
Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

Module 30: Programming in C++
Polymorphism: Part 5: Staff Salary Processing using C++

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

Module Objectives

• Understand design with class hierarchy

• Understand the process of design refinement to get to a good solution from a starting
one

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

Module Outline

1 Staff Salary Processing: C++ Solution
Non-Polymorphic Hierarchy

Advantages and Disadvantages
Polymorphic Hierarchy

Advantages and Disadvantages
Polymorphic Hierarchy (Flexible)

Advantages and Disadvantages

2 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy: Engineer + Manager

• How to represent Engineers and Managers?

◦ Non-Polymorphic class hierarchy

• How to initialize objects?

◦ Constructor / Destructor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing algorithms?

◦ Member functions

• How to invoke the correct algorithm for a correct employee type?

◦ Function switch
◦ Function pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy: Engineer + Manager

#include <iostream>
#include <string>
using namespace std;

enum E_TYPE { Er, Mgr };

class Engineer {
protected:

string name_; E_TYPE type_;
public:

Engineer(const string& name, E_TYPE e = Er) : name_(name), type_(e) { }
E_TYPE GetType() { return type_; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};

class Manager : public Engineer {
Engineer *reports_[10];

public:
Manager(const string& name, E_TYPE e = Mgr) : Engineer(name, e) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3 };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i) {
E_TYPE t = staff[i]->GetType();
if (t == Er)

staff[i]->ProcessSalary();
else if (t == Mgr)

((Manager *)staff[i])->ProcessSalary();
else cout << "Invalid Staff Type" << endl;

}
}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy:
Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

◦ Non-Polymorphic class hierarchy

• How to initialize objects?

◦ Constructor / Destructor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing algorithms?

◦ Member functions

• How to invoke the correct algorithm for a correct employee type?

◦ Function switch
◦ Function pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager + Director
#include <iostream>
#include <string>
using namespace std;
enum E_TYPE { Er, Mgr, Dir };

class Engineer {
protected:

string name_; E_TYPE type_;
public:

Engineer(const string& name, E_TYPE e = Er) : name_(name), type_(e) {}
E_TYPE GetType() { return type_; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer {

Engineer *reports_[10];
public:

Manager(const string& name, E_TYPE e = Mgr) : Engineer(name, e) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager {

Manager *reports_[10];
public:

Director(const string& name) : Manager(name, Dir) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager + Director

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i) {
E_TYPE t = staff[i]->GetType();
if (t == Er)

staff[i]->ProcessSalary();
else if (t == Mgr)

((Manager *)staff[i])->ProcessSalary();
else if (t == Dir)

((Director *)staff[i])->ProcessSalary();
else cout << "Invalid Staff Type" << endl;

}
}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy:
Advantages and Disadvantages

• Advantages

◦ Data is encapsulated
◦ Hierarchy factors common data members
◦ Constructor / Destructor to manage lifetime
◦ struct-specific functions made member function (overridden)
◦ E Type subsumed in class – no need for union
◦ Code reuse evidenced

• Disadvantages

◦ Types of objects are managed explicitly by E Type:

▷ Difficult to extend the design – addition of a new type needs to:

− Add new type code to enum E Type

− Application code need to have a new case (if-else) based on the new type

▷ Error prone because the application programmer has to cast to right type to call
ProcessSalary

• Recommendation

◦ Use a polymorphic hierarchy with dynamic dispatch
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

◦ Polymorphic class hierarchy

• How to initialize objects?

◦ Constructor / Destructor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing algorithms?

◦ Member functions

• How to invoke the correct algorithm for a correct employee type?

◦ Virtual Functions
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director
#include <iostream>
#include <string>
using namespace std;

class Engineer {
protected:

string name_;
public:

Engineer(const string& name) : name_(name) {}
virtual void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};

class Manager : public Engineer {
Engineer *reports_[10];

public:
Manager(const string& name) : Engineer(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};

class Director : public Manager {
Manager *reports_[10];

public:
Director(const string& name) : Manager(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i)
staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy:
Advantages and Disadvantages

• Advantages

◦ Data is fully encapsulated
◦ Polymorphic Hierarchy removes the need for explicit E Type

◦ Application code is independent of types in the system (virtual functions manage
types through polymorphic dispatch)

◦ High Code reuse – code is short and simple

• Disadvantages

◦ Difficult to add an employee type that is not a part of this hierarchy (for example,
employees of Sales Division

• Recommendation

◦ Use an abstract base class for employees

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

• How to represent Engineers, Managers, Directors, etc.?

◦ Polymorphic class hierarchy with an Abstract Base Employee

• How to initialize objects?

◦ Constructor / Destructor

• How to have a collection of mixed objects?

◦ array of base class pointers

• How to model variations in salary processing algorithms?

◦ Member functions

• How to invoke the correct algorithm for a correct employee type?

◦ Virtual Functions (Pure in Employee)
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others
#include <iostream>
#include <string>
using namespace std;
class Employee {
protected: string name_;
public:

virtual void ProcessSalary() = 0;
virtual ~Employee() { }

};
class Engineer: public Employee { public:

Engineer(const string& name) { name_ = name; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer { Engineer *reports_[10]; public:

Manager(const string& name) : Engineer(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager { Manager *reports_[10]; public:

Director(const string& name) : Manager(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
class SalesExecutive : public Employee { public:

SalesExecutive(const string& name) { name_ = name; }
void ProcessSalary() { cout << name_ << ": Process Salary for Sales Executive" << endl; }

};
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
SalesExecutive s1("Hari"), s2("Bishnu");
Director d("Ranjana");

Employee *staff[] = { &e1, &m1, &m2, &e2, &s1, &e3, &d, &s2 };

for (int i = 0; i < sizeof(staff) / sizeof(Employee*); ++i)
staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Hari: Process Salary for Sales Executive
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director
Bishnu: Process Salary for Sales Executive

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible):
Advantages and Disadvantages

• Advantages

◦ Data is fully encapsulated
◦ Flexible Polymorphic Hierarchy makes addition of any class possible on the hierarchy
◦ Application code is independent of types in the system (virtual functions manage
types through polymorphic dispatch)

◦ Maximum Code reuse – code is short and simple

• Disadvantages

◦ Still needs to maintain employee objects in code and add them to the staff array -
this is error prone

• Recommendation

◦ Use vector as a collection and insert staff as created

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others
#include <iostream>
#include <string>
#include <vector>
using namespace std;
class Employee { protected: string name_; // Name of the employee

vector<Employee*> reports_; // Collection of reportees aggregated
public: virtual void ProcessSalary() = 0; // Processing salary

virtual ~Employee() { }
static vector<Employee*> staffs; // Collection of all staffs
void AddStaff(Employee* e) { staffs.push_back(e); }; // Add a staff to collection

};
class Engineer : public Employee { public:

Engineer(const string& name) { name_ = name; // Why init like name_(name) won’t work?
AddStaff(this); } // Add the staff

void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }
};
class Manager : public Engineer { public: Manager(const string& name) : Engineer(name) { }

void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }
};
class Director : public Manager { public: Director(const string& name) : Manager(name) { }

void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }
};
class SalesExecutive : public Employee { public:

SalesExecutive(const string& name) { name_ = name; AddStaff(this); } // Add the staff
void ProcessSalary() { cout << name_ << ": Process Salary for Sales Executive" << endl; }

};CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

vector<Employee*> Employee::staffs; // Collection of all staffs

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
SalesExecutive s1("Hari"), s2("Bishnu");
Director d("Ranjana");

vector<Employee*>::const_iterator it; // Iterator over staffs

for (it = Employee::staffs.begin(); // Iterate on staffs
it < Employee::staffs.end();
++it)

(*it)->ProcessSalary(); // Process respective salary
}

Rohit: Process Salary for Engineer
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Hari: Process Salary for Sales Executive
Bishnu: Process Salary for Sales Executive
Ranjana: Process Salary for Director

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible):
Advantages and Disadvantages

• Advantages

◦ Data is fully encapsulated
◦ Flexible Polymorphic Hierarchy makes addition of any class possible on the hierarchy
◦ Application code is independent of types in the system (virtual functions manage
types through polymorphic dispatch)

◦ Maximum Code reuse – code is short and simple
◦ Collection of staff encapsulated with creation
◦ vector and iterator increases efficiency and efficacy

• Disadvantages

◦ None in particular

• Recommendation

◦ Enjoy the solution

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21



Module 30
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Staff Salary
Processing: C++
Solution

Non-Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy

Advantages and
Disadvantages

Polymorphic
Hierarchy (Flexible)

Advantages and
Disadvantages

Module Summary

Module Summary

• Completed design for a staff salary problem using hierarchy and worked out extensible
C++ solution

• Learnt about iterative refinement of solutions in the process

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 22


	Staff Salary Processing: C++ Solution
	Non-Polymorphic Hierarchy
	Polymorphic Hierarchy
	Polymorphic Hierarchy (Flexible)

	Module Summary

