
Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module 31: Programming in C++
Virtual Function Table

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Weekly Recap

• Understood type casting – implicit as well as explicit – for built-in types, unrelated
types, and classes on a hierarchy

• Understood the notions of upcast and downcast

• Understood Static and Dynamic Binding for Polymorphic type

• Understood virtual destructors, Pure Virtual Functions, and Abstract Base Class

• Designed the solution for a staff salary processing problem using iterative refinement –
starting with a simple C solution and repeatedly refining finally to an easy, efficient, and
extensible C++ solution based on flexible polymorphic hierarchy

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Objectives

• Introduce a new C solution with function pointers

• Understand Virtual Function Table for dynamic binding (polymorphic dispatch)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Outline

1 Weekly Recap

2 Staff Salary Processing: New C Solution

3 Staff Salary Processing: C++ Solution

4 C and C++ Solutions: A Comparison

5 Virtual Function Pointer Table

6 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Staff Salary Processing: New C Solution

Staff Salary Processing: New C Solution

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Staff Salary Processing: Problem Statement: RECAP (Module 29)

• An organization needs to develop a salary processing application for its staff

• At present it has an engineering division only where Engineers and Managers work.
Every Engineer reports to some Manager. Every Manager can also work like an Engineer

• The logic for processing salary for Engineers and Managers are different as they have
different salary heads

• In future, it may add Directors to the team. Then every Manager will report to some
Director. Every Director could also work like a Manager

• The logic for processing salary for Directors will also be distinct

• Further, in future it may open other divisions, like Sales division, and expand the
workforce

• Make a suitable extensible design

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers
Engineer + Manager + Director: RECAP (Module 29)

• How to represent Engineers, Managers, and Directors?

◦ Collection of structs

• How to initialize objects?

◦ Initialization functions

• How to have a collection of mixed objects?

◦ Array of union

• How to model variations in salary processing algorithms?

◦ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

◦ Function switch
◦ Function pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

• In Module 29, we have developed a flat C Solution using function switch

• In Module 30, we refined the C Solution to develop two types of C++ Solution using

◦ Non-polymorphic hierarchy - employing function switch
◦ Polymorphic hierarchy - eomploying virtual function

• In Module 29, we had mentioned that in the flat C Solution it is not easy to use function
pointers as the processing functions void ProcessSalaryEngineer(Engineer *), void
ProcessSalaryManager(Manager *), and void ProcessSalaryDirector(Director *) all
have different types of arguments and therefore a common function pointer type cannot be
defined

• We can work around this by:

◦ Passing the staff object as void *, instead of Engineer *, Manager *, or Director *

◦ Cast it to respective object type in the respective function. That is, cast to Engineer * in
ProcessSalaryEngineer(Engineer *) and so on

◦ We can then use a function pointer type void (*)(void *)

• We illustrate in the Solution

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE; // Staff tag type
typedef void (*psFuncPtr)(void *); // Processing func. ptr. type, passing the object by void *
typedef struct Engineer { char *name_; } Engineer; // Engineer Type
Engineer *InitEngineer(const char *name) { Engineer *e = (Engineer *)malloc(sizeof(Engineer));

e->name_ = strdup(name); return e;
}
void ProcessSalaryEngineer(void *v) { Engineer *e = (Engineer *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Engineer\n", e->name_);
}
typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager; // Manager Type
Manager *InitManager(const char *name) { Manager *m = (Manager *)malloc(sizeof(Manager));

m->name_ = strdup(name); return m;
}
void ProcessSalaryManager(void *v) { Manager *m = (Manager *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Manager\n", m->name_);
}
typedef struct Director { char *name_; Manager *reports_[10]; } Director; // Director Type
Director *InitDirector(const char *name) { Director *d = (Director *)malloc(sizeof(Director));

d->name_ = strdup(name); return d;
}
void ProcessSalaryDirector(void *v) { Director *d = (Director *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Director\n", d->name_);
}CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

typedef struct Staff {
E_TYPE type_; // Staff tag type
void *p; // Pointer to staff object

} Staff; // Staff object wrapper
int main() {

// Array of function pointers
psFuncPtr psArray[] = { ProcessSalaryEngineer, ProcessSalaryManager, ProcessSalaryDirector };

// Array of staffs
Staff staff[] = { { Er, InitEngineer("Rohit") }, { Mgr, InitEngineer("Kamala") },

{ Mgr, InitEngineer("Rajib") }, { Er, InitEngineer("Kavita") },
{ Er, InitEngineer("Shambhu") }, { Dir, InitEngineer("Ranjana") } };

for (int i = 0; i < sizeof(staff) / sizeof(Staff); ++i)
psArray[staff[i].type_] // Pick the right processing function for the tag - staff type

(staff[i].p); // Pass the pointer to the object - implicitly cast to void*
}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Advantages and Disadvantages: RECAP (Module 26)
Annotated for Function Pointers
• Advantages

◦ Solution exists!
◦ Code is well structured – has patterns

• Disadvantages
◦ Employee data has scope for better organization

▷ No encapsulation for data
▷ Duplication of fields across types of employees – possible to mix up types for them (say, char *

and string)
▷ Employee objects are created and initialized dynamically through Init... functions. How to

release the memory?
◦ Types of objects are managed explicitly by E Type:

▷ Difficult to extend the design – addition of a new type needs to:
− Add new type code to enum E Type

− Add a new pointer field in struct Staff for the new type
− Add a new case (if-else or case) based on the new type: Removed using function pointer

▷ Error prone – developer has to decide to call the right processing function for every type
(ProcessSalaryManager for Mgr etc.): Removed using function pointer

◦ Unable to use Function Pointers as each processing function takes a parameter of different type - no
common signature for dispatch

• Recommendation
◦ Use classes for encapsulation on a hierarchy

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Staff Salary Processing: C++ Solution

Staff Salary Processing: C++ Solution

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

• How to represent Engineers, Managers, and Directors?

◦ Polymorphic class hierarchy

• How to initialize objects?

◦ Constructor / Destructor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing algorithms?

◦ Member functions

• How to invoke the correct algorithm for a correct employee type?

◦ Virtual Functions
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

#include <iostream>
#include <string>
using namespace std;

class Engineer {
protected:

string name_;
public:

Engineer(const string& name) : name_(name) { }
virtual ~Engineer() { }
virtual void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer {

Engineer *reports_[10];
public:

Manager(const string& name) : Engineer(name) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager {

Manager *reports_[10];
public:

Director(const string& name) : Manager(name) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i)
staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C and C++ Solutions: A Comparison

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C Solution C++ Solution

• How to represent Engineers, Managers, and
Directors?

◦ structs

• How to initialize objects?

◦ Initialization functions

• How to have a collection of mixed objects?

◦ array of union wrappers

• How to model variations in salary processing
algorithms?

◦ functions for structs

• How to invoke the correct algorithm for a cor-
rect employee type?

◦ Function pointers

• How to represent Engineers, Managers, and
Directors?

◦ Polymorphic hierarchy

• How to initialize objects?

◦ Ctor / Dtor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing
algorithms?

◦ class member functions

• How to invoke the correct algorithm for a cor-
rect employee type?

◦ Virtual Functions

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C Solution (Function Pointer) C++ Solution (Virtual Function)
typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE;
typedef void (*psFuncPtr)(void *);
typedef struct { E_TYPE type_; void *p; } Staff;
typedef struct { char *name_; } Engineer;
Engineer *InitEngineer(const char *name);
void ProcessSalaryEngineer(void *v);
typedef struct { char *name_; } Manager;
Manager *InitManager(const char *name);
void ProcessSalaryManager(void *v);
typedef struct { char *name_; } Director;
Director *InitDirector(const char *name);
void ProcessSalaryDirector(void *v);
int main() { psFuncPtr psArray[] = {

ProcessSalaryEngineer, // Function
ProcessSalaryManager, // pointer
ProcessSalaryDirector }; // array
Staff staff[] = {
{ Er, InitEngineer("Rohit") },
{ Mgr, InitEngineer("Kamala") },
{ Dir, InitEngineer("Ranjana") } };
for (int i = 0; i <

sizeof(staff)/sizeof(Staff); ++i)
psArray[staff[i].type_](staff[i].p);

}

class Engineer { protected: string name_;
public: Engineer(const string& name);

virtual void ProcessSalary(); };
virtual ~Engineer(); };

class Manager : public Engineer {
public: Manager(const string& name);

void ProcessSalary(); };
class Director : public Manager {
public: Director(const string& name);

void ProcessSalary(); };
int main() {

// Function pointer array is subsumed in
// virtual function tables of classes

Engineer e1("Rohit");
Manager m1("Kamala");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &d };
for(int i = 0; i <

sizeof(staff)/sizeof(Engineer*); ++i)
staff[i]->ProcessSalary();

}
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

Virtual Function Pointer Table

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

How do virtual functions work?

• The C Solution with function pointers gives us the lead to implement virtual functions. Here

◦ We have used an array of function pointers (psFuncPtr psArray[]) to keep the
processing functions (void ProcessSalaryEngineer(Engineer *), void
ProcessSalaryManager(Manager *), and void ProcessSalaryDirector(Director *))
indexed by the type tag (enum E TYPE { Er, Mgr, Dir })

◦ In C++, every class is a separate type - so the tag can be removed if we bind this table
(Virtual Function Table or VFT) with the class

◦ Every class can have a VFT with its appropriate processing function pointer put there
◦ By override, all these functions can have the same signature (void ProcessSalary()) and

can be called through the same expression ((Engineer *)->ProcessSalary())

• We now illustrate Virtual Function Table through simple examples to show how does it work
for inherited, overridden and overloaded member functions

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

Base Class Derived Class

class B {
int i;

public:
B(int i_): i(i_) { }

void f(int); // B::f(B*const, int)
virtual void g(int); // B::g(B*const, int)
};

B b(100);
B *p = &b;

b Object Layout

Object VFT
vft → 0 B::g(B*const, int)
B::i 100

Source Expression Compiled Expression
b.f(15);
p->f(25);
b.g(35);
p->g(45);

B::f(&b, 15);
B::f(p, 25);
B::g(&b, 35);
p->vft[0](p, 45);

class D: public B {
int j;

public:
D(int i_, int j_): B(i_), j(j_) { }

void f(int); // D::f(D*const, int)
void g(int); // D::g(D*const, int)

};

D d(200, 500);
B *p = &d;

d Object Layout

Object VFT
vft → 0 D::g(D*const, int)
B::i 200
D::j 500

Source Expression Compiled Expression
d.f(15);
p->f(25);
d.g(35);
p->g(45);

D::f(&d, 15);
B::f(p, 25);
D::g(&d, 35);
p->vft[0](p, 45);

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

• Whenever a class defines a virtual function a hidden member variable is added to the
class which points to an array of pointers to (virtual) functions called the Virtual
Function Table (VFT)

• VFT pointers are used at run-time to invoke the appropriate function implementations,
because at compile time it may not yet be known if the base function is to be called or
a derived one implemented by a class that inherits from the base class

• VFT is class-specific – all instances of the class has the same VFT

• VFT carries the Run-Time Type Information (RTTI) of objects

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 22

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

class A { public:
virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};
A a; B b; C c;
A *pA; B *pB;

Source Expression Compiled Expression
pA->f(2);
pA->g(3.2);
pA->h(&a);
pA->h(&b);

pB->f(2);
pB->g(3.2);
pB->h(&a);
pB->h(&b);

pA->vft[0](pA, 2);
pA->vft[1](pA, 3.2);
A::h(pA, &a);
A::h(pA, &b);

pB->vft[0](pB, 2);
pB->vft[1](pB, 3.2);
pB->vft[2](pB, &a);
pB->vft[2](pB, &b);

a Object Layout

Object VFT
vft → 0 A::f(A*const, int) Defined

1 A::g(A*const, double) Defined

b Object Layout

Object VFT
vft → 0 B::f(B*const, int) Overridden

1 A::g(A*const, double) Inherited
2 B::h(B*const, B*) Overloaded

c Object Layout

Object VFT
vft → 0 B::f(B*const, int) Inherited

1 C::g(C*const, double) Overridden
2 C::h(C*const, B*) Overridden

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 23

Module 31
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Weekly Recap

Objectives &
Outline

Staff Salary
Processing: New
C Solution

Staff Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Summary

• Leveraging an innovative solution to the Salary Processing Application in C using
function pointers, we compare C and C++ solutions to the problem

• The new C solution with function pointers is used to explain the mechanism for
dynamic binding (polymorphic dispatch) based on virtual function tables

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 24

	Weekly Recap
	Objectives & Outline
	Staff Salary Processing: New C Solution
	Staff Salary Processing: C++ Solution
	C and C++ Solutions: A Comparison
	Virtual Function Pointer Table
	Module Summary

