
Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Module 26: Programming in C++
Polymorphism: Part 1: Type Casting

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Module Objectives

• Understand type casting and the difference between implicit and explicit casting

• Understand type casting in a class hierarchy

• Understand the notions of upcast and downcast

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Module Outline

1 Type Casting
Basic Notions
Comparison of Implicit and Explicit Casting
Built-in Type

Promotion & Demotion
Unrelated Classes
Inheritance Hierarchy

Upcast
Downcast

2 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting: Basic Notions

• Casting is performed when a value (variable) of one type is used in place of some other type.
Converting an expression of a given type into another type is known as type-casting

int i = 3;
double d = 2.5;

double result = d / i; // i is cast to double and used

• Casting can be implicit or explicit

d = i; // implicit: int to double
i = d; // implicit: warning: ’=’ : conversion from ’double’ to ’int’: possible loss of data
d = (double)i; // explicit: int to double
i = (int)d; // explicit: double to int

• Casting Rules can be grossly classified for:

◦ Built-in types
◦ Unrelated types
◦ Inheritance hierarchy (static)
◦ Inheritance hierarchy (dynamic)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Comparison of Implicit and Explicit Casting

Implicit Casting Explicit Casting

• Done automatically • Done programatically
• No data loss, for promotion

Compiler will be silent
• Possible data loss, for demotion

Compiler will issue warning

• Data loss may or may not take place
Compiler will be silent

• Requires no special syntax • Requires cast operator for conversion
C style operator: (< type >)

C++ style operators:
const cast,
static cast,
dynamic cast, and
reinterpret cast

• Avoid, if possible • Avoid C style cast
Use C++ style cast

• Possible only in static time • Possible in static as well as dynamic time
• May be disallowed for User-Defined Types, but
cannot be disallowed for built-in types

• May be defined for User-Defined Types

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Built-in Type

• Various type castings are possible between built-in types

int i = 3;
double d = 2.5;

double result = d / i; // i is cast to double and used

• Casting rules are defined between numerical types, between numercial types and pointers, and
between pointers to different numerical types and void

• Casting can be implicit or explicit

int i = 3;
double d = 2.5, *p = &d;

d = i; // implicit: int to double
i = d; // implicit: warning: ’=’ : conversion from ’double’ to ’int’: possible loss of data

d = (double)i; // explicit: int to double
i = (int)d; // explicit: double to int

i = p; // error: ’=’ : cannot convert from ’double *’ to ’int’
i = (int)p; // explicit: double * to int

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Built-in Type: Numerical Types

• Casting is safe for promotion (All the data types of the variables are upgraded to the
data type of the variable with larger data type)

bool → char → short int → int → unsigned int → long → unsigned →
long long → float → double → long double

• Casting in built-in types does not invoke any conversion function. It only re-interprets
the binary representation

• Casting is unsafe for demotion – may lead to loss of data

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Built-in Type: Pointer Types

• Implicit casting between different pointer types is not allowed
• Any pointer can be implicitly cast to void* (with loss of type); but void* cannot be
implicitly cast to any pointer type

• Conversion between array and corresponding pointer is not type casting – these are two
different syntactic forms for accessing the same data

int i = 1, *p = &i, a[10]; double d = 1.1, *q = &d; void *r;

q = p; // error: cannot convert ‘int*’ to ‘double*’
p = q; // error: cannot convert ‘double*’ to ‘int*’
q = (double*)p; // Okay
p = (int*)q; // Okay

r = p; // Okay to convert from ‘int*’ to ‘void*’
p = r; // error: invalid conversion from ‘void*’ to ‘int*’
p = (int*)r; // Okay

p = a; // Okay by array pointer duality. p[i], a[i], *(p+i), *(a+i) are equivalent
a = p; // error: incompatible types in assignment of ‘int*’ to ‘int[10]’

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Built-in Type: Pointer Types

• Implicit casting between pointer type and numerical type is not allowed
• However, explicit casting between pointer and integral type (int or long etc.) is a common

practice to support various tasks like serialization (save a file) and de-serialization (open a file)
• Care should be taken with these explicit cast to ensure that the integral type is of the same

size as of the pointer. That is: sizeof(void*) = sizeof(< integraltype >)

int i, *p = 0; long j;

// sizeof(i) = sizeof(int) = 4
// sizeof(j) = sizeof(long) = 8
// sizeof(p) = sizeof(int*) = sizeof(void*) = 8

i = p; // error: invalid conversion from ‘int*’ to ‘int’
p = i; // error: invalid conversion from ‘int’ to ‘int*’

i = (int)p; // error: cast from ‘int*’ to ‘int’ loses precision
p = (int*)i; // warning: cast to pointer from integer of different size

j = (long)p; // Okay
p = (int*)j; // Okay

• Here, the conversion should be done between int* and long and not between int* and int
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Unrelated Classes

• (Implicit) Casting between unrelated classes is not permitted

class A { int i; };
class B { double d; };

A a;
B b;

A *p = &a;
B *q = &b;

a = b; // error: binary ’=’ : no operator which takes a right-hand operand of type ’B’
a = (A)b; // error: ’type cast’ : cannot convert from ’B’ to ’A’

b = a; // error: binary ’=’ : no operator which takes a right-hand operand of type ’A’
b = (B)a; // error: ’type cast’ : cannot convert from ’A’ to ’B’

p = q; // error: ’=’ : cannot convert from ’B *’ to ’A *’
q = p; // error: ’=’ : cannot convert from ’A *’ to ’B *’

p = (A*)&b; // explicit on pointer: type cast is okay for the compiler
q = (B*)&a; // explicit on pointer: type cast is okay for the compiler

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Unrelated Classes

• Forced Casting between unrelated classes is dangerous

class A { public: int i; };
class B { public: double d; };

A a;
B b;

a.i = 5;
b.d = 7.2;

A *p = &a;
B *q = &b;

cout << p->i << endl; // prints 5
cout << q->d << endl; // prints 7.2

p = (A*)&b; // Forced casting on pointer: Dangerous
q = (B*)&a; // Forced casting on pointer: Dangerous

cout << p->i << endl; // prints -858993459: GARBAGE
cout << q->d << endl; // prints -9.25596e+061: GARBAGE

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Inheritance Hierarchy

• Casting on a hierarchy is permitted in a limited sense

class A { };
class B : public A { };

A *pa = 0;
B *pb = 0;
void *pv = 0;

pa = pb; // UPCAST: Okay

pb = pa; // DOWNCAST: error: ’=’ : cannot convert from ’A *’ to ’B *’

pv = pa; // Okay, but lose the type for A * to void *
pv = pb; // Okay, but lose the type for B * to void *

pa = pv; // error: ’=’ : cannot convert from ’void *’ to ’A *’
pb = pv; // error: ’=’ : cannot convert from ’void *’ to ’B *’

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Inheritance Hierarchy

• Up-Casting is safe

class A { public: int dataA_; };
class B : public A { public: int dataB_; };

A a;
B b;

a.dataA_ = 2;
b.dataA_ = 3;
b.dataB_ = 5;

A *pa = &a;
B *pb = &b;

cout << pa->dataA_ << endl; // prints 2
cout << pb->dataA_ << " " << pb->dataB_ << endl; // prints 3 5

pa = &b;

cout << pa->dataA_ << endl; // prints 3
cout << pa->dataB_ << endl; // error: ’dataB_’ : is not a member of ’A’

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Type Casting Rules: Inheritance Hierarchy

• Down-Casting is risky

class A { public: int dataA_; };
class B : public A { public: int dataB_; };

A a;
B b;

a.dataA_ = 2;
b.dataA_ = 3;
b.dataB_ = 5;

B *pb = (B*)&a; // Forced downcast

cout << pb->dataA_ << endl; // prints 2
cout << pb->dataB_ << endl; // Compilation okay. Prints garbage for ’dataB_’ -- no ’dataB_’ in ’A’ object

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Module 26
Intructors: Abir

Das and
Sourangshu
Bhattacharya

Type Casting

Comparison

Built-in Type

Promotion &
Demotion

Unrelated Classes

Inheritance Hierarchy

Upcast

Downcast

Module Summary

Module Summary

• Introduced type casting

• Understood the difference between implicit and explicit type casting

• Introduced the notions of Casting in a class hierarchy – upcast and downcast

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

	Type Casting
	Basic Notions
	Comparison of Implicit and Explicit Casting
	Built-in Type
	Unrelated Classes
	Inheritance Hierarchy

	Module Summary

