Intructc \bir
[DELET]
Sourangsht

Module 15: Programming in C++

Bhattacharya

Const-ness

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module Objectives

e Understand const-ness of objects in C++

e Understand the use of const-ness in class design

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

ﬂ Module Outline

o Constant Objects
@ Simple Example

e Constant Member Functions
@ Simple Example

e Constant Data Members

@ Simple Example

@ Credit Card Example: Putting it all together
@ String
@ Date
@ Name
@ Address
@ CreditClass

o mutable Members
@ Simple Example
@ mutable Guidelines

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

E@;} Constant Objects

e Like objects of built-in type, objects of user-defined types can also be made constant
Intructc

e If an object is constant, none of its data members can be changed
e e The type of the this pointer of a constant object of class, say, MyClass is:

const Objects

// const Pointer to const Object
const MyClass * const this;

instead of

// const Pointer to non-const Object
MyClass * const this;

as for a non-constant object of the same class

e A constant object cannot invoke normal methods of the class as these methods can
change the object

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

E@;j Program 15.01: Non-Constant Objects

#include <iostream>

using namespace std;

class MyClass { int myPriMember_;

public: int myPubMember_;
MyClass(int mPri, int mPub) : myPriMember_(mPri), myPubMember_(mPub) { }
int getMember() { return myPriMember_; }

void setMember(int i) { myPriMember_ = i; }
Semple void print() { cout << myPriMember_ << ", " << myPubMember_ << endl; }
}s
int main() { MyClass myObj(0, 1); // Non-constant object

cout << myObj.getMember () << endl;
myObj . setMember (2) ;

myObj .myPubMember_ = 3;
myObj.print();

e |t is okay to invoke methods for non-constant object myObj
o It is okay to make changes in non-constant object myObj by method (setMember())
e |t is okay to make changes in non-constant object myObj directly (myPubMember_)

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

E@ij Program 15.02: Constant Objects

#include <iostream>
using namespace std;

class MyClass { int myPriMember_; public: int myPubMember_;
MyClass(int mPri, int mPub) : myPriMember_(mPri), myPubMember_(mPub) { }
int getMember() { return myPriMember_; }
void setMember(int i) { myPriMember_ = i;
void print() { cout << myPriMember_ << ", " << myPubMember_ << endl; }

Example

int main() { const MyClass myConstObj(5, 6); // Constant object

cout << myConstObj.getMember() << endl; // Error 1

myConst0Obj.setMember (7) ; // Error 2
myConstObj .myPubMember_ = 8; // Error 3
myConst0Obj.print () ; // Error 4

e It is not allowed to invoke methods or make changes in constant object myConstObj
e Error (1, 2 & 4) on method invocation typically is:
cannot convert 'this’ pointer from 'const MyClass’ to 'MyClass &’
e Error (3) on member update typically is:
'myConstObj’ : you cannot assign to a variable that is const
e With const, this pointer is const MyClass * const while the methods expects MyClass * const
e Consequently, we cannot print the data member of the class (even without changing it)
o Fortunately, constant objects can invoke (select) methods if they are constant member functions
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Constant Member Function

e To declare a constant member function, we use the keyword const between the function
header and the body. Like:

v void print() const { cout << myMember_ << endl; }

e A constant member function expects a this pointer as:

const MyClass * const this;
const Member

Functions and hence can be invoked by constant objects
® In a constant member function no data member can be changed. Hence,

void setMember(int i) const
{ myMember_ = i; } // data member cannot be changed

gives an error

e Interesting, non-constant objects can invoke constant member functions (by casting —
we discuss later) and, of course, non-constant member functions
Constant objects, however, can only invoke constant member functions

e All member functions that do not need to change an object must be declared as

constant member functions
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

E@;j Program 15.03: Constant Member Functions

Example

#include <iostream>
using namespace std;
class MyClass { int myPriMember_; public: int myPubMember_;
MyClass(int mPri, int mPub) : myPriMember_(mPri), myPubMember_(mPub) { }

int getMember() const { return myPriMember_; } // const Member Func.
void setMember(int i) { myPriMember_ = i; } // non-const Member Func.
void print() const { cout << myPriMember_ << ", " << myPubMember_ << endl; } // const lMember Func.

int main() { MyClass myObj(0, 1); // non-const object
const MyClass myConstObj(5, 6); // const object
// non-const object can invoke all member functions and update data members
cout << myObj.getMember () << endl;
myObj.setMember (2) ;
myObj .myPubMember_ = 3;
myObj.print();
// const object cannot allow any change

cout << myConstObj.getMember() << endl; Output
// myConstObj.setMember (7); // Cannot invoke non-const member functions 0
// myConstObj.myPubMember_ = 8; // Cannot update data member 2,3
myConst0Obj.print () ; 5

5, 6

}

o Now myConstObj can invoke getMember() and print(), but cannot invoke setMember()
e Naturally myConstObj cannot update myPubMember_
o myObj can invoke all of getMember(), print(), and setMember()
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Constant Data members

e Often we need part of an object, that is, one or more data members to be constant
Intructors: Ab (non-changeable after construction) while the rest of the data members should be
TEID changeable. For example:
o For an Employee: employee ID and DoB should be non-changeable while
designation, address, salary etc. should be changeable
o For a Student: roll number and DoB should be non-changeable while year of
study, address, gpa etc. should be changeable
const Data o For a Credit Card': card number and name of holder should be
Hembers non-changeable while date of issue, date of expiry, address, cvv number
etc. should be changeable

e We do this by making the non-changeable data members as constant by putting the
const keyword before the declaration of the member in the class

e A constant data member cannot be changed even in a non-constant object

e A constant data member must be initialized on the initialization list

May not hold for a card that changes number on re-issue

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

E@;} Program 15.04: Constant Data Member

Intructc
Das
Souran,

Example

charya

#include <iostream>
using namespace std;
class MyClass { const int cPriMem_; /* const data member */ int priMem_; public:
const int cPubMem_; /* const data member */ int pubMem_;
MyClass(int cPri, int ncPri, int cPub, int ncPub)
cPriMem_(cPri), priMem_(ncPri), cPubMem_(cPub), pubMem_(ncPub) { }
int getcPri() { return cPriMem_; }

void setcPri(int i) { cPriMem_ = i; } // Error 1: Assignment to const data member
int getPri() { return priMem_; }
void setPri(int i) { priMem_ = i; }

int main() { MyClass myObj(1, 2, 3, 4);

cout << myObj.getcPri() << endl; myObj.setcPri(6);
cout << myObj.getPri() << endl; myObj.setPri(6);

cout << myObj.cPubMem_ << endl;
myObj.cPubMem_ = 3; // Error 2: Assignment to const data member

cout << myObj.pubMem_ << endl; myObj.pubMem_ = 3;

}

e It is not allowed to make changes to constant data members in myObj
e Error 1: l-value specifies const object
e Error 2: 'myObj’ : you cannot assign to a variable that is const
€520202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Credit Card Example

We now illustrate constant data members with a complete example of CreditCard class
_Das and with the following supporting classes:

e String class
e Date class
e Name class

e Address class

Credit Card

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

E@;} Program 15.05: String Class: String.h

#include <iostream>

#include <cstring>

Intructc \bir #include <cstdlib>
Das and using namespace std;

Sourangsht

Bhattacharya

class String { char *str_; size_t len_;

public:
String(const char *s) : str_(strdup(s)), len_(strlen(str_)) // Ctor
{ cout << "String ctor: "; print(); cout << endl; }
String(const String& s) : str_(strdup(s.str_)), len_(strlen(str_)) // CCtor
{ cout << "String cctor: "; print(); cout << endl; }

String& operator=(const String& s) {
if (this != &s) {
free(str_);
str_ = strdup(s.str_);
String len_ = s.len_;

return *this;

“String() { cout << "String dtor: "; print(); cout << endl; free(str_); } // Dtor
void print() const { cout << str_; }

}s

e Copy Constructor and Copy Assignment Operator added
e print() made a constant member function
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Intructc

Date

)as and

irangsht

acharya

Program 15.05: Date Class: Date.h

#include <iostream>
using namespace std;

char monthNames[] [4:|={ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
char dayNames[][10]1={ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday" };
class Date {

enum Month { Jan = 1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec };

enum Day { Mon, Tue, Wed, Thr, Fri, Sat, Sun };

typedef unsigned int UINT;

UINT date_; Month month_; UINT year_;
public:

Date(UINT d, UINT m, UINT y) : date_(d), month_((Month)m), year_(y)

{ cout << "Date ctor: "; print(); cout << endl; }

Date(const Date& d) : date_(d.date_), month_(d.month_), year_(d.year_)

{ cout << "Date cctor: "; print(); cout << endl; }

Date& operator=(const Date& d) { date_ = d.date_; month_ = d.month_; year_ = d.year_; return *this; }
“Date() { cout << "Date dtor: "; print(); cout << endl; }

void print() const { cout << date_ << "/" << monthNames[month_ - 1] << "/" << year_; }

bool validDate() const { /* Check validity */ return true; } // Not Implemented

Day day() const { /* Compute day from date using time.h */ return Mon; } // Not Implemented
}s
e Copy Constructor and Copy Assignment Operator added
e print (), validDate(), and day() made constant member functions

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Intructc
Das
Souran,

Name

charya

Program 15.05: Name Class

#include <iostream>
using namespace std;

#include "String.h"

class Name { String firstName_, lastName_;
public:

}s

Name (const char* fn, const char* 1n) : firstName_(fn), lastName_(1ln) // Uses Ctor of String class
{ cout << "Name ctor: "; print(); cout << endl; }
Name (const Name& n) : firstName_(n.firstName_), lastName_(n.firstName_) // Uses CCtor of String class
{ cout << "Name cctor: "; print(); cout << endl; }
Name& operator=(const Name& n) {

firstName_ = n.firstName_; // Uses operator=() of String class

lastName_ = n.lastName_; // Uses operator=() of String class

return *this;

“Name() { cout << "Name dtor: "; print(); cout << endl; } // Uses Dtor of String class
void print() const // Uses print() of String class
{ firstName_.print(); cout << " "; lastName_.print(); }

e Copy Constructor and Copy Assignment Operator added
e print() made a constant member function

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Program 15.05: Address Class: Address.h

#include <iostream>
T— \bir using namespace std;
Das and #include "String.h"

Sourangsht

Bhattacharya

class Address { unsigned int houseNo_; String street_, city_, pin_;
public:
Address(unsigned int hn, const char* sn, const char* cn, const char* pin): // Uses Ctor of String class
houseNo_(hn), street_(sn), city_(cn), pin_(pin)
{ cout << "Address ctor: "; print(); cout << endl; }
Address(const Address& a): // Uses CCtor of String class
houseNo_(a.houseNo_), street_(a.street_), city_(a.city_), pin_(a.pin_)
{ cout << "Address cctor: "; print(); cout << endl; }
Address& operator=(const Address& a) { // Uses operator=() of String class
houseNo_ = a.houseNo_; street_ = a.street_; city_ = a.city_; pin_ = a.pin_; return *this; }
“Address() { cout << "Address dtor: "; print(); cout << endl; } // Uses Dtor of String class
void print() const { // Uses print() of String class
cout << houseNo_ << " "; street_.print(); cout << " ";
Y city_.print(); cout << " "; pin_.print();

}s

e Copy Constructor and Copy Assignment Operator added
e print() made a constant member function

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

if@ Program 15.05: Credit Card Class: CreditCard.h

#include <iostream>
using namespace std;
Intructc \bir #include "Date.h"
“““‘Ws #include "Name.h"
i #include "Address.h"
class CreditCard { typedef unsigned int UINT; char *cardNumber_;
Name holder_; Address addr_; Date issueDate_, expiryDate_; UINT cvv_;
public: CreditCard(const char* cNumber, const char* fn, const char* 1ln, unsigned int hn, const char* sn,
const char* cn, const char* pin, UINT issueMonth, UINT issueYear, UINT expiryMonth, UINT expiryYear,
UINT cvv): holder_(fn, 1ln), addr_(hn, sn, cn, pin), issueDate_(1, issueMonth, issueYear),
expiryDate_(1, expiryMonth, expiryYear), cvv_(cvv) // Uses Ctor’s of Date, Name, Address

Bhattacharya

{ cardNumber_ = new char[strlen(cNumber) + 1]; strcpy(cardNumber_, cNumber);
cout << "CC ctor: "; print(); cout << endl; }
// Uses Dtor’s of Date, Name, Address
“CreditCard() { cout << "CC dtor: "; print(); cout << endl; delete[] cardNumber_; }
void setHolder(const Name& h) { holder_ = h; } // Change holder name
void setAddress(const Address& a) { addr_ = a; } // Change address

void setIssueDate(const Date& d) { issueDate_ = d; } // Change issue date
void setExpiryDate(const Date& d) { expiryDate_ = d; } // Change expiry date

CreditClass void setCVV(UINT v) { cvv_ =v; } // Change cvv number
void print() const { cout<<cardNumber_<<" "; holder_.print(); cout<<" "; addr_.print();
cout<<" "; issueDate_.print(); cout<<" "; expiryDate_.print(); cout<<" "; cout<<cvv_; }

s
e Set methods added
e print() made a constant member function
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

E@;j Program 15.05: Credit Card Class Application

CreditClass

#include <iostream>
using namespace std;
#include "CreditCard.h"

int main() { CreditCard cc("5321711934640027", "Sherlock", "Holmes",

221, "Baker Street", "London", "NW1 6XE", 7, 2014, 6, 2016, 811);

cout << endl; cc.print(); cout << endl << endl;;

cc.
cc.
ccC.
cc.
cc.

setHolder (Name ("David", "Cameron"));

setAddress(Address(10, "Downing Street", "London", "SW1A 2AA"));
setIssueDate(Date(1, 7, 2017));

setExpiryDate(Date(1, 6, 2019));

setCVV(127);

cout << endl; cc.print(); cout << endl << endl;;

}

// Construction of Data Members & Object
5321711934640027 Sherlock Holmes 221 Baker Street London NW1 6XE 1/Jul/2014 1/Jun/2016 811

// Construction & Destruction of temporary objects
5321711934640027 David Cameron 10 Downing Street London SW1A 2AA 1/Jul/2017 1/Jun/2019 127

// Destruction of Data Members & Object

o We could change address, issue date, expiry date, and cvv. This is fine
e We could change the name of the holder! This should not be allowed
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

E@ij Program 15.06: Credit Card Class: Constant data members

CreditClass

// Include <iostream>, "String.h", "Date.h", "Name.h", "Address.h"
using namespace std;

class CreditCard { typedef unsigned int UINT;
char *cardNumber_;
const Name holder_; // Holder name cannot be changed after construction
Address addr_; Date issueDate_, expiryDate_; UINT cvv_;

public: CreditCard(...) : ... { ... } “CreditCard() { ... }

void setHolder(const Name& h) { holder_ = h; } // Change holder name
// error C2678: binary ’=’ : no operator found which takes a left-hand operand
// of type ’const Name’ (or there is no acceptable conversion)

void setAddress(const Address& a) { addr_ = a; } // Change address

void setIssueDate(const Date& d) { issueDate_ = d; } // Change issue date
void setExpiryDate(const Date& d) { expiryDate_ = d; } // Change expiry date
void setCVV(UINT v) { cov_ =v; } // Change cvv number

void print() { ... }
}s
o We prefix Name holder_ with const. Now the holder name cannot be changed after construction

o In setHolder(), we get a compilation error for holder_ = h; in an attempt to change holder_
e With const prefix Name holder. becomes constant — unchangeable

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18

E@;j Program 15.06: Credit Card Class: Clean

// Include <iostream>, "String.h", "Date.h", "Name.h", "Address.h"
using namespace std;

class CreditCard { typedef unsigned int UINT;
char *cardNumber_;
const Name holder_; // Holder name cannot be changed after construction
Address addr_;
Date issueDate_, expiryDate_; UINT cvv_;

public:
CreditCard(...) : ... { ... }
“CreditCard() { ... }

void setAddress(const Address& a) addr_ = a; // Change address

void setIssueDate(const Date& d) issueDate_ H // Change issue date
void setExpiryDate(const Date& d) expiryDate_ = d; // Change expiry date
void setCVV(UINT v) cvv_ = v; // Change cvv number

void print() { ... }

CreditClass }

e Method setHolder () removed

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19

E@ij Program 15.06: Credit Card Class Application: Revised

#include <iostream>
using namespace std;
#include "CreditCard.h"
int main() {
CreditCard cc("5321711934640027", "Sherlock", "Holmes",
221, "Baker Street", "London", "NW1 6XE", 7, 2014, 6, 2016, 811);
cout << endl; cc.print(); cout << endl << endl;;

// cc.setHolder (Name ("David", "Cameron"));
cc.setAddress (Address(10, "Downing Street", "London", "SW1A 2AA"));
cc.setIssueDate(Date(1, 7, 2017));
cc.setExpiryDate(Date(1, 6, 2019));
cc.setCVV(127);
cout << endl; cc.print(); cout << endl << endl;;
}
// Construction of Data Members & Object
5321711934640027 Sherlock Holmes 221 Baker Street London NW1 6XE 1/Jul/2014 1/Jun/2016 811

// Construction & Destruction of temporary objects
5321711934640027 Sherlock Holmes 10 Downing Street London SW1A 2AA 1/Jul/2017 1/Jun/2019 127

CreditClass

// Destruction of Data Members & Object

e Now holder_ cannot be changed. So we are safe
e However, it is still possible to replace or edit the card number. This, too, should be disallowed
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20

E@;j Program 15.07: Credit Card Class: cardNumber_ Issue

// Include <iostream>, "String.h", "Date.h", "Name.h", "Address.h"
using namespace std;

class CreditCard { typedef unsigned int UINT;
char *cardNumber_; // Card number is editable as well as replaceable
const Name holder_; // Holder name cannot be changed after construction
Address addr_;
Date issueDate_, expiryDate_; UINT cvv_;

public:
CreditCard(...) : ... { ... }
“CreditCard() { ... }

void setAddress(const Address& a) { addr_ = a; } // Change address

void setIssueDate(const Date& d) { issueDate_ = d; } // Change issue date
void setExpiryDate(const Date& d) { expiryDate_ = d; } // Change expiry date
void setCVV(UINT v) { cvw_=v; } // Change cvv number

void print() { ... }

—~

CreditClass

It is still possible to replace or edit the card number

To make the cardNumber_ non-replaceable, we need to make this constant pointer
Further, to make it non-editable we need to make cardNumber_ point to a constant string
e Hence, we change char *cardNumber_ to const char * const cardNumber_

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21

E@;} Program 15.07: Credit Card Class: cardNumber_ Issue

// Include <iostream>, "String.h", "Date.h", "Name.h", "Address.h"
Intructors: Abir using namespace std;
Das and class CreditCard {
th“v‘w‘ typedef unsigned int UINT;
const char * const cardNumber_; // Card number cannot be changed after construction
const Name holder_; // Holder name cannot be changed after construction
Address addr_; Date issueDate_, expiryDate_; UINT cvv_;
public: CreditCard(const char* cNumber, const char* fn, const char* 1n,
unsigned int hn, const char* sn, const char* cn, const char* pin,
UINT issueMonth, UINT issueYear, UINT expiryMonth, UINT expiryYear, UINT cvv)
holder_(fn, 1n), addr_(hn, sn, cn, pin), issueDate_(1, issueMonth, issueYear),
expiryDate_(1, expiryMonth, expiryYear), cvv_(cvv) {

cardNumber_ = new char[strlen(cNumber) + 1]; // ERROR: No assignment to const pointer
strcpy (cardNumber_, cNumber) ; // ERROR: No copy to const C-string
cout << "CC ctor: "; print(); cout << endl;
“CreditCard() { cout << "CC dtor: "; print(); cout << endl; delete[] cardNumber_; }
CreditClass // Set methods and print method skipped ...

l cardNumber_ is now a constant pointer to a constant string

e With this the allocation for the C-string fails in the body as constant pointer cannot be assigned
e Further, copy of C-string (strcpy()) fails as copy of constant C-string is not allowed

o We need to move these codes to the initialization list

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 22

E@;} Program 15.07: Credit Card Class: cardNumber_ Issue: Resolved

// Include <iostream>, "String.h", "Date.h", "Name.h", "Address.h"
Intructors: Abir using namespace std;
Das and class CreditCard { typedef unsigned int UINT;
S$W‘v‘w‘ const char * const cardNumber_; // Card number cannot be changed after construction
const Name holder_; // Holder name cannot be changed after construction
Address addr_; Date issueDate_, expiryDate_; UINT cvv_;
public: CreditCard(const char* cNumber, const char* fn, const charx 1n,
unsigned int hn, const char* sn, const char* cn, const char* pin,
UINT issueMonth, UINT issueYear, UINT expiryMonth, UINT expiryYear, UINT cvv)
cardNumber_(strcpy(new char[strlen(cNumber)+1], cNumber)),
holder_(fn, 1n), addr_(hn, sn, cn, pin), issueDate_(1, issueMonth, issueYear),
expiryDate_(1, expiryMonth, expiryYear), cvv_(cvv)
{ cout << "CC ctor: "; print(); cout << endl; }
“CreditCard() { cout << "CC dtor: "; print(); cout << endl; delete[] cardNumber_; }
void setAddress(const Address& a) { addr_ = a; } // Change address
void setIssueDate(const Date& d) { issueDate_ = d; } // Change issue date
void setExpiryDate(const Date& d) { expiryDate_ = d; } // Change expiry date
void setCVV(UINT v) { cVV_ = V3 } // Change cvv number
Ethidbes void print() const { cout<<cardNumber_<<" "; holder_.print(); cout<<" "; addr_.print();
cout<<" "; issueDate_.print(); cout<<" "; expiryDate_.print(); cout<<" "; cout<<cvv_; }
s

e Note the initialization of cardNumber_ in initialization list
e All constant data members must be initialized in initialization list

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 23

E@ij mutable Members

mutable Members

mutable
Members

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

E@;j mutable Data Members

e While a constant data member is not changeable even in a non-constant object, a
mutable data member is changeable in a constant object

e mutable is provided to model Logical (Semantic) const-ness against the default
Bit-wise (Syntactic) const-ness of C++

e Note that:

o mutable is applicable only to data members and not to variables
o Reference data members cannot be declared mutable

o Static data members cannot be declared mutable

o const data members cannot be declared mutable

e If a data member is declared mutable, then it is legal to assign a value to it from a
const member function

mutable
Members

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 25

E@;j Program 15.08: mutable Data Members

#include <iostream>
using namespace std;
class MyClass {
int mem_;
mutable int mutableMem_;
public:
MyClass(int m, int mm) : mem_(m), mutableMem_(mm) { }
int getMem() const { return mem_; }
void setMem(int i) { mem_ = i; }
int getMutableMem() const { return mutableMem_; }
void setMutableMem(int i) const { mutableMem_ = i; } // Okay to change mutable

int main() { const MyClass myConstObj(1, 2);

cout << myConstObj.getMem() << endl;
// myConstObj.setMem(3) ; // Error to invoke

cout << myConstObj.getMutableMem() << endl;
myConst0Obj.setMutableMem(4) ;

}

o setMutableMem() is a constant member function so that constant myConstObj can invoke it
o setMutableMem() can still set mutableMem_ because mutableMem_ is mutable
o In contrast, myConstObj cannot invoke setMem() and hence mem_ cannot be changed

Example

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 26

Intructors: Abir e const in C4++4, models bit-wise constant. Once an object is declared const, no part
g (actually, no bit) of it can be changed after construction (and initialization)

e However, while programming we often need an object to be /ogically constant. That is,
the concept represented by the object should be constant; but if its representation need
more data members for computation and modeling, these have no reason to be
constant.

e mutable allows such surrogate data members to be changeable in a (bit-wise) constant
object to model logically const objects
e To use mutable we shall look for:

o A logically constant concept
o A need for data members outside the representation of the concept; but are needed
for computation

€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 27

E@;j Program 15.09: When to use mutable Data Members?

e Typically, when a class represents a constant concept, and
e It computes a value first time and caches the result for future use

// Source: http://www.highprogrammer.com/alan/rants/mutable.html
#include <iostream>
using namespace std;

class MathObject { // Constant concept of PI
mutable bool piCached_; // Needed for computation
mutable double pi_; // Needed for computation
public:
MathObject() : piCached_(false) { } // Not available at construction
double pi() const { // Can access PI only through this method
if (!piCached_) { // An insanely slow way to calculate pi
pi_ = 4;

for (long step = 3; step < 1000000000; step += 4)
pi_ += ((-4.0 / (double)step) + (4.0 / ((double)step + 2)));

piCached_ = true; // Now computed and cached

return pi_;
+s
int main() { const MathObject mo; cout << mo.pi() << endl; /* Access PI %/ }
mutable Guidelines
e Here a MathObject is logically constant; but we use mutable members for computation
€S20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 28

E@;} Program 15.10: When not to use mutable Data Members?

Intructc \bir
[DELET]
L

Souran,

Bhattacharya

mutable Guidelines

e mutable should be rarely used — only when it is really needed. A bad example follows:

Improper Design (mutable)

Proper Design (const)

class Employee { string _name, _id;
mutable double _salary;
public: Employee(string name = "No Name",
string id = "000-00-0000",
double salary = 0): _name(name), _id(id)
{ _salary = salary; }
string getName() const;
void setName(string name);
string getid() const;
void setid(string id);
double getSalary() const;
void setSalary(double salary);
void promote(double salary) const
{ _salary = salary; }
}s
const Employee john("JOHN","007",5000.0);
/7 ...
john.promote (20000.0) ;

class Employee { const string _name, _id;
double _salary;
public: Employee(string name = "No Name",
string id = "000-00-0000",
double salary = 0): _name(name), _id(id)
{ _salary = salary; }
string getName() const;
// void setName(string name); // _name is const
string getid() const;
// void setid(string id);
double getSalary() const;
void setSalary(double salary);
void promote(double salary)
{ _salary = salary; }

// _id is const

}s

Employee john("JOHN","007",5000.0);

/] ...
john.promote (20000.0) ;

e Employee is not logically constant. If it is, then _salary should also be const

e Design on right makes that explicit
(€S20202: Software Engineering

Intructors: Abir Das and Sourangshu Bhattacharya 29

	Constant Objects
	Simple Example

	Constant Member Functions
	Simple Example

	Constant Data Members
	Simple Example
	Credit Card Example: Putting it all together

	mutable Members
	Simple Example
	mutable Guidelines

