
Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Module 29: Programming in C++
Polymorphism: Part 4: Staff Salary Processing using C

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Module Objectives

• Understand design with ISA related concepts

• Understand the problems with C design

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Module Outline

1 Binding: Exercise
Exercise 1
Exercise 2

2 Staff Salary Processing
C Solution

Engineer + Manager
Engineer + Manager + Director
Advantages and Disadvantages

3 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Binding: Exercise 1

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pA = &a; pA = &b; pA = &c;

pA->f(2);

pA->g(3.2);

pA->h(&a);

pA->h(&b);

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Binding: Exercise 1: Solution

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pA = &a; pA = &b; pA = &c;

pA->f(2); A::f B::f B::f

pA->g(3.2); A::g A::g C::g

pA->h(&a); A::h A::h A::h

pA->h(&b); A::h A::h A::h

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Binding: Exercise 2

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pB = &a; pB = &b; pB = &c;

pB->f(2);

pB->g(3.2);

pB->h(&a);

pB->h(&b);

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Binding: Exercise 2: Solution

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pB = &a; pB = &b; pB = &c;

pB->f(2); Error B::f B::f
pB->g(3.2); Downcast A::g C::g
pB->h(&a); (A *) to No conversion (A *) to (B *)
pB->h(&b); (B *) B::h C::h

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Staff Salary Processing: Problem Statement

• An organization needs to develop a salary processing application for its staff

• At present it has an engineering division only where Engineers and Managers work.
Every Engineer reports to some Manager. Every Manager can also work like an Engineer

• The logic for processing salary for Engineers and Managers are different as they have
different salary heads

• In future, it may add Directors to the team. Then every Manager will report to some
Director. Every Director could also work like a Manager

• The logic for processing salary for Directors will also be distinct

• Further, in future it may open other divisions, like Sales division, and expand the
workforce

• Make a suitable extensible design

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

• How to represent Engineers and Managers?

◦ Collection of structs

• How to initialize objects?

◦ Initialization functions

• How to have a collection of mixed objects?

◦ Array of union

• How to model variations in salary processing algorithms?

◦ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

◦ Function Switch
◦ Function Pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef enum E_TYPE { Er, Mgr } E_TYPE; // Tag for type of staff

typedef struct Engineer { char *name_; } Engineer;
Engineer *InitEngineer(const char *name) {

Engineer *e = (Engineer *)malloc(sizeof(Engineer));
e->name_ = strdup(name); return e;

}
void ProcessSalaryEngineer(Engineer *e) { printf("%s: Process Salary for Engineer\n", e->name_); }

typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager;
Manager *InitManager(const char *name) {

Manager *m = (Manager *)malloc(sizeof(Manager));
m->name_ = strdup(name); return m;

}
void ProcessSalaryManager(Manager *m) { printf("%s: Process Salary for Manager\n", m->name_); }

typedef struct Staff { // Aggregation of staffs
E_TYPE type_;
union { Engineer *pE; Manager *pM; };

} Staff;

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

int main() {
Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");

for (int i = 0; i < 5; ++i) {
E_TYPE t = allStaff[i].type_;
if (t == Er)

ProcessSalaryEngineer(allStaff[i].pE);
else if (t == Mgr)

ProcessSalaryManager(allStaff[i].pM);
else

printf("Invalid Staff Type\n");
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

◦ Collection of structs

• How to initialize objects?

◦ Initialization functions

• How to have a collection of mixed objects?

◦ Array of union

• How to model variations in salary processing algorithms?

◦ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

◦ Function switch
◦ Function pointers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE;

typedef struct Engineer { char *name_; } Engineer;
Engineer *InitEngineer(const char *name) { Engineer *e = (Engineer *)malloc(sizeof(Engineer));

e->name_ = strdup(name); return e;
}
void ProcessSalaryEngineer(Engineer *e) { printf("%s: Process Salary for Engineer\n", e->name_); }

typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager;
Manager *InitManager(const char *name) { Manager *m = (Manager *)malloc(sizeof(Manager));

m->name_ = strdup(name); return m;
}
void ProcessSalaryManager(Manager *m) { printf("%s: Process Salary for Manager\n", m->name_); }

typedef struct Director { char *name_; Manager *reports_[10]; } Director;
Director *InitDirector(const char *name) { Director *d = (Director *)malloc(sizeof(Director));

d->name_ = strdup(name); return d;
}
void ProcessSalaryDirector(Director *d) { printf("%s: Process Salary for Director\n", d->name_); }

typedef struct Staff { E_TYPE type_; union { Engineer *pE; Manager *pM; Director *pD; };
} Staff;
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

int main() { Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");
allStaff[5].type_ = Dir; allStaff[5].pD = InitDirector("Ranjana");

for (int i = 0; i < 6; ++i) { E_TYPE t = allStaff[i].type_;
if (t == Er)

ProcessSalaryEngineer(allStaff[i].pE);
else if (t == Mgr)

ProcessSalaryManager(allStaff[i].pM);
else if (t == Dir)

ProcessSalaryDirector(allStaff[i].pD);
else

printf("Invalid Staff Type\n");
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

Instead of if-else chain, we can use switch to explicitly switch on the type of employee

int main() { Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");
allStaff[5].type_ = Dir; allStaff[5].pD = InitDirector("Ranjana");

for (int i = 0; i < 6; ++i) { E_TYPE t = allStaff[i].type_;
switch (t) {

case Er: ProcessSalaryEngineer(allStaff[i].pE); break;
case Mgr: ProcessSalaryManager(allStaff[i].pM); break;
case Dir: ProcessSalaryDirector(allStaff[i].pD); break;
default: printf("Invalid Staff Type\n"); break;

}
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

C Solution: Advantages and Disadvantages

• Advantages

◦ Solution exists!
◦ Code is well structured – has patterns

• Disadvantages

◦ Employee data has scope for better organization

▷ No encapsulation for data
▷ Duplication of fields across types of employees – possible to mix up types for them (say, char *

and string)
▷ Employee objects are created and initialized dynamically through Init... functions. How to

release the memory?

◦ Types of objects are managed explicitly by E Type:

▷ Difficult to extend the design – addition of a new type needs to:

− Add new type code to enum E Type

− Add a new pointer field in struct Staff for the new type
− Add a new case (if-else or case) based on the new type

▷ Error prone – developer has to decide to call the right processing function for every type
(ProcessSalaryManager for Mgr etc.)

• Recommendation

◦ Use classes for encapsulation on a hierarchy
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

Module 29
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Binding: Exercise

Exercise 1

Exercise 2

Staff Salary
Processing

C Solution

Engineer +
Manager

Engineer +
Manager + Director

Advantages and
Disadvantages

Module Summary

Module Summary

• Practiced exercise with binding – various mixed cases

• Started designing for a staff salary problem and worked out C solutions

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

	Binding: Exercise
	Exercise 1
	Exercise 2

	Staff Salary Processing
	C Solution

	Module Summary

