
Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module 18: Programming in C++
Overloading Operator for User-Defined Types: Part 1

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Objectives

• Understand how to overload operators for a user-defined type (class)

• Understand the aspects of overloading by global function and member

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Outline

1 Operator Function
Non-Member Function
Member Function
Operator Overloading Rules

2 Using Global Function
public data members
private data members

3 Using Member Function
operator+

operator=

Unary Operators

4 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

How can operator functions help?

• We have seen how overloading operator+ a C-string wrapped in struct allows us a compact
notation for concatenation of two strings (Module 09)

• We have seen how overloading operator= can define the deep / shallow copy for a UDT and /
or help with user-defined copy semantics (Module 14)

• In general, operator overloading helps us to build complete algebra for UDT’s much in the
same line as is available for built-in types:

◦ Complex type: Add (+), Subtract (-), Multiply (*), Divide (/), Conjugate (!), Compare (==, !=,

...), etc.
◦ Fraction type: Add (+), Subtract (-), Multiply (*), Divide (/), Normalize (unary *), Compare (==,

!=, ...), etc.
◦ Matrix type: Add (+), Subtract (-), Multiply (*), Divide (/), Invert (!), Compare (==), etc.
◦ Set type: Union (+), Difference (-), Intersection (*), Subset (< <=), Superset (> >=), Compare

(==, !=), etc.
◦ Direct IO: read (<<) and write (>>) for all types

• Advanced examples include:

◦ Smart Pointers: De-reference (unary *), Indirection (->), Copy (=), Compare (==, !=), etc.
◦ Function Objects or Functors: Invocation (())

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Operator Functions in C++: RECAP (Module 9)

• Introduces a new keyword: operator
• Every operator is associated with an operator function that defines its behavior

Operator Expression Operator Function

a + b operator+(a, b)

a = b operator=(a, b)

c = a + b operator=(c, operator+(a, b))

• Operator functions are implicit for predefined operators of built-in types and cannot be
redefined

• An operator function may have a signature as:

MyType a, b; // An enum or struct

// Operator function

MyType operator+(const MyType&, const MyType&);

a + b // Calls operator+(a, b)

• C++ allows users to define an operator function and overload it

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Non-Member Operator Function

• A non-member operator function may be a

◦ Global Function
◦ friend Function

• Binary Operator:
MyType a, b; // An enum, struct or class

MyType operator+(const MyType&, const MyType&); // Global

friend MyType operator+(const MyType&, const MyType&); // Friend

• Unary Operator:
MyType operator++(const MyType&); // Global

friend MyType operator++(const MyType&); // Friend

• Note: The parameters may not be constant and may be passed by value. The return may also
be by reference and may be constant

• Examples:
Operator Expression Operator Function

a + b operator+(a, b)

a = b operator=(a, b)

++a operator++(a)

a++ operator++(a, int) Special Case

c = a + b operator=(c, operator+(a, b))

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Member Operator Function

• Binary Operator:
MyType a, b; // MyType is a class

MyType operator+(const MyType&); // Operator function

• The left operand is the invoking object – right is taken as a parameter
• Unary Operator:

MyType operator-(); // Operator function for Unary minus

MyType operator++(); // For Pre-Incrementer

MyType operator++(int); // For post-Incrementer

• The only operand is the invoking object
• Note: The parameters may not be constant and may be passed by value. The return may also

be by reference and may be constant
• Examples:

Operator Expression Operator Function

a + b a.operator+(b)

a = b a.operator=(b)

++a a.operator++()

a++ a.operator++(int) // Special Case

c = a + b c.operator =(a.operator+(b))

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Operator Overloading – Summary of Rules: RECAP (Module 9)

• No new operator such as **, <>, or &| can be defined for overloading
• Intrinsic properties of the overloaded operator cannot be change

◦ Preserves arity
◦ Preserves precedence
◦ Preserves associativity

• These operators can be overloaded:

[] + - * / % ^ & | ~ ! = += -= *= /= %= ^= &= |=

<< >> >>= <<= == != < > <= >= && || ++ -- , ->* -> () []

• The operators :: (scope resolution), . (member access), .* (member access through pointer
to member), sizeof, and ?: (ternary conditional) cannot be overloaded

• The overloads of operators &&, ||, and , (comma) lose their special properties: short-circuit
evaluation and sequencing

• For a member operator function, invoking object is passed implicitly as the left operand but
the right operand is passed explicitly

• For a non-member operator function (Global/friend) operands are always passed explicitly

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.01: Using Global Function: public Data members
(Unsafe)

Overloading + for complex addition Overloading + for string cat

#include <iostream>
using namespace std;
struct complx { // public data member

double re, im;
} ;
complx operator+ (complx &a, complx &b) {

complx r;
r.re = a.re + b.re;
r.im = a.im + b.im;
return r;

}
int main() { complx d1 , d2 , d;

d1.re = 10.5; d1.im = 12.25;
d2.re = 20.5; d2.im = 30.25;
d = d1 + d2; // Overload operator +
cout << "Real:" << d.re << ", ";
cout << "Imag:" << d.im;

}

#include <iostream>
#include <cstdlib>
#include <cstring>
using namespace std;
typedef struct _String { char *str; } String;
String operator+(const String& s1, const String& s2) {

String s;
s.str = (char *) malloc(strlen(s1.str) +

strlen(s2.str) + 1);
strcpy(s.str, s1.str); strcat(s.str, s2.str);
return s;

}
int main() { String fName, lName, name;

fName.str = strdup("Partha ");
lName.str = strdup("Das");
name = fName + lName; // Overload operator +
cout << "First Name: " << fName.str << endl;
cout << "Last Name: " << lName.str << endl;
cout << "Full Name: " << name.str << endl;

}
• Output: Real: 31, Imag: 42.5 • Output: First Name: Partha, Last Name: Das, Full name:

Partha Das
• operator+ is overloaded to perform addition of two
complex numbers which are of struct complx type

• operator+ is overloaded to perform concat of first name
and last to form full name. The data type is String

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.02: Using Global Function: private Data members
(Safe)

#include <iostream>
using namespace std;
class Complex { // Private data members

double re, im;
public:

Complex(double a=0.0, double b=0.0):
re(a), im(b) { } ~Complex() { }

void display();
double real() { return re; }
double img() { return im; }
double set_real(double r) { re = r; }
double set_img(double i) { im = i; }

} ;
void Complex::display() {

cout << re << " +j " << im << endl;
}

Complex operator+(Complex &t1, Complex &t2) {
Complex sum;
sum.set_real(t1.real() + t2.real());
sum.set_img(t1.img() + t2.img());
return sum;

}
int main() {

Complex c1(4.5, 25.25), c2(8.3, 10.25), c3;
cout << "1st complex No:"; c1.display();
cout << "2nd complex No:"; c2.display();
c3 = c1 + c2; // Overload operator +
cout << "Sum = "; c3.display();

}

• Output:

1st complex No: 4.5 +j 25.25
2nd complex No: 8.3 +j 10.25
Sum = 12.8 +j 35.5

• Accessing private data members inside operator functions is clumsy
• Critical data members need to be exposed (get/set) violating encapsulation
• Solution: Member operator function or friend operator function
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.03: Using Member Function

#include <iostream>
using namespace std;
class Complex { // Private data members

double re, im;
public:

Complex(double a=0.0, double b=0.0):
re(a), im(b) { } ~Complex() { }

void display();
Complex operator+(const Complex &c) {

Complex r;
r.re = re + c.re;
r.im = im + c.im;
return r;

}
} ;

void Complex::display() {
cout << re;
cout << " +j " << im << endl;

}
int main() {

Complex c1(4.5, 25.25), c2(8.3, 10.25), c3;
cout << "1st complex No:";
c1.display();
cout << "2nd complex No:";
c2.display();
c3 = c1 + c2; // Overloaded operator +
cout << "Sum = ";
c3.display();
return 0;

}

• Output:

1st complex No: 4.5 +j 25.25
2nd complex No: 8.3 +j 10.25
Sum = 12.8 +j 35.5

• Performing c1 + c2 is equivalent to c1.operator+(c2)
• c1 invokes the operator+ function and c2 is passed as an argument
• Similarly we can implement all binary operators (%, -, *, etc..)
• Note: No need of two arguments in overloading
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 14.14: Overloading operator=: RECAP (Module 14)

#include <iostream>
#include <cstdlib>
#include <cstring>
using namespace std;
class String { public: char *str_; size_t len_;

String(char *s) : str_(strdup(s)), len_(strlen(str_)) { } // ctor
String(const String& s) : str_(strdup(s.str_)), len_(s.len_) { } // cctor
~String() { free(str_); } // dtor
String& operator=(const String& s) {

if (this != &s) { free(str_); str_ = strdup(s.str_); len_ = s.len_; }
return *this;

}
void print() { cout << "(" << str_ << ": " << len_ << ")" << endl; }

};
int main() { String s1 = "Football", s2 = "Cricket";

s1.print(); s2.print();
s1 = s1; s1.print();

}
(Football: 8)
(Cricket: 7)
(Football: 8)

• Check for self-copy (this != &s)
• In case of self-copy, do nothing

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Notes on Overloading operator=: RECAP (Module 14)

• Overloaded operator= may choose between Deep and Shallow Copy for Pointer
Members

◦ Deep copy allocates new space for the contents and copies the pointed data
◦ Shallow copy merely copies the pointer value – hence, the new copy and the original
pointer continue to point to the same data

• If operator= is not overloaded by the user, compiler provides a free one.

• Free operator= can makes only a shallow copy

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.04: Overloading Unary Operators

#include <iostream>
using namespace std;

class MyClass { int data; public:
MyClass(int d): data(d) { }

MyClass& operator++() { // Pre-increment:
++data; // Operate and return the operated object
return *this;

}
MyClass operator++(int) { // Post-Increment:

MyClass t(data); // Return the (copy of) object; operate the object
++data;
return t;

}
void disp() { cout << "Data = " << data << endl; }

};
int main() {

MyClass obj1(8); obj1.disp();
MyClass obj2 = obj1++; obj2.disp(); obj1.disp();

obj2 = ++obj1;
obj2.disp(); obj1.disp();

}

• Output
Data = 8
Data = 8
Data = 9
Data = 10
Data = 10

• The pre-operator should first perform the oper-
ation (increment / decrement / other) and then
return the object. Hence its return type should be
MyClass& and it should return *this;

• The post-operator should perform the operation
(increment / decrement / other) after it returns
the original value. Hence it should copy the original
object in a temporary MyClass t; and then return
t;. Its return type should be MyClass - by value

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.05: Overloading Unary Operators:
Pre-increment & Post Increment

#include <iostream>
using namespace std;

class MyClass { int data;
public:

MyClass(int d) : data(d) { }

MyClass& operator++() { // Pre-Operator
data *= 2;
return *this;

}
MyClass operator++(int) { // Post-Operator

MyClass t(data);
data /= 3;
return t;

}
void disp() { cout << "Data = " << data << endl; }

};
int main() {

MyClass obj1(12); obj1.disp();
MyClass obj2 = obj1++; obj2.disp(); obj1.disp();

obj2 = ++obj1;
obj2.disp(); obj1.disp();

}

• Output
Data = 12
Data = 12
Data = 4
Data = 8
Data = 8

• The pre-operator and the post-operator need not
merely increment / decrement

• They may be used for any other computation as
this example shows

• However, it is a good design practice to keep
close to the native semantics of the operator

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

Module 18

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Summary

• Introduced operator overloading for user-defined types

• Illustrated methods of overloading operators using global functions and member
functions

• Outlined semantics for overloading binary and unary operators

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

	Objectives & Outlines
	Operator Function
	Non-Member Function
	Member Function
	Operator Overloading Rules

	Using Global Function
	public data members
	private data members

	Using Member Function
	operator+
	operator=
	Unary Operators

	Module Summary

