
Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Module 23: Programming in C++
Inheritence (Part 3): Constructors, Destructors & Object Lifetime

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Module Recap

• Discussed the effect of inheritance on Data Members and Object Layout

• Discussed the effect of inheritance on Member Functions with special reference to
Overriding and Overloading

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Module Objectives

• Understand protected access specifier

• Understand the construction and destruction process on an object hierarchy

• Revisit Object Lifetime for a hierarchy

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Module Outline

1 Inheritance in C++

2 protected Access
Streaming

3 Constructor & Destructor

4 Object Lifetime

5 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Inheritance in C++: Semantics

• Derived ISA Base
• Data Members

◦ Derived class inherits all data members of Base class
◦ Derived class may add data members of its own

• Member Functions

◦ Derived class inherits all member functions of Base class
◦ Derived class may override a member function of Base class by redefining it with the same signature
◦ Derived class may overload a member function of Base class by redefining it with the same name;

but different signature
◦ Derived class may add new member functions

• Access Specification

◦ Derived class cannot access private members of Base class
◦ Derived class can access protected members of Base class

• Construction-Destruction

◦ A constructor of the Derived class must first call a constructor of the Base class to construct the
Base class instance of the Derived class

◦ The destructor of the Derived class must call the destructor of the Base class to destruct the Base
class instance of the Derived class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

protected Access

protected Access

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Access Members of Base: protected Access

• Derived ISA Base

• Access Specification

◦ Derived class cannot access private members of Base class
◦ Derived class can access public members of Base class

• protected Access Specification

◦ A new protected access specification is introduced for Base class
◦ Derived class can access protected members of Base class
◦ No other class or global function can access protected members of Base class
◦ A protected member in Base class is like public in Derived class
◦ A protected member in Base class is like private in other classes or global functions

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

protected Access

private Access protected Access
class B {
private: // Inaccessible to child

// Inaccessible to others
int data_;

public: // ...
void Print() { cout << "B Object: ";

cout << data_ << endl;
}

};
class D: public B { int info_; public: // ...

void Print() { cout << "D Object: ";
cout << data_ << ", "; // Inaccessible
cout << info_ <<endl;

}
};
B b(0);
D d(1, 2);

b.data_ = 5; // Inaccessible to all

b.Print();
d.Print();

class B {
protected: // Accessible to child

// Inaccessible to others
int data_;

public: // ...
void Print() { cout << "B Object: ";

cout<<data_<<endl;
}

};
class D: public B { int info_; public: // ...

void Print() { cout << "D Object: ";
cout << data_ << ", "; // Accessible
cout << info_ << endl;

}
};
B b(0);
D d(1, 2);

b.data_ = 5; // Inaccessible to others

b.Print();
d.Print();

• D::Print() cannot access B::data as it is private • D::Print() can access B::data as it is protected

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Why do we need protected access?

• Handling Encapsulation: Encapsulation, the first principle of OOAD, can be enforced in a single class
by private and public access specifiers

◦ private hides the state (data) of the object and public allows the service (method / interface) to
be exposed

◦ We fine-grain this by get/set paradigm to achieve effective information hiding
◦ Further friend provides a way to sneak through encapsulation for easy yet safe coding

• Encapsulation-Inheritance Conflict: The above approach to Encapsulation conflicts with Inheritance,
the second principle of OOAD
What should be the access specification for data members of a Base class?

◦ If they are public, the encapsulation is lost for the base class objects
◦ If they are private, even the derived class methods cannot access them
◦ So the derived class object contains the base class data members but cannot access them

Notably, the state of the derived class object depends on the state of its base class part
◦ The get/set paradigm does not work as it is clumsy and creates an encapsulation hole like public

if used for all data members

• Solution: The protected access specifier provides a neat solution by making protected base class
members available to the derived class while being hidden from the rest of the world

• Caveat: protected specifier still does not solve all situations and we need to use friend to provide a
way to sneak through encapsulation as the next example illustrates

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Streaming

Streaming in B Streaming in B & D

class B { protected: int data_;
public:

friend ostream& operator<<(ostream& os,
const B& b) { os << "B Object: ";
os << b.data_ << endl;
return os;

}
};
class D: public B { int info_;
public:

//friend ostream& operator<<(ostream& os,
// const D& d) { os << "D Object: ";
// os << d.data_ << ’ ’ << d.info_ << endl;
// return os;
//}

};
B b(0); cout << b; // Printed a B object
D d(1, 2); cout << d; // Printed a B object

B Object: 0
B Object: 1

class B { protected: int data_;
public:

friend ostream& operator<<(ostream& os,
const B& b) { os << "B Object: ";
os << b.data_ << endl;
return os;

}
};
class D: public B { int info_;
public:

friend ostream& operator<<(ostream& os,
const D& d) { os << "D Object: ";
os << d.data_ << ’ ’ << d.info_ << endl;
return os;

}
};
B b(0); cout << b; // Printed a B object
D d(1, 2); cout << d; // Printed a D object

B Object: 0
D Object: 1 2

• d printed as a B object; info missing • d printed as a D object as expected

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Constructor and Destructor

• Derived ISA Base

• Constructor-Destructor

◦ Derived class does not inherit the Constructors and Destructor of Base class but
must have access to them

◦ Derived class must provide its own Constructors and Destructor
◦ Derived class cannot override or overload a Constructor or the Destructor of Base
class

• Construction-Destruction

◦ A constructor of the Derived class must first call a constructor of the Base class to
construct the Base class instance of the Derived class

◦ The destructor of the Derived class must call the destructor of the Base class to
destruct the Base class instance of the Derived class

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Constructor and Destructor

class B { protected: int data_; public:
B(int d = 0) : data_(d) { cout << "B::B(int): " << data_ << endl; }
~B() { cout << "B::~B(): " << data_ << endl; }
// ...

};
class D: public B { int info_; public:

D(int d, int i) : B(d), info_(i) // ctor-1: Explicit construction of Base
{ cout << "D::D(int, int): " << data_ << ", " << info_ << endl; }
D(int i) : info_(i) // ctor-2: Default construction of Base
{ cout << "D::D(int): " << data_ << ", " << info_ << endl; }
~D() { cout << "D::~D(): " << data_ << ", " << info_ << endl; }
// ...

};

B b(5);
D d1(1, 2); // ctor-1: Explicit construction of Base
D d2(3); // ctor-2: Default construction of Base

Object Layout

Object b Object d1 Object d2

5
1

2

0

3

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Object Lifetime

class B { protected: int data_; public:
B(int d = 0) : data_(d) { cout << "B::B(int): " << data_ << endl; }
~B() { cout << "B::~B(): " << data_ << endl; }
// ...

};
class D: public B { int info_; public:

D(int d, int i) : B(d), info_(i) // ctor-1: Explicit construction of Base
{ cout << "D::D(int, int): " << data_ << ", " << info_ << endl; }
D(int i) : info_(i) // ctor-2: Default construction of Base
{ cout << "D::D(int): " << data_ << ", " << info_ << endl; }
~D() { cout << "D::~D(): " << data_ << ", " << info_ << endl; }
// ...

};
B b;
D d1(1, 2); // ctor-1: Explicit construction of Base
D d2(3); // ctor-2: Default construction of Base

Construction O/P Destruction O/P
B::B(int): 0 // Object b
B::B(int): 1 // Object d1
D::D(int, int): 1, 2 // Object d1
B::B(int): 0 // Object d2
D::D(int): 0, 3 // Object d2

D::~D(): 0, 3 // Object d2
B::~B(): 0 // Object d2
D::~D(): 1, 2 // Object d1
B::~B(): 1 // Object d1
B::~B(): 0 // Object b

• First construct base class object, then derived class object
• First destruct derived class object, then base class object

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13



Module 23

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Inheritance in
C++

protected

Access

Streaming

Constructor &
Destructor

Object Lifetime

Module Summary

Module Summary

• Understood the need and use of protected Access specifier

• Discussed the Construction and Destruction process of class hierarchy and related
Object Lifetime

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14


	Objectives & Outlines
	Inheritance in C++
	protected Access
	Streaming

	Constructor & Destructor
	Object Lifetime
	Module Summary

