived() "; }

H

Basel b1(2, 3);
Base2 b2(3, 7);
Derived d(5, 3, 2);

(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

Object Layout

Object b2

Object d

15

r@ Multiple Inheritance in C++: Object Lifetime

class Basel { protected: int i_; int data_;
3 public: Basel(int a, int b): i_(a), data_(b)
Das and { cout << "Basel::Basel() " << i_ << ’ ’ << data_ << endl; }
Sourangsh “Basel() { cout << "Basel::"Basel() " << i_ << ’ ’ << data_ << endl; }
class Base2 { protected: int j_; int data_;
public: Base2(int a = 0, int b = 0): j_(a), data_(b)
{ cout << "Base2::Base2() " << j_ << ’ ’ << data_ << endl; }
“Base2() { cout << "Base2::"Base2() " << j_ << ’ ’ << data_ << endl; }
class Derived: public Basel, public Base2 { int k_; public:
Derived(int x, int y, int z): Basel(x, y), k_(z)
{ cout << "Derived::Derived() " << k_ << endl; }
// Basel::Basel explicit, Base2::Base2 default
“Derived() { cout << "Derived::“Derived() " << k_ << endl; }

+s
Object Lifetime
Derived d(5, 3, 2);
Construction O/P Destruction O/P
Basel::Basel(): 5, 3 // Obj. d.Basel Derived::"Derived(): 2 // 0bj. d
Base2::Base2(): 0, 0 // Obj. d.Base2 Base2::"Base2(): 0, O // 0Obj. d.Base2
Derived::Derived(): 2 // Obj. d Basel::"Base1(): 5, 3 // Obj. d.Basel

e First construct base class objects, then derived class object
e First destruct derived class object, then base class objects
C520202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

Multiple Inheritance in C++: Diamond Problem

e Student ISA Person
“Dasand e Faculty ISA Person
S e TA ISA Student; TA ISA Faculty

Person ‘ TA

class Person; // Base Class = Person -- Root
class Student: public Person; // Base / Derived Class = Student
Diamond class Faculty: public Person; // Base / Derived Class = Faculty

Problem

class TA: public Student, public Faculty; // Derived Class = TA

Student inherits properties and operations of Person
Faculty inherits properties and operations of Person
TA inherits properties and operations of both Student as well as Faculty

o TA, by transitivity, inherits properties and operations of Person
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

E@;j Multiple Inheritance in C++: Diamond Problem

#include<iostream>
using namespace std;

class Person { // data members of person
public: Person(int x) { cout << "Person::Person(int)" << endl; }

class Faculty: public Person { // data members of Faculty
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: public Person { // data members of Student
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }

int main() { TA ta(30);

Diamond
Problem Person: :Person(int)

Faculty::Faculty(int)
Person: :Person(int)
Student: :Student (int)
TA::TA(int)

[e Two instances of base class object (Person) in a TA object! |

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18

@}! Multiple Inheritance in C4+:

28 virtual Inheritance — virtual Base Class

#include<iostream>
using namespace std;
class Person { // data members of person
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; } // Default ctor for virtual inheritance
class Faculty: virtual public Person { // data members of Faculty
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: virtual public Person { // data members of Student
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }

int mainQ) { TA ta(30); }

Person: :Person()

Diamond

Problem Faculty::Faculty(int)
Student: :Student (int)
TA::TA(int)

e Introduce a default constructor for root base class Person
o Prefix every inheritance of Person with virtual
e Only one instance of base class object (Person) in a TA object!

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19

@}! Multiple Inheritance in C4+:

28 virtual Inheritance with Parameterized Ctor

#include<iostream>
using namespace std;

class Person {

public: Person(int x) { cout << "Person::Person(int)" << endl; }

Person() { cout << "Person::Person()" << endl; }
class Faculty: virtual public Person {

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: virtual public Person {
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x), Person(x) { cout << "TA::TA(int)" << endl; }

int main() { TA ta(30); }
Diamond
Hictlen Person: :Person(int)
Faculty: :Faculty(int)
Student: :Student (int)

TA::TA(int)

\ e Call parameterized constructor of root base class Person from constructor of TA class \

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20

E@;} Multiple Inheritance in C++: Ambiguity

#include<iostream>

SCHERes G using namespace std;

Das and
Sourangsh
Bhattacharya class Person {
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; }
virtual “Person();
virtual void teach() = 0;
b
class Faculty: virtual public Person {
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
virtual void teach();
}s
class Student: virtual public Person {
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
virtual void teach();
s
class TA: public Faculty, public Student {
public: TA(int x):Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }
virtual void teach();

Diamond
Problem

I8

[e In the absence of TA::teach(), which of Student::teach() or Faculty::teach() should be inherited? |

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21

E@;j Multiple Inheritance in C++: Exercise

class A {

public:
virtual “A(Q) { cout << "A::"A(Q" << endl; }
virtual void foo() { cout << "A::foo()" << endl; }

b

class B: public virtual A {

public:
virtual “B() { cout << "B::"B()" << endl; }
virtual void foo() { cout << "B::foo()" << endl; }

b

class C: public virtual A {

public:

virtual “C() { cout << "C::"C()" << endl; }
virtual void foobar() { cout << "C::foobar()" << endl; }
class D: public B, public C {
public:
virtual “D() { cout << "D::"D()" << endl; }
virtual void foo() { cout << "D::foo()" << endl; }
virtual void foobar() { cout << "D::foobar()" << endl; }

Exercise

s

\ e Consider the effect of calling foo and foobar for various objects and various pointers

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

E@;} Design Choice: Inheritance or Composition

ey Ak o Vehicle Hierarchy

Design Choice

® Wheeled Hierarchy and Engine Hierarchy interact
e Large number of cross links!

e Multiplicative options make modeling difficult
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 23

E@;} Design Choice: Inheritance or Composition

ey Ak o Vehicle Hierarchy

Das and
Vehicle
Sourangsht

WheeledVehicle

ThreeWheeler

FourWheeler TwoWheeler

ElectricBus Bus Tato

ElectricCar |

® \Wheeled Hierarchy use Engine as Component

e Linear options to simplify models
® |s this dominant?

‘ AutoRickshaw

‘ TriCyde

‘ ElectricScooter ‘ ‘ Moped |

Scoater | ‘ BiCycle

Design Choice

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 24

L;j Design Choice: Inheritance or Composition

ey Ak o Vehicle Hierarchy

Das and
Sourangsht Vehicle
Bhattach:

EngineClass

PetrolFueled

Toto ElectricScooter Scooter AutoRickshaw TriCycle

ElectricBus |

ElectricCar ‘

Design Choice K i
e Engine Hierarchy use Wheeled as Component

e Linear options to simplify models
® |Is this dominant?
(€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya

E@;} Module Summary

Intructc \bir

Das and e Introduced the Semantics of Multiple Inheritance in C++
e Discussed the Diamond Problem and solution approaches

e |llustrated the design choice between inheritance and composition

Module Summary

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 26

	Objectives & Outlines
	Multiple Inheritance in C++
	Semantics
	Data Members and Object Layout
	Member Functions – Overrides and Overloads
	Access Members of Base: protected Access
	Constructor & Destructor
	Object Lifetime

	Diamond Problem
	Exercise

	Design Choice
	Module Summary

