
Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Module 44: Software Engineering
Software Testing

Intructors: Abir Das and Sourangshu Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Object-Oriented Analysis & Design

by Prof. Partha Pratim Das

CS20202: Software Engineering 1

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Table of Contents

1 Fundamentals

2 Verification & Validation
Black Box Testing
White Box Testing

3 Development
Testing

Regression
System

4 Test Plans
LMS
QES

CS20202: Software Engineering 2

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Why Test?

• Ariane 5 Flight 501

◦ Un-manned satellite-launching rocket in 1996
◦ Self-destructed 37 seconds after launch
◦ Conversion from 64-bit floating point to 16-bit signed
integer value had caused an exception (re-used from
Ariane 4)

▷ The floating point number was larger than 32767
▷ Efficiency considerations had led to the disabling of
the exception handler

Source: 11 of the most costly software errors in historyCS20202: Software Engineering 3

https://raygun.com/blog/costly-software-errors-history/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Why Test?

• NASA’s Mars Climate Orbiter
◦ Mission to Mars in 1998, $125 Million
◦ Lost in space
◦ Simple conversion from English units to metric failed

• EDS Child Support System in 2004
◦ Overpay 1.9 million people
◦ Underpay another 700,000
◦ US $7 billion in uncollected child support payments
◦ Backlog of 239,000 cases
◦ 36,000 new cases “stuck” in the system
◦ Cost the UK taxpayers over US $1 billion
◦ Incompatible software integration

• Heathrow Terminal 5 Opening
◦ Baggage handling tested for 12,000 test pieces of

luggage
◦ Missed to test for removal of baggage
◦ In 10 days some 42,000 bags failed to travel with their
owners, and over 500 flights were cancelled

CS20202: Software Engineering 4

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Why Test?

• The Morris Worm
◦ Developed by a Cornell University student for a harmless experiment
◦ Spread wildly and crashing thousands of computers in 1988 because of a

coding error
◦ It was the first widespread worm attack on the fledgling Internet
◦ The graduate student, Robert Tappan Morris, was convicted of a

criminal hacking offense and fined $10,000
◦ Costs for cleaning up the mess may have gone as high as $100 Million
◦ Morris, who co-founded the startup incubator Y Combinator, is now a

professor at the Massachusetts Institute of Technology
◦ A disk with the worm’s source code is now housed at the University of

Boston

CS20202: Software Engineering 5

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Why Test?

• Boeing Crash
◦ On March 10, 2019, Ethiopian Airlines Flight 302 crashed just minutes

after takeoff. All 157 people on board the flight died
◦ On October of 2018, Lion Air Flight 610 also crashed minutes after

taking off
◦ Both flights involved Boeing’s 737 MAX jet
◦ The software overpowered all other flight functions trying to mediate the

nose lift
◦ Many pilots did not know this system existed - they were not re-trained

on 737 MAX Jet

Source: Boeing Software Scandal Highlights Need for Full Lifecycle Testing

• Airbus Crash
◦ On May 9, 2015, the Airbus A400M crashed near Seville after a failed

emergency landing during its first flight
◦ Electronic Control Units (ECU) on board malfunctioned

Source: Airbus A400M plane crash linked to software fault

CS20202: Software Engineering 6

https://www.logigear.com/magazine/test-methods-and-metrics/boeing-software-scandal-highlights-need-for-full-lifecycle-testing/
https://www.bbc.com/news/technology-32810273

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Testing a Program

• Input test data to the program

• Observe the output

• Check if the program behaved as expected

• If the program does not behave as expected:

◦ Note the conditions under which it failed
◦ Debug and correct

CS20202: Software Engineering 7

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

What’s So Hard About Testing?

• Consider int proc1(int x, int y)

• Assuming a 64 bit computer

◦ Input space = 2128

• Assuming it takes 10secs to key-in an integer pair

◦ It would take about a billion years to enter all possible
values!

◦ Automatic testing has its own problems!

CS20202: Software Engineering 8

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Testing Facts

• Consumes largest effort among all phases

◦ Largest manpower among all other development roles
◦ Implies more job opportunities

• About 50% development effort

◦ But 10% of development time?
◦ How?

• Testing is getting more complex and sophisticated every
year

◦ Larger and more complex programs
◦ Newer programming paradigms

CS20202: Software Engineering 9

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Overview of Testing

• Testing Activities

◦ Test Suite Design
◦ Run test cases and observe results to detect failures.
◦ Debug to locate errors
◦ Correct errors

• Error, Faults, and Failures

◦ A failure is a manifestation of an error (also defect or
bug)

◦ Mere presence of an error may not lead to a failure

CS20202: Software Engineering 10

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Pesticide Effect

• Errors that escape a fault detection technique:

◦ Can not be detected by further applications of that
technique

• Assume we use 4 fault detection techniques and 1000 bugs:

◦ Each detects only 70% bugs
◦ How many bugs would remain?
◦ 1000 ∗ (0.3)4 = 81 bugs

CS20202: Software Engineering 11

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Fault Model

• Types of faults possible in a program
• Some types can be ruled out

◦ Concurrency related-problems in a sequential program
◦ Consider a singleton in multi-thread

#include <iostream>

using namespace std;

class Printer { /* THIS IS A SINGLETON PRINTER -- ONLY ONE INSTANCE */

bool blackAndWhite_, bothSided_;

Printer(bool bw = false, bool bs = false) : blackAndWhite_(bw), bothSided_(bs)

{ cout << "Printer constructed" << endl; }

static Printer *myPrinter_; // Pointer to the Singleton Printer

public:

~Printer() { cout << "Printer destructed" << endl; }

static const Printer& printer(bool bw = false, bool bs = false) {

if (!myPrinter_) // What happens on multi-thread?

myPrinter_ = new Printer(bw, bs);

return *myPrinter_;

}

void print(int nP) const { cout << "Printing " << nP << " pages" << endl; }

};

Printer *Printer::myPrinter_ = 0;

int main() {

Printer::printer().print(10);

Printer::printer().print(20);

delete &Printer::printer();

return 0;

}CS20202: Software Engineering 12

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Fault Model

• Fault Model of an OO Program

• Hardware Fault-Model

◦ Simple:

▷ Stuck-at 0
▷ Stuck-at 1
▷ Open circuit
▷ Short circuit

◦ Simple ways to test the presence of each
◦ Hardware testing is fault-based testing

CS20202: Software Engineering 13

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Cases and Test Suites

• Each test case typically tries to establish correct working of
some functionality:

◦ Executes (covers) some program elements
◦ For restricted types of faults, fault-based testing exists

• Test a software using a set of carefully designed test cases:

◦ The set of all test cases is called the test suite

• A test case is a triplet [I,S,O]

◦ I is the data to be input to the system
◦ S is the state of the system at which the data will be
input

◦ O is the expected output of the system (called Golden)

CS20202: Software Engineering 14

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Verification versus Validation

• Verification is the process of determining
◦ Whether output of one phase conforms to its previous phase◦ If we are building the system correctly◦ Verification is concerned with phase containment of errors

• Validation is the process of determining
◦ Whether a fully developed system conforms to its SRS document◦ If we are building the correct system◦ Whereas the aim of validation is that the final product be error free

Source: Software TestingCS20202: Software Engineering 15

https://thomasalspaugh.org/pub/fnd/test.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Design of Test Cases

• Exhaustive testing of any non-trivial system is impractical

◦ Input data domain is extremely large

• Design an optimal test suite

◦ Of reasonable size and
◦ Uncovers as many errors as possible

• If test cases are selected randomly

◦ Many test cases would not contribute to the significance
of the test suite

◦ Would not detect errors not already being detected by
other test cases in the suite

• Number of test cases in a randomly selected test suite

◦ Not an indication of effectiveness of testing

• Testing a system using a large number of randomly selected
test cases

◦ Does not mean that many errors in the system will be
uncoveredCS20202: Software Engineering 16

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Design of Test Cases

• Consider following example

◦ Find the maximum of two integers x and y

• The code has a simple programming error

if (x>y)

max = x;

else

max = x;

• Test suite {(x=3,y=2); (x=2,y=3)} can detect the error

• A larger test suite {(x=3,y=2); (x=4,y=3); (x=5,y=1)}
does not detect the error

CS20202: Software Engineering 17

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Design of Test Cases

• Systematic approaches are required to design an optimal test suite
◦ Each test case in the suite should detect different errors

• There are essentially three main approaches to design test cases

◦ Black-box testing (Zero Knowledge)

◦ White-box testing (Full Knowledge)

◦ Grey-box testing (Some Knowledge)

CS20202: Software Engineering 18

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Why Both BB and WB Testing?

Black Box Testing

• Impossible to write a test
case for every possible set
of inputs and outputs

• Some code parts may
not be reachable

• Does not tell if ex-
tra functionality has been
implemented.

White Box Testing

• Does not address the
question of whether or
not a program matches
the specification

• Does not tell you if all
of the functionality has
been implemented

• Does not discover miss-
ing program logic

CS20202: Software Engineering 19

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing

• Black-box testing is a method of software testing that
examines the functionality of an application without peering
into its internal structures or workings

• This method of test can be applied virtually to every level
of software testing

◦ unit
◦ integration
◦ system and
◦ acceptance

• Test cases are designed using only functional specification
of the software

◦ Without any knowledge of the internal structure of the
software

• For this reason, black-box testing is also known as
functional testing or specification-based testing

CS20202: Software Engineering 20

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White-Box Testing

• White-box testing is a method of software testing that tests
internal structures or workings of an application, as opposed
to its functionality

• In white-box testing an internal perspective of the system,
as well as programming skills, are used to design test cases

• Designing white-box test cases

◦ Requires knowledge about the internal structure of
software

• White-box testing is also called structural testing

CS20202: Software Engineering 21

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Grey-Box Testing

• Grey-box testing is a combination of white-box testing and
black-box testing

• The aim of this testing is to search for the defects if any
due to improper structure or improper usage of applications

CS20202: Software Engineering 22

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing Strategies

There are several significant approaches to design black box
test cases including
• Equivalence class partitioning

• Boundary value analysis

• State Transition Testing

• Decision Table Testing

• Graph-Based Testing

• Error Guessing Technique

Other approaches include:
• Fuzzing Technique

• All Pair Testing

• Orthogonal Array Testing

• and so on

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 23

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Equivalence Class Partitioning

• Input values to a program are partitioned into equivalence
classes

• Partitioning is done such that

◦ Program behaves in similar ways to every input value
belonging to an equivalence class

◦ Test the code with just one representative value from
each equivalence class – As good as testing using any
other values from the equivalence classes

CS20202: Software Engineering 24

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Equivalence Class Partitioning

How do you determine the equivalence classes?

• Examine the input data – Few general guidelines for
determining the equivalence classes can be given
◦ If the input data is specified by a range of values

▷ For example, numbers between 1 to 5000
▷ One valid and two invalid equivalence classes are
defined

◦ If input is an enumerated set of values
▷ For example, { a, b, c }
▷ One equivalence class for valid input values
▷ Another equivalence class for invalid input values
should be defined

◦ A program reads an input value in the range of 1 and
5000
▷ Computes the square root of the input number
▷ One valid and two invalid equivalence classes are
defined – The set of negative integers, Set of
integers in the range of 1 and 5000, and Integers
larger than 5000

▷ A possible test suite can be: { -5, 500, 6000 }

CS20202: Software Engineering 25

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Equivalence Class Partitioning

• Max program reads two non-negative integers and spits the larger one
Equivalence Class Condition Test Case

EC 1 (Greater) x > y (5, 2)
EC 2 (Smaller) x < y (3, 7)
EC 3 (Equal) x = y (4, 4)

• QES program reads (a, b, c) and solves: ax2 + bx + c = 0
Equivalence Class Condition Test Case

Infinite roots a = b = c = 0 (0,0,0)
No root a = b = 0; c ̸= 0 (0,0,2)
Single root a = 0, b ̸= 0 (0,2,-4)
Repeated roots a ̸= 0; b ∗ b − 4 ∗ a ∗ c = 0 (4,4,1)
Distinct roots a ̸= 0; b ∗ b − 4 ∗ a ∗ c > 0 (1,-5,6)
Complex roots a ̸= 0; b ∗ b − 4 ∗ a ∗ c < 0 (2,3,4)

CS20202: Software Engineering 26

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Boundary Value Analysis (BVA)

• Some typical programming errors occur

◦ At boundaries of equivalence classes
◦ Might be purely due to psychological factors

• Programmers often fail to see

◦ Special processing required at the boundaries of
equivalence classes

CS20202: Software Engineering 27

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Boundary Value Analysis (BVA)

• Some typical programming errors occur

◦ At boundaries of equivalence classes
◦ Might be purely due to psychological factors

• Programmers often fail to see

◦ Special processing required at the boundaries of
equivalence classes

• Programmers may improperly use < instead of ≤
• Boundary value analysis

◦ Select test cases at the boundaries of equivalence classes

• For a function that computes the square root of an integer
in the range of 1 and 5000

◦ Test cases must include the values: { 0, 1, 5000, 5001 }
• QES program reads (a, b, c) and solves: ax2 + bx + c = 0

◦ a = 0 is a boundary. Check if this test works well
◦ b ∗ b − 4 ∗ a ∗ c = 0 is a boundary. Check for the test

CS20202: Software Engineering 28

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
State Transition Testing

• This technique usually considers the state, outputs, and
inputs of a system during a specific period

• Based on the type of software that is tested, it checks for
the behavioral changes of a system in a particular state or
another state while maintaining the same inputs

• The test cases for this technique are created by checking
the sequence of transitions and state or events among the
inputs

• The whole set of test cases will have the traversal of the
expected output values and all states

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 29

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
State Transition Testing

• Example: We need to perform black box testing for a login screen which
allows a maximum of three attempts before the login is locked. Assuming
that the user-id is correct, design the test suite.

Testcase # Password for Trial State
Trial 1 Trial 2 Trial 3 Golden

(1) Correct X X Access
(2) Wrong Correct X Access
(3) Wrong Wrong Correct Access
(4) Wrong Wrong Wrong Locked

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 30

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Decision Table Testing

• In some instances, the inputs combinations can become very complicated for
tracking several possibilities

• Such complex situations rely on decision tables, as it offers the testers an
organized view about the inputs combination and the expected output

• This technique is identical to the graph-based testing technique; the major
difference is using tables instead of diagrams or graphs

• Example 1:

• Example 2: States of various leaves in LMS Testplan

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 31

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Graph-Based Testing

• This technique of Black box testing involves a graph drawing that depicts the
link between the causes (inputs) and the effects (output), which trigger the
effects

• This testing utilizes different combinations of output and inputs. It is a
helpful technique to understand the software’s functional performance, as it
visualizes the flow of inputs and outputs in a lively fashion

• Example:

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 32

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Black-Box Testing:
Error Guessing Technique

• This testing technique is capable of guessing the erroneous
output and inputs to help the tester fix it easily

• It is solely based on judgment and perception of the earlier
end user experience.

Source: Black Box Testing Techniques with Examples

CS20202: Software Engineering 33

https://www.testbytes.net/blog/black-box-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Types of Black-Box Testing

• Functional Testing:
This type of testing is useful for the testers in identifying
the functional requirements of a software or system

• Regression Testing:
This testing type is performed after the system
maintenance procedure, upgrades or code fixes to know the
impact of the new code over the earlier code

• Non-Functional Testing:
This testing type is not connected with testing for any
specific functionality but relates to non-functional
parameters like usability, scalability, and performance

CS20202: Software Engineering 34

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White-Box Testing Strategies

• Coverage-based

◦ Design test cases to cover certain program elements

• Fault-based

◦ Design test cases to expose some category of faults

• There exist several popular white-box testing methodologies

◦ Coverage Based

▷ Statement / Line Coverage
▷ Function / Call Coverage
▷ Branch Coverage
▷ Condition Coverage
▷ Path Coverage
▷ MC/DC Coverage

◦ Fault Based

▷ Mutation Testing
▷ Data Flow Testing

CS20202: Software Engineering 35

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Coverage-Based Testing vs Fault-Based Testing

• Idea behind coverage-based testing

◦ Design test cases so that certain program elements are
executed (or covered)

◦ Example: statement coverage, path coverage, etc.

• Idea behind fault-based testing

◦ Design test cases that focus on discovering certain types
of faults

◦ Example: Mutation testing

CS20202: Software Engineering 36

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Stronger, Weaker, and Complementary Testing

• Stronger and Weaker Testing: Test cases are a super-set of a weaker testing

◦ A stronger testing covers at least all the elements of the elements covered
by a weaker testing

• Complimentary Testing

• Stronger, Weaker & Complimentary Testing

CS20202: Software Engineering 37

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Statement / Line Coverage

• Statement coverage methodology
◦ Design test cases so that every statement in the program is executed at least once

• The principal idea
◦ Unless a statement is executed◦ We do not know if an error exists in that statement

• Observe that a statement behaves properly for one i/p
◦ No guarantee that it will behave correctly for all i/p values

• Line Coverage
◦ Most tools (like gcov, lcov) actually compute the coverage for the source lines◦ So it multiple statements are written in a single line, the coverage data may be inaccurate. For

example, there are two statements in the following line that will be counted as one only

x = 5; y = 6;

◦ While the above may be okay, conditional statements should be placed in separate lines for proper
statement coverage. For example, for

if (x > y) max = x;

max = y;

we would never now if the statement max = x; has actually been executed or not◦ Single statement in every source line is a common coding guideline

CS20202: Software Engineering 38

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Statement / Line Coverage

• Coverage measurement

◦ Statement Coverage = #executed statements
#statements

∗ 100%

◦ Line Coverage = #executed lines
#lines

∗ 100%
◦ Rationale: a fault in a statement can only be revealed by executing the faulty statement. Consider

Euclid’s GCD algorithm:

int f1(int x, int y) {

while (x != y) {

if (x>y)

x = x - y;

else y = y - x;

}

return x;

}

• By choosing the test set { (x=3,y=3), (x=4,y=3), (x=3,y=4) }, all
statements are executed at least once

• Note that { (x=4,y=3) } or { (x=3,y=4) } itself will cover all lines due the
the iterations of the while loop. However, it is customary to keep the
analysis simple (mostly through a single flow) and include all of them in the
test suite

CS20202: Software Engineering 39

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Function / Call Coverage

• Function Coverage methodology
◦ Design test cases so that every function in the program is called at least once◦ This metric reports the call count of a function; it does not pay mind to the execution of the body

of the function◦ It is thus generally useful as an initial assessment of a project’s coverage, but higher-order metrics
are generally required for more in-depth analysis

• Call Coverage methodology
◦ Design test cases so that every function call in the program is executed at least once◦ In contrast to Function Coverage (which is about execution of the function itself), Call Coverage

mandates that each call found in the code is executed at least once◦ 100% Function Coverage therefore does not imply 100% Call Coverage◦ The reverse is also not necessarily true either - there may be functions that are not called
anywhere in the code (unused functions)

• Coverage measurement

◦ Function Coverage = #function called at least once
#total functions

∗ 100%

◦ Call Coverage = #call sites for functions called
#total call sites of functions

∗ 100%

CS20202: Software Engineering 40

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Branch Coverage

• Test cases are designed such that

◦ Different branch conditions – are given true and false values in turn

• Branch testing guarantees statement coverage

◦ A stronger testing compared to the statement coverage-based testing
◦ Why?

1: cin >> x;

2: if (0 == x)

3: x = x + 1;

4: y = 5;

Note that, {(x = 0)} covers lines {1, 2, 3, 4} while {(x = 1)} covers
only lines {1, 2, 4}. So with {(x = 0)}, we get 100% statement
coverage. But then, did we check for the jump from line 2 to 4 for the
false condition? This condition did not get tested. So we need {(x =

0), (x = 1)} for 100% branch coverage and it obviously leads to 100%
statement coverage.

How do we get 100% branch coverage for:

1: if (true)

2: x = x + 1;

3: y = 5;

CS20202: Software Engineering 41

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing: Branch Coverage

• Example:
0: int f1(int x, int y) {

1: while (x != y) {

2: if (x > y)

3: x = x - y;

4: else y = y - x;

5: }

6: return x;

7: }

Branches: {1-2, 1-6, 2-3, 2-4, 3-5, 4-5, 5-1}

• Test cases for branch coverage can be
◦ (x=3,y=3): {1-6}: {1, 6}◦ (x=4,y=3): {1-2, 2-3, 3-5, 5-1}: {1, 2, 3, 5}
◦ (x=3,y=4): {1-2, 2-4, 4-5, 5-1}: {1, 2, 4, 5}

• Adequacy criterion: Each branch (in CFG) must be executed at least once

◦ Branch Coverage = #executed branches
#branches

∗ 100%

• Traversing all edges of a graph causes all nodes to be visited

◦ So test suites that satisfy the branch adequacy criterion for a program also satisfy the statement

adequacy criterion for the same program

• The converse is not true

◦ A statement-adequate (or node-adequate) test suite may not be branch-adequate (edge-adequate)

CS20202: Software Engineering 42

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Condition Coverage

All Branches can still miss conditions

• Sample fault: missing operator (negation)

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only
digit low

◦ The faulty sub-expression might not be tested
◦ Even though we test both outcomes of the branch

CS20202: Software Engineering 43

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Condition Coverage

• Test cases are designed such that

◦ Each component of a composite conditional expression

▷ Given both true and false values

◦ Consider the conditional expression

▷ ((c1.and.c2).or.c3)

◦ Each of c1, c2, and c3 are exercised at least once

▷ That is, given true and false values

• Basic condition testing

◦ Adequacy criterion: each basic condition must be
executed at least once

• Coverage
◦ Condition Coverage = #truth values taken by all basic conditions

2∗#basic conditions
∗ 100%

CS20202: Software Engineering 44

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Branch Testing

• Branch testing is the simplest condition testing strategy

◦ Compound conditions appearing in different branch
statements

▷ Are given true and false values

◦ Condition testing

▷ Stronger testing than branch testing

◦ Branch testing

▷ Stronger than statement coverage testing

CS20202: Software Engineering 45

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Condition Coverage

• Consider a boolean expression having n components

◦ For condition coverage we require 2n test cases

• Condition coverage-based testing technique

◦ Practical only if n (the number of component
conditions) is small

• Commonly known as Multiple Condition Coverage
(MCC), Multicondition Coverage and Condition
Combination Coverage

CS20202: Software Engineering 46

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Modified Condition / Decision (MC/DC)

• Motivation

◦ Effectively test important combinations of conditions, without
exponential blowup in test suite size

◦ Important combinations means: Each basic condition shown to
independently affect the outcome of each decision

• Requires

◦ For each basic condition C, two test cases obtained
◦ Values of all evaluated conditions except C are the same
◦ Compound condition as a whole evaluates to true for one and false for

the other

• MC/DC stands for Modified Condition / Decision Coverage

• A kind of Predicate Coverage technique

◦ Condition: Leaf level Boolean expression.
◦ Decision: Controls the program flow

• Main Idea

◦ Each condition must be shown to independently affect the outcome of a
decision, that is, the outcome of a decision changes as a result of
changing a single condition

CS20202: Software Engineering 47

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
MC/DC in action: The Cup of Coffee Example
To make a cup of coffee, we would need ALL of the following: a kettle, a cup and coffee. If any of the
components were missing, we would not be able to make our coffee. Or, to express this another way:

if (kettle && cup && coffee)

return cup_of_coffee;

else

return false;

Or to illustrate it visually:

• Tests 4 & 8 demonstrate that ‘kettle’ can independently affect the outcome

• Tests 6 & 8 demonstrate that ‘mug’ can independently affect the outcome

• Tests 7 & 8 demonstrate that ‘coffee’ can independently affect the outcome

Source: What is MC/DC?
CS20202: Software Engineering 48

https://www.rapitasystems.com/mcdc-coverage

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
MC/DC in action: Flow Check
A sample C/C++ function with a decision composed of OR and AND expressions illustrates the difference
between Modified Condition/Decision Coverage and a coverage of all possible combinations as required by
MCC:

bool isSilent(int *line1, int *line2)

{

if ((!line1 || *line1 <= 0) && (!line2 || *line2 <= 0))

return true;

else

return false;

}

Or to illustrate it visually:

Source: Modified Condition/Decision Coverage (MC/DC)

CS20202: Software Engineering 49

https://www.froglogic.com/coco/modified-condition-decision-coverage-mcdc/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Modified Condition / Decision (MC/DC)

Cond = (((a || b) && c) || d) && e

Condition Coverage Test Cases
Every condition in the decision has taken all possible outcomes at least once

a b c d e Cond
0: F F F F F F
1: F F F F T F
2: F F F T F F
3: F F F T T T
4: F F T F F F
5: F F T F T F
6: F F T T F F
7: F F T T T T
8: F T F F F F
9: F T F F T F

10: F T F T F F
11: F T F T T T
12: F T T F F F
13: F T T F T T
14: F T T T F F
15: F T T T T T

a b c d e Cond
16: T F F F F F
17: T F F F T F
18: T F F T F F
19: T F F T T T
20: T F T F F F
21: T F T F T T
22: T F T T F F
23: T F T T T T
24: T T F F F F
25: T T F F T F
26: T T F T F F
27: T T F T T T
28: T T T F F F
29: T T T F T T
30: T T T T F F
31: T T T T T T

MC/DC Coverage Test Cases
Every condition in the decision independently affects the
decision’s outcome
a b c d e Cond Cases
1: T X T X T T 21, 23, 29, 31
2: F T T X T T 13, 15
3: T X F T T T 19, 27
4: T X T X F F 20, 22, 28, 30
5: T X F F X F 16, 17, 24, 25
6: F F X F X F 0, 1, 4, 5

CS20202: Software Engineering 50

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Modified Condition / Decision (MC/DC)

• MC/DC is
◦ basic condition coverage (C)◦ branch coverage (DC)◦ plus one additional condition (M): every condition must independently affect the decision’s output

• It is subsumed by compound conditions and subsumes all other criteria
discussed so far
◦ stronger than statement and branch coverage

• A good balance of thoroughness and test size (and therefore widely used)

• MC/DC code coverage criterion is commonly used software testing. For
example, DO-178C software development guidance in the aerospace industry
requires MC/DC for the most critical software level (DAL A).

• MC/DC vs. MCC

◦ MCC testing is characterized as number of tests = 2C . In coffee example we have 3 conditions
(kettle, cup and coffee) therefore tests = 23 = 8◦ MC/DC requires significantly fewer tests (C + 1). In coffee example we have 3 conditions,
therefore 3 + 1 = 4◦ In a real-world setting, most aerospace projects would include some decisions with 16 conditions
or more. So the reduction would be from 216 = 65,536 to 16 + 1 = 17. That is, 65,519/65,536
= 99.97%

Source: What is MC/DC?

CS20202: Software Engineering 51

https://www.rapitasystems.com/do178c-testing
https://www.rapitasystems.com/mcdc-coverage

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Different Types of Code Coverage

Coverage Criteria SC DC MC/DC MCC

Every statement in the program has been invoked at least once X
Every point of entry and exit in the program has been invoked at
least once

X X X

Every control statement (that is, branch-point) in the program has
taken all possible outcomes (that is, branches) at least once

X X X

Every non-constant Boolean expression in the program has evalu-
ated to both a True and False result

X X X

Every non-constant condition in a Boolean expression in the pro-
gram has evaluated to both a True and False result

X X

Every non-constant condition in a Boolean expression in the pro-
gram has been shown to independently affect that expression’s out-
come

X X

Every combination of condition outcomes within a decision has been
invoked at least once

X

• SC: Statement Coverage • DC: Decision Coverage
• MC/DC: Modified Condition / Decision Coverage • MCC: Multiple Condition Coverage

Source: What is MC/DC?

CS20202: Software Engineering 52

https://www.rapitasystems.com/mcdc-coverage

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage

• Design test cases such that

◦ All linearly independent paths in the program are executed at least once

• Defined in terms of

◦ Control flow graph (CFG) of a program

• To understand the path coverage-based testing

◦ we need to learn how to draw control flow graph of a program

• A control flow graph (CFG) describes

◦ The sequence in which different instructions of a program get executed
◦ The way control flows through the program

• Number all statements of a program

• Numbered statements

◦ Represent nodes of control flow graph

• An edge from one node to another node exists

◦ If execution of the statement representing the first node – Can result in
transfer of control to the other node

CS20202: Software Engineering 53

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage: CFG

int f1(int x,int y) {

1 while (x != y){

2 if (x>y) then

3 x=x-y;

4 else y=y-x;

5 }

6 return x; }

• A path through a program:
◦ A node and edge sequence from the starting node to a terminal node of the control flow graph◦ There may be several terminal nodes for program

• Any path through the program that introduces at least one new edge (not
included in any other independent path) is a Linearly Independent Path
(LIP).

• A set of paths are linearly independent if none of them can be created by
combining the others in some way.
◦ It is straight forward to identify linearly independent paths of simple programs; but not so for

complicated programs

• LIP in the above example:
◦ 1,6◦ 1,2,3,5,1,6◦ 1,2,4,5,1,6

CS20202: Software Engineering 54

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage: LIP

public static boolean isPrime(int n) {

A int i = 2;

B while (i < n) {

C if (n % i == 0) {

D return false

}

E i++;

}

F return true;

}

CFG LIP

Source: The ’Linearly Independent Paths’ Metric for Java

CS20202: Software Engineering 55

https://www.cs.auckland.ac.nz/~ewan/essays/nlip.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage: McCabe’s Cyclomatic Metric

• An upper bound for the number of linearly independent paths of a program –
a practical way of determining the maximum number of LIP

• Given a control flow graph G , cyclomatic complexity V (G):

◦ V (G) = E − N + 2
◦ N is the number of nodes in G
◦ E is the number of edges in G

• Alternately, inspect control flow graph to determine number of bounded
areas (any region enclosed by a nodes and edge sequence) in the graph V (G)
= Total number of bounded areas + 1

• Example: Cyclomatic complexity = 7− 6 + 2 = 3 = 2 + 1

CS20202: Software Engineering 56

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage: McCabe’s Cyclomatic Metric

• McCabe’s metric provides a quantitative measure of testing difficulty and the
ultimate reliability

• Intuitively, number of bounded areas increases with the number of decision
nodes and loops

• The first method of computing V (G) is amenable to automation:

◦ You can write a program which determines the number of nodes and
edges of a graph

◦ Applies the formula to find V (G)

• The cyclomatic complexity of a program provides:

◦ A lower bound on the number of test cases to be designed
◦ To guarantee coverage of all linearly independent paths

• A measure of the number of independent paths in a program

• Provides a lower bound

◦ for the number of test cases for path coverage

• Knowing the number of test cases required

◦ Does not make it any easier to derive the test cases
◦ Only gives an indication of the minimum number of test cases required

CS20202: Software Engineering 57

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Path Coverage: Practical Path Testing

• Tester proposes initial set of test data using her experience & judgement

• A dynamic program analyzer is used to measures which parts of the program
have been tested

• Result used to determine when to stop testing

• Derivation of Test Cases
◦ Draw control flow graph.◦ Determine V(G).◦ Determine the set of linearly independent paths.◦ Prepare test cases to force execution along each path

• Example: Number of independent paths: 3

int f1(int x,int y) {

1 while (x != y){

2 if (x>y) then

3 x=x-y;

4 else y=y-x;

5 }

6 return x; }

◦ 1,6: test case (x=1, y=1)◦ 1,2,3,5,1,6: test case (x=1, y=2)◦ 1,2,4,5,1,6: test case (x=2, y=1)

CS20202: Software Engineering 58

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
An Application of Cyclomatic Complexity

• Relationship exists between:

◦ McCabe’s metric
◦ The number of errors existing in the code,
◦ The time required to find and correct the errors.

• Cyclomatic complexity of a program:

◦ Also indicates the psychological complexity of a program
◦ Difficulty level of understanding the program

• From maintenance perspective,

◦ Limit cyclomatic complexity of modules To some reasonable value.

• Good software development organizations:

◦ Restrict cyclomatic complexity of functions to a maximum of ten or so

CS20202: Software Engineering 59

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White-Box Testing:
Coverage Testing Summary

CS20202: Software Engineering 60

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Mutation Testing

• The software is first tested:

◦ Using an initial testing method based on white-box strategies we already discussed

• After the initial testing is complete

◦ mutation testing is taken up

• The idea behind mutation testing

◦ Make a few arbitrary small changes to a program at a time

• Good software development organizations:
◦ Restrict cyclomatic complexity of functions to a maximum of ten or so

• Insert faults into a program:
◦ Check whether the tests pick them up◦ Either validate or invalidate the tests◦ Example:

1: cin >> x;

2: if (0 == x)

3: x = x + 1;

4: y = 5;

Note that, {(x = 0)} covers lines {1, 2, 3, 4} while {(x = 1)} covers only lines {1, 2, 4}.
So with {(x = 0)}, we get 100% statement coverage. But then, did we check for the jump from
line 2 to 4 for the false condition? This condition did not get tested. So we need {(x = 0), (x

= 1)} for 100% branch coverage and it obviously leads to 100% statement coverage.
How do we get 100% branch coverage for:

1: if (true)

2: x = x + 1;

3: y = 5;

CS20202: Software Engineering 61

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Mutation Testing

• Insert faults into a program:
◦ Check whether the tests pick them up◦ Either validate or invalidate the tests

• Each time the program is changed
◦ it is called a mutated program◦ the change is called a mutant

• A mutated program:
◦ Tested against the full test suite of the program

• If there exists at least one test case in the test suite for which:
◦ A mutant gives an incorrect result, then the mutant is said to be dead

• If a mutant remains alive:
◦ even after all test cases have been exhausted, the test suite is enhanced to kill the mutant

• The process of generation and killing of mutants
◦ can be automated by pre-defining a set of primitive changes that can be applied to the program

• The primitive changes can be
◦ Deleting a statement◦ Altering an arithmetic operator◦ Changing the value of a constant◦ Changing a data type, etc.

CS20202: Software Engineering 62

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Mutation Testing: Error Seeding

• How Many Errors are Still Remaining?

• Seed the code with some known errors:
◦ Artificial errors are introduced into the program◦ Check how many of the seeded errors are detected during testing

• Let
◦ N be the total number of errors in the system and n of these errors be found by testing◦ S be the total number of seeded errors and s of the seeded errors be found during testing◦ n

N
= s

S◦ N = S ∗ n
s◦ Remaining defects:

N − n = n ∗
S − s

s

• Example:
◦ 100 errors were introduced◦ 90 of these errors were found during testing◦ 50 other errors were also found◦ Remaining errors:

50 ∗
100 − 90

90
= 6

• The kind of seeded errors should match closely with existing errors
◦ However, it is difficult to predict the types of errors that exist

• Categories of remaining errors
◦ even after all test cases have been exhausted, the test suite is enhanced to kill the mutant

CS20202: Software Engineering 63

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Data Flow Testing
Data Flow Testing is a type of structural testing. It is a method that is used to
find the test paths of a program according to the locations of definitions and uses
of variables in the program

• It is concerned with:
◦ Statements where variables receive values◦ Statements where these values are used or referenced

• To illustrate the approach of data flow testing, assume that each statement in
the program assigned a unique statement number. For a statement number S:
◦ DEF(S) = {X | statement S contains a definition of X}◦ USE(S)= {X | statement S contains a use of X}◦ Example: 1: a = b; DEF(1) = {a}, USE(1) = {b}◦ Example: 2: a = a + b; DEF(2) = {a}, USE(2) = {a,b}

• If a statement is a loop or if condition then its DEF set is empty and USE set
is based on the condition of statement s.

• Data Flow Testing uses the control flow graph to find the situations that can
interrupt the flow of the program.

• Reference or define anomalies in the flow of the data are detected at the time
of associations between values and variables. These anomalies are:
◦ A variable is defined but not used or referenced◦ A variable is used but never defined◦ A variable is defined twice before it is used

CS20202: Software Engineering 64

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Data Flow Testing

• Advantages of Data Flow Testing

◦ To find a variable that is used but never defined
◦ To find a variable that is defined but never used
◦ To find a variable that is defined multiple times before it is use
◦ Deallocating a variable before it is used

• Disadvantages of Data Flow Testing

◦ Time consuming and costly process
◦ Requires knowledge of programming languages

CS20202: Software Engineering 65

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Data Flow Testing
• Example:

1. read x, y;

2. if (x > y)

3. a = x + 1

else

4. a = y - 1

5. print a;

• CFG

• Define/use of variables

Variable Defined at node Used at node

x 1 2, 3
y 1 2, 4
a 3, 4 5

Source: Data Flow Testing
CS20202: Software Engineering 66

https://www.geeksforgeeks.org/data-flow-testing/

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Data Object Categories

• (d) Defined, Created, Initialized. An object (like variable) is defined when it:

◦ appears in a data declaration
◦ is assigned a new value
◦ is a file that has been opened
◦ is dynamically allocated
◦ ...

• (k) Killed, Undefined, Released

• (u) Used:

◦ (c) Used in a calculation
◦ (p) Used in a predicate

◦ An object is used when it is part of a computation or a predicate
▷ A variable is used for a computation (c) when it appears on the RHS (sometimes even the

LHS in case of array indices) of an assignment statement
▷ A variable is used in a predicate (p) when it appears directly in that predicate

Source: Topics in Software Dynamic White-box Testing: Part 2: Data-flow Testing

CS20202: Software Engineering 67

https://www.cs.drexel.edu/~spiros/teaching/SE320/slides/dataflow-testing.pdf

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

White Box Testing:
Data Flow-Based Testing: Definition and Use

• To find a variable that is used but never defined

• To find a variable that is defined but never used

• To find a variable that is defined multiple times before it is use

• Deallocating a variable before it is used

CS20202: Software Engineering 68

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Processes for Development

Development involves a number of processes:

• Design & Coding (discussed in Modules 2 & 4)

• Debugging

• Issue / Bug Tracking

• Testing

• Documentation

• Release (discussed as a part of Maintenance)

• Version Control (discussed as a part of Maintenance)

CS20202: Software Engineering 69

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Testing Processes

• The aim of testing is to identify all defects in a software product

• However, in practice even after thorough testing, one cannot guarantee that
the software is error-free

• The input data domain of most software products is very large

◦ It is not practical to test the software exhaustively with each input

• Testing however exposes many errors

◦ Testing provides a practical way of reducing defects in a system
◦ Increases the users’ confidence in the system

• Testing

◦ Is a continual process
◦ Needs significant automation (especially to repeats tests already done

when new stuff is added). Usually achieved through

▷ Regression Testing

◦ Has to happen at all phases and all levels of abstraction – both for
development and for maintenance

• Software products are tested at three levels

◦ Unit testing
◦ Integration testing
◦ System testing

CS20202: Software Engineering 70

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Regression Testing

• Regression1 testing is re-running functional and non-functional tests to ensure
that previously developed and tested software still performs after a change

◦ If not, that would be called a regression
◦ The software Regresses

• Regression testing

◦ Is usually done through auotmated processes after each change to the
system after each bug fix

◦ Ensures that no new bug has been introduced due to the change or the bug
fix – the new system’s performance is at least as good as the old system

◦ Is always used during incremental system development

• Regression test is:

◦ Required before every code check-in (no regression, that is)
◦ Used at every level for every kind of test
◦ Most powerful tool for quality control for software development and

maintenance

1
a return to a former or less developed state

CS20202: Software Engineering 71

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Regression Testing:
Positive & Negative Test Cases

Execution Outcome
Type of Test Successful Unsuccessful

Positive Case PASS FAIL
(Success)

Negative Case FAIL PASS
(Failure)

Regression outcome is typically shown by:

of PASS cases

of PASS + FAIL (total) cases
∗ 100%

CS20202: Software Engineering 72

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

How to do Regression Testing?
Approach

• We need to first debug the code to identify the bugs

• Once the bugs are identified and fixed, then the regression testing is done by
selecting relevant test cases from the test suite that covers both modified and
affected parts of the code

• Regression Testing can be carried out using the following strategies:

◦ Retest All
▷ Needed for all version major / minor releases

◦ Regression Test Selection
▷ Test cases which have frequent defects
▷ Functionalities which are more visible to the users
▷ Test cases which verify core features of the product
▷ Test cases of Functionalities which has undergone more and recent changes
▷ All Integration Test Cases & all Complex Test Cases
▷ Boundary value test cases
▷ Samples of Successful test cases & Failure test cases

◦ Prioritization of Test Cases
▷ Depending on business impact, critical & frequently used functionalities
▷ General prioritization: Beneficial on subsequent versions
▷ Version-specific prioritization: Beneficial for a particular version of the software

◦ Hybrid
▷ This technique is a hybrid of regression test selection and test case prioritization

Source: What is Regression Testing? Definition, Test Cases (Example)

CS20202: Software Engineering 73

https://www.guru99.com/regression-testing.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

How to do Regression Testing?
Automation
Regression Testing relies on intense automation to reduce menial manual testing
efforts and costs

• Scripting for Regression Testing
◦ Scripting is the biggest handle for Regression Automation◦ Unix: Shell, Bash, sed, awk etc.◦ Windows: VBScript◦ Perl◦ Python

• Regression Testing Tools
◦ Selenium: Open Source portable framework for automating web applications (browser-based

regression). It provides a playback tool for authoring functional tests without the need to learn a
test scripting language (Selenium IDE)◦ Micro Focus Unified Functional Testing (UFT One) (formerly known as QuickTest Professional
(QTP)): An tool to automate functional and regression test cases. UFT One Intelligent test
automation with embedded AI-based capabilities that accelerates testing across desktop, web,
mobile, mainframe, composite and packaged enterprise-grade apps.◦ IBM Rational Functional Tester (RFT): An automated functional testing and regression testing
tool. This software provides automated testing capabilities for functional, regression, GUI and
data-driven testing. It supports a range of applications, such as web-based, .Net, Java, Siebel, SAP,
terminal emulator-based applications, PowerBuilder, Ajax, Adobe Flex, Dojo Toolkit, GEF, Adobe
PDF documents, zSeries, iSeries and pSeries.

Source: What is Regression Testing? Definition, Test Cases (Example)

CS20202: Software Engineering 74

https://www.selenium.dev/
https://www.microfocus.com/en-us/products/uft-one/overview
https://www.ibm.com/in-en/marketplace/rational-functional-tester
https://www.guru99.com/regression-testing.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Retesting and Regression Testing

• Retesting means testing the functionality or bug again to ensure the code is
fixed

◦ If it is not fixed, defect needs to be re-opened
◦ If fixed, defect is closed

• Regression testing means testing your software application when it undergoes
a code change to ensure that the new code has not affected other parts of the
software.

Regression Testing Retesting

Confirms that a recent program or code change has
not adversely affected existing features

Confirms that the test cases that failed in the final
execution are passing after the defects are fixed

Ensures that new code changes do not have any side
effects to existing functionalities

Is done on the basis of the Defect fixes

Defect verification is not in scope Defect verification is in scope
May be carried out parallel with Re-testing Must be carried out before regression testing
May be automated
Manual Testing is expensive

Cannot automate the test cases for Retesting

Generic testing Planned testing
Done for passed test cases Done only for failed test cases
Checks for unexpected side-effects Makes sure that the original fault has been corrected
Done for any mandatory modification or changes in an
existing project

Executes a defect with the same data and the same
environment with different inputs with a new build

Test cases for can be obtained from the functional
specification, user tutorials and manuals, and defect
reports in regards to corrected problems

Test cases for retesting cannot be obtained before
start testing

Source: Difference Between Retesting and Regression TestingCS20202: Software Engineering 75

https://www.guru99.com/re-testing-vs-regression-testing.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Regression Test Suite

• To repeat old tests and runs

• Test Case with Golden

◦ Unit Tests
◦ API / Application Tests
◦ Directed Tests, Corner Cases, Customer Tests
◦ Random & Huge Tests
◦ Performance Tests

▷ Time
▷ Resources: Low Memory Tests

◦ Coverage Tests
◦ ...

• Folder Structure

◦ Uniformity names of test case files: Critical for
automation scripts

• Run script
CS20202: Software Engineering 76

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Unit Testing

• During unit testing, modules are tested in isolation

◦ If all modules were to be tested together, it may not be easy to determine
which module has the error

• Unit testing reduces debugging effort several folds

◦ Programmers carry out unit testing immediately after they complete the
coding of a module

• Unit testing drives development in Test-Driven Development (TDD)

CS20202: Software Engineering 77

http://www.agiledata.org/essays/tdd.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

TDD

CS20202: Software Engineering 78

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

TDD

CS20202: Software Engineering 79

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Unit Testing

• For a class attach a (test) unit (typically JUnit in Java or CPPUnit in C++))
that tests the class

• D Language provides specific support for unit testing

• Unit testing is a main feature of D

• Unit testing in D

◦ Unit tests can be added to a class - they are run upon program start-up
◦ Aids in verifying that class implementations weren’t inadvertently broken
◦ Unit tests is a part of the code for a class
◦ Creating tests is a part of the development process

CS20202: Software Engineering 80

http://dlang.org/overview.html

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Integration Testing

• After different modules of a system have been coded and unit tested:

◦ Modules are integrated in steps according to an integration plan
◦ Partially integrated system is tested at each integration step

• System Testing

◦ Validate a fully developed system against its requirements

• Develop the integration plan by examining the structure chart:

◦ Big bang approach
◦ Top-down approach
◦ Bottom-up approach
◦ Mixed approach

CS20202: Software Engineering 81

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Integration Testing

• Big Bang is the simplest integration testing approach

◦ All the modules are simply put together and tested
◦ This technique is used only for very small systems
◦ If an error is found:

▷ It is very difficult to localize the error
▷ The error may potentially belong to any of the modules being

integrated

◦ Debugging errors found during big bang integration testing are very
expensive to fix

• Bottom-up Integration Testing Integrate and test the bottom level modules
first. A disadvantage of bottom-up testing:

◦ when the system is made up of a large number of small subsystems
◦ This extreme case corresponds to the big bang approach.

• Top-down Integration Testing Top-down integration testing starts with the
main routine

◦ and one or two subordinate routines in the system
◦ After the top-level ’skeleton’ has been tested

▷ immediate subordinate modules of the ’skeleton’ are combined with it
and tested

• Mixed Integration Testing Mixed (or sandwiched) integration testing

◦ Uses both top-down and bottom-up testing approaches
◦ Most common approach

CS20202: Software Engineering 82

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Integration Testing

• In top-down approach

◦ testing waits till all top-level modules are coded and unit tested

• In bottom-up approach

◦ testing can start only after bottom level modules are ready

CS20202: Software Engineering 83

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

System Testing

System tests are designed to validate a fully developed system

• To assure that it meets its requirements

• Functional requirements are validated through functional tests

• Non-functional requirements validated through performance tests

Testing Release Features

Alpha Alpha

• All functionality has been implemented

• Reasonable testing has been done – Regression passes with known exceptions

• Testing is carried out by the test team within the company

• No preview expected from real users yet

Beta Beta

• All functionality has been thoroughly tested

• Extensive testing has been done – Regression passes with some (documented) ex-
ceptions

• Releases made to friendly customers (or non-developer internal groups). Or beta
programs launched

• Testing performed by a select group of friendly customers

• Must include real users of a system

Acceptance FCS

• FCS: First Customer Shipment

• Company has gained fair confidence on the quality – Regression is clean with rare
(documented) exceptions

• Customer will use this release now till (Minor) bug fix releases are done or new
(Major) version is produced

• Testing performed by the customer to determine whether the system should be ac-
cepted or rejected

CS20202: Software Engineering 84

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Plans: LMS

CS20202: Software Engineering 85

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Plans: QES: Code

00: unsigned int Solve(double a, double b, double c, double& r1, double& r2)

01: {

02: unsigned int retVal = 0;

03: if (0 == a) {

04: if (0 == b) {

05: if (0 == c) { // Infinite solutions

06: retVal = 5;

07: } else { // Inconsistent equation

08: retVal = 0;

09: }

10: } else { // Linear equation

11: retVal = 1;

12: r1 = -c/b;

13: }

14: } else {

15: double disc = b*b - 4*a*c;

16: if (0 == disc) { // Repeated roots

17: retVal = 2;

18: r1 = r2 = -b/(2*a);

19: } else {

20: if (disc > 0) { // Real distinct roots

21: retVal = 3;

22: r1 = (-b + sqrt(disc))/(2*a);

23: r2 = (-b - sqrt(disc))/(2*a);

24: } else { // Complex conjugate roots

25: retVal = 4;

26: r1 = (-b)/(2*a); r2 = (sqrt(-disc))/(2*a);

27: }

28: }

29: }

30:

31: return retVal;

32: }
CS20202: Software Engineering 86

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Plans: QES: CFG

CFG of QES Reduced CFG of QES

CS20202: Software Engineering 87

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Plans: QES

CS20202: Software Engineering 88

Module 44

Fundamentals

Verification &
Validation

Black Box Testing

White Box Testing

Development

Testing

Regression

System

Test Plans

LMS

QES

Test Plans: QES

CS20202: Software Engineering 89

	Fundamentals
	Verification & Validation
	Black Box Testing
	White Box Testing

	Development
	Testing

	Test Plans
	LMS
	QES

