Intructc \bir
[DELET]
Sourangsht

Module 17: Programming in C++

Bhattacharya

friend Functions and friend Class

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

E@;j Module Objectives

e Understand friend function and class

Objectives &
Outlines

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

E@ij Module Outline

Objectives &
Outlines

© friend Function
@ Matrix-Vector Multiplication
@ Linked List
© friend Class
@ Linked List
@ Iterator
© Properties of friend
© Comparison

© Module Summary

€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya

Intructc \bir
[DELET]
Sourangsht

Bhattacharya

friend Function

Program 17.01: friend function: Basic Notion

Ordinary function

friend function

#include<iostream>

using namespace std;

class MyClass { int data_;
public:

MyClass(int i) : data_(i) { }

}s

void display(const MyClass& a) { // gbl. func.

#include<iostream>
using namespace std;
class MyClass { int data_;
public:
MyClass(int i) : data_(i) { }
friend void display(const MyClass& a);
I

void display(const MyClass& a) { // global function

cout << "data = " << a.data_; // Error 1 cout << "data = " << a.data_; // Okay
int main() { int main() {
MyClass obj(10); MyClass obj(10);
display(obj); display(obj);
e display() is a non-member function e display() is a non-member function; but friend to class
MyClass
e Error 1: ’MyClass::data_’ cannot e Able to access data. even though it is private in class

access private member declared in class
’MyClass’

MyClass

e Output: data = 10

(€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya

E@;j friend function

e A friend function of a class

o has access to the private and protected members of the class (breaks the
encapsulation) in addition to public members
o must have its prototype included within the scope of the class prefixed with the
£riond Function keyword friend
o does not have its name qualified with the class scope
o s not called with an invoking object of the class
o can be declared friend in more than one classes

e A friend function can be a

o global function
o a member function of a class
o a function template

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Intructc
Das
Souran,

Mai

Multiplicatio

or
n

charya

Program 17.0

Multiply a Matrix with a Vector

#include <iostream> class Matrix { int e_[3][3]; int m_, n_; public:
using namespace std; Matrix(int m, int n) : m_(m), n_(n) { // Arbitrary
for(int i = 0; i < m_; ++i) // init.
class Matrix; // Forward declaration for(int j = 0; j < n_; ++j) e_[il[j] = i + j;
class Vector { int e_[3]; int n_; public: void Show() { // Show the matrix
Vector(int n) : n_(n) { for (int i = 0; i < m_; ++i) {
for (int i = 0; i < n_; ++i) // Arbitrary for (int j = 0; j < n_; ++j)
e [i]l =1+ 1; // init. cout << e_[il[j] << "
cout << endl;
void Clear() { // Set a zero vector } cout << endl;
for(int i = 0; i < n_; ++i) }
e_[i]l = 0; friend Vector Prod(Matrix *pM, Vector *pV);
}s
void Show() { // Show the vector Vector Prod(Matrix *pM, Vector *pV) {
for(int i = 0; i < n_; ++i) Vector v(pM->m_); v.Clear();
cout << e_[i] << " "; for(int i = 0; i < pM->m_; i++)
cout << endl << endl; for(int j=0; j <pM->n_; j++)
v.e_[i] += pM->e_[il[j] * pV->e_[j];
friend Vector Prod(Matrix *pM, Vector *pV); return v;
}s }
e Vector Prod(Matrix*, Vector); is a global function
e Vector Prod(Matrix*, Vectorx*); is friend of class Vector as well as class Matrix
e This function accesses the private data members of both these classes
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

E@;j Program 17.02: Multiply a Matrix with a Vector

int main() { Output:
Matrix M(2, 3);
Vector V(3); 012 // Matrix M
123

Vector PV = Prod (&M, &V);
123 // Vector V
M.Show();
V.Show(); 8 14 // Product Vector PV

PV.Show();

Mai

or
Multiplication

return 0;

e Vector Prod(Matrix*, Vector*); is a global function
e Vector Prod(Matrix*, Vectorx*); is friend of class Vector as well as class Matrix
e This function accesses the private data members of both these classes

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Linked List

E@;j Program 17.0

#include <iostream>
using namespace std;

class Node; // Forward declaration
class List {
Node *head; // Head of the list
Node *tail; // Tail of the list
public:
List(Node *h = 0): head(h), tail(h) { }
void display();
void append(Node *p);
Linked List } ;
class Node {
int info; // Data of the node
Node *next; // Ptr. to next node
public:
Node(int i): info(i), next(0) { }
friend void List::display();
friend void List::append(Node *);

H

—~

void List::display() {
Node *ptr = head;
while (ptr) { cout << ptr->info << " ";
ptr = ptr->next;

// friend of Node

void List::append(Node *p) { // friend of Node
if ('head) head = tail = p;
else {
tail->next = p;
tail = tail->next;

int main() { List 1; // Init. null list
Node n1(1), n2(2), n3(3); // Few nodes
1.append(&ni); // Add nodes to list
.append (&n2) ;
.append (&n3) ;
.display();

S

// Show list

}

e List is built on Node. Hence List needs to know the internals of Node
e void List::append(Node *); needs the internals of Node — hence friend member function is used
e void List::display(); needs the internals of Node — hence friend member function is used

o We can do better with friend classes
€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya 8

E@ij friend class

e A friend class of a class

o has access to the private and protected members of the class (breaks the
encapsulation) in addition to public members

o does not have its name qualified with the class scope (not a nested class)

o can be declared friend in more than one classes

e A friend class can be a

o class
o class template

friend Class

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Linked List

E@;j Program 17.0

#include <iostream>
using namespace std;

class Node; // Forward declaration
class List {
Node *head; // Head of the list
Node *tail; // Tail of the list
public:
List(Node *h = 0): head(h), tail(h) { }
void display();
void append(Node *p);
s
class Node {
Linked|List int info; // Data of the node
Node *next; // Ptr to next node
public:
Node(int i): info(i), next(0) { }
// friend void List::display();
// friend void List::append(Node *);
friend class List;

I8

void List::display() {
Node *ptr = head;
while (ptr) { cout << ptr->info << " ";
ptr = ptr->next;

void List::append(Node *p) {
if ('head) head = tail = p;
else {
tail->next = p;
tail = tail->next;

int main() { List 1; // Init null list
Node n1(1), n2(2), n3(3); // Few nodes
1.append(&ni); // Add nodes to list
1.append(&n2) ;
1.append(&n3) ;

1.display(); // Show list

e List class is now a friend of Node class. Hence it has full visibility into the internals of Node
o When multiple member functions need to be friends, it is better to use friend class

€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya 10

E@;} Program 17.0

#include <iostream>

using namespace std;

class Node; class List;

class Iterator { Node *node; // Current Node
List *list; // Current List

Intructc
Das
Souran,

Iterator

charya

// Forward declarations

public: Iterator() : mnode(0), 1list(0) { }
void begin(List *); // Init
bool end(); // Check end
void next(); // Go to next
int data(); // Get node data
+s

class List { Node *head, *tail; public:
List(Node *h=0): head(h), tail(h) { }
void append(Node *p);
friend class Iterator;

+s

class Node { int info; Node *next; public:
Node(int i) : info(i), next(0) { }
friend class List;
friend class Iterator;

Linked List with lterator

// Iterator methods
void Iterator::begin(List *1) {
list = 1; node = 1->head; // Set list & Init

bool Iterator::end() { return node == 0; }
void Iterator::next() { node = node->next; }
int Iterator::data() { return node->info; }

void List::append(Node *p) {
if ('head) head = tail = p;
else { tail->next = p; tail = tail->next; }

int main() { List 1;
Node n1(1), n2(2), n3(3);
1.append(&nil); 1.append(&n2); 1.append(&n3);

Iterator i;
for(i.begin(&1); !i.end(); i.next()) {

cout << i.data() << " "; // Iteration Loop
}

void List::display() is dropped from List and can be written in main()

List class is a friend of Node class
Iterator class is a friend of List and Node classes
(€S20202: Software Engineering

H
i An Iterator now traverses over the elements of the List
L]
L]
[]

Intructors: Abir Das and Sourangshu Bhattacharya

11

Properties of friend

Tty A e friendship is neither commutative nor transitive
urangsh o Ais a friend of B does not imply that B is a friend of A
‘ o Ais a friend of B and B is a friend of C does not imply that A'is a friend of C
e Visibility and Encapsulation

o public: a declaration that is accessible to all

o protected: a declaration that is accessible only to the class itself and its subclasses

o private: a declaration that is accessible only to the class itself

o friend: a declaration that is accessible only to friend’s of a class. friends tend
to break data hiding and must be used judiciously. Like:

Properties
i > A function needs to access the internals of two (or more) independent classes
(Matrix-Vector Multiplication)
> A class is built on top of another (List-Node Access, List Iterator)
> Certain situations of operator overloading (like streaming operators)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Intructc \bi
[DELET]
Sourangsht

Bhattacharya

Comparison

Comparison of friend vis-a-vis Member Functions

friend Functions

static & Non-static Member Functions

o Declared using the keyword friend

e Declared in one or more classes

e Mot a part of the class, not defined in the namespace of
the classes

e Has access to all private, public, and protected mem-
bers of classes

o May be global or member function of some other class

e Called with an object (non-static member), an object /
a class (static member), or as a global function

e Does not have this pointer (of the class it accesses).
Needs the pointer to the object

e Breaks encapsulation

€S20202: Software Engineering

e Declared in private, public, or protected specifier

e Declared only in scope of a particular class

e Part of the class definition, defined in the namespace of
the class

e Has access to all private, public, and protected mem-
bers of its class, if non-static

o Has access to only private, public, and protected
static members of its class, if static

e Member function of the class

o Called with an object (non-static member) or an object
/ a class (static member) of the defining class

e Has this pointer of the defining class, if a Non-static
and no this pointer if static

e Ensures encapsulation

Intructors: Abir Das and Sourangshu Bhattacharya 13

E@;} Module Summary

Introduced the notion of friend function

Intructc

Introduced the notion of friend class
Studied the use of friend function and friend class with examples

e friend introduces visibility hole by breaking encapsulation — should be used with care

Module Summary

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

	Objectives & Outlines
	friend Function
	Matrix-Vector Multiplication
	Linked List

	friend Class
	Linked List
	Iterator

	Properties of friend
	Comparison
	Module Summary

