
Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Module 10: Programming in C++
Dynamic Memory Management

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Module Objectives

• Understand the dynamic memory management in C++

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Module Outline

1 Dynamic Memory Management in C
malloc & free

2 Dynamic Memory Management in C++
new and delete operator
Dynamic memory allocation for Array
Placement new
Restrictions

3 Operator Overloading for Allocation and De-allocation

4 Module Summary

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.01/02: malloc() & free(): C & C++

C Program C++ Program

#include <stdio.h>
#include <stdlib.h>

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;

printf("%d", *p); // Prints: 5

free(p);
}

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;

cout << *p; // Prints: 5

free(p);
}

• Dynamic memory management functions in stdlib.h header for C (cstdlib header for C++)
• malloc() allocates the memory on heap or free store
• sizeof(int) needs to be provided
• Pointer to allocated memory returned as void* – needs cast to int*
• Allocated memory is released by free() from heap or free store
• calloc() and realloc() also available in both languages

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.02/03: operator new & delete:
Dynamic memory management in C++

• C++ introduces operators new and delete to dynamically allocate and de-allocate memory:

Functions malloc() & free() operator new & operator delete

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;
cout << *p; // Prints: 5

free(p);
}

#include <iostream>

using namespace std;

int main() {
int *p = new int(5);

cout << *p; // Prints: 5

delete p;
}

• Function malloc() for allocation on heap • operator new for allocation on heap
• sizeof(int) needs to be provided • No size specification needed, type suffices
• Allocated memory returned as void* • Allocated memory returned as int*
• Casting to int* needed • No casting needed
• Cannot be initialized • Can be initialized
• Function free() for de-allocation from heap • operator delete for de-allocation from heap
• Library feature – header cstdlib needed • Core language feature – no header needed

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.02/04: Functions:
operator new() & operator delete()

• C++ also allows operator new() and operator delete() functions to dynamically allocate
and de-allocate memory:

Functions malloc() & free() Functions operator new() & operator delete()

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;

cout << *p; // Prints: 5

free(p);
}

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)operator new(sizeof(int));
*p = 5;

cout << *p; // Prints: 5

operator delete(p);
}

• Function malloc() for allocation on heap • Function operator new() for allocation on heap
• Function free() for de-allocation from heap • Function operator delete() for de-allocation from heap

There is a major difference between operator new and function operator new(). We explore this angle later

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.05/06: new[] & delete[]:
Dynamically managed Arrays in C++

Functions malloc() & free() operator new[] & operator delete[]

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *a = (int *)malloc(sizeof(int)* 3);
a[0] = 10; a[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)
cout << "a[" << i << "] = "

<< a[i] << " ";

free(a);
}

a[0] = 10 a[1] = 20 a[2] = 30

#include <iostream>
using namespace std;

int main() {
int *a = new int[3];
a[0] = 10; a[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)
cout << "a[" << i << "] = "

<< a[i] << " ";

delete [] a;
}

a[0] = 10 a[1] = 20 a[2] = 30

• Allocation by malloc() on heap • Allocation by operator new[] (different from operator
new) on heap

• # of elements implicit in size passed to malloc() • # of elements explicitly passed to operator new[]
• Release by free() from heap • Release by operator delete[] (different from operator

delete) from heap

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.07: Operator new():
Placement new in C++

#include <iostream>
using namespace std;
int main() { unsigned char buf[sizeof(int)* 2]; // Byte buffer on stack

// placement new in buffer buf
int *pInt = new (buf) int (3);
int *qInt = new (buf+sizeof(int)) int (5);

int *pBuf = (int *)(buf + 0); // *pInt in buf[0] to buf[sizeof(int)-1]
int *qBuf = (int *)(buf + sizeof(int)); // *qInt in buf[sizeof(int)] to buf[2*sizeof(int)-1]
cout << "Buf Addr Int Addr" << pBuf << " " << pInt << endl << qBuf << " " << qInt << endl;
cout << "1st Int 2nd Int" << endl << *pBuf << " " << *qBuf << endl;

int *rInt = new int(7); // heap allocation
cout << "Heap Addr 3rd Int" << endl << rInt << " " << *rInt << endl;
delete rInt; // delete integer from heap
// No delete for placement new

}

Buf Addr Int Addr
001BFC50 001BFC50
001BFC54 001BFC54
1st Int 2nd Int
3 5
Heap Addr 3rd Int
003799B8 7

• Placement operator new takes a buffer address to place objects
• These are not dynamically allocated on heap – may be allocated on stack or heap or static,
wherever the buffer is located

• Allocations by Placement operator new must not be deleted

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Mixing Allocators and De-allocators of C and C++

• Allocation and De-allocation must correctly match.

◦ Do not free the space created by new using free()

◦ And do not use delete if memory is allocated through malloc()

These may result in memory corruption

Allocator De-allocator
malloc() free()

operator new operator delete

operator new[] operator delete[]

operator new() No delete

• Passing NULL pointer to delete operator is secure
• Prefer to use only new and delete in a C++ program
• The new operator allocates exact amount of memory from Heap or Free Store
• new returns the given pointer type – no need to typecast
• new, new[] and delete, delete[] have separate semantics

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.08: Overloading
operator new and operator delete

#include <iostream>
#include <stdlib.h>
using namespace std;

void* operator new(size_t n) { // Definition of Operator new
cout << "Overloaded new" << endl;
void *ptr = malloc(n); // Memory allocated to ptr. Can be done by function operator new()
return ptr;

}
void operator delete(void *p) { // Definition of operator delete

cout << "Overloaded delete" << endl;
free(p); // Allocated memory released. Can be done by function operator delete()

}
int main() { int *p = new int; // Calling overloaded operator new

*p = 30; // Assign value to the location
cout << "The value is :�" << *p << endl;
delete p; // Calling overloaded operator delete

}

Overloaded new
The value is : 30
Overloaded delete

• operator new overloaded
• The first parameter of overloaded operator new must be size t
• The return type of overloaded operator new must be void*
• The first parameter of overloaded operator delete must be void*
• The return type of overloaded operator delete must be void
• More parameters may be used for overloading
• operator delete should not be overloaded (usually) with extra parameters

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Program 10.09: Overloading
operator new[] and operator delete[]

#include <iostream>
#include <cstdlib>
using namespace std;

void* operator new [] (size_t os, char setv) { // Fill the allocated array with setv
void *t = operator new(os);
memset(t, setv, os);
return t;

}
void operator delete[] (void *ss) {

operator delete(ss);
}
int main() {

char *t = new(’#’)char[10]; // Allocate array of 10 elements and fill with ’#’

cout << "p = " << (unsigned int) (t) << endl;
for (int k = 0; k < 10; ++k)

cout << t[k];

delete [] t;
}

p = 19421992
##########

• operator new[] overloaded with initialization
• The first parameter of overloaded operator new[] must be size t
• The return type of overloaded operator new[] must be void*
• Multiple parameters may be used for overloading
• operator delete [] should not be overloaded (usually) with extra parameters

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 10

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management in C

malloc & free

Memory
Management in
C++

new & delete

Array

Placement new

Restrictions

Overloading new
& delete

Module Summary

Module Summary

• Introduced new and delete for dynamic memory management in C++

• Understood the difference between new, new[] and delete, delete[]

• Compared memory management in C with C++

• Explored the overloading of new, new[] and delete, delete[] operators

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

	Objectives & Outline
	Dynamic Memory Management in C
	malloc & free

	Dynamic Memory Management in C++
	new and delete operator
	Dynamic memory allocation for Array
	Placement new
	Restrictions

	Operator Overloading for Allocation and De-allocation
	Module Summary

