Module 43: Software Engineering
UML - Class Diagrams

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Object-Oriented Analysis & Design
by Prof. Partha Pratim Das

CS20202: Software Engineering 1

r} Module Objectives

e Understanding Class Diagrams

Objectives &
Outline

CS20202: Software Engineering 2

E@;} Module Outline

e What are Class Diagrams?

Objectives & o Class

Outline o Property (Attributes)
o Operation (Methods)
o Examples

CS20202: Software Engineering 3

Class Diagrams in SDLC phases:

RECAP (Module 41)

«UML»
Use Case Diagram

Description of Use Cases |

Class
Diagrams

Requirements
Model

«UML»
Class Diagram

Ul Specification |

Spec. of System Interfaces |

® [n the Requirements Phase, the class diagram is used to identify the major
abstractions

® At this stage the attributes and operation of each abstraction may not be
known

® C(lasses are identified as domain models

CS20202: Software Engineering 4

Class Diagrams in SDLC phases:
RECAP (Module 41)

«UML»
Class Diagram

* «UML»
Class Sequence Diagram
Diagrams
. «UML»

Collaboration Diagram
<> >
Model >
odel 3 . «UML»

Statechart Diagram

N «UML»
Activity Diagram

® After analysis of each abstraction, attributes and operation of each
abstraction is known

® Hence the class diagram in the Analysis Phase is more detailed

® Classes are refined as domain models

CS20202: Software Engineering 5

Class Diagram

e Class diagram is UML structure diagram which shows
structure of the designed system at the level of classes and
interfaces, shows their features, constraints and
relationships — associations, generalizations, dependencies,
etc.

Class
Diagrams

e Some common types of class diagrams are:

o Domain model diagram
o Diagram of implementation classes

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 6

Non Static Features: characterizes individual instances of class
e Static Features: represents some characteristic of the class itself

e Structural Features (attributes): is a typed feature of a class
that specifies the structure of instances of the class

e Behavioral Features (Methods): is a feature of a class that
specifies an aspect of the behavior of its instances

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 7

Notation for Class

e Class name should be centered and in bold face inside a
solid-outline rectangle, with the first letter of class name
capitalized

‘ Student ‘

Class Student - details suppressed

o Abstract Classes (which cannot be instantiated) have the keyword
abstract mentioned within { }

‘ Teacher {Abstract}

Abstract Class Teacher - details suppressed

e A class has optional compartments separated by horizontal lines
containing attributes and methods in order

CS20202: Software Engineering 8

o Property (Attributes) specification format:

Visibility PropertyName : Type [Multiplicity] = DefaultValue
{ Property string}

O The visibility of the properties are denoted by +(public), #(protected)
and —(private)

O PropertyName is underlined if the Property is static

O A property may be Read Only, Static, Ordered, Unique or Optional (to
indicate allowable null value)

O Property could have multiplicity. The multiplicity bounds constrain the
size of the collection of property values. By default the maximum bound
is 1

O The default-value option is an expression for the default value or values
of the property

O A derived Property, designated by a preceding ‘/’, is one that can be
computed from other properties, but doesn’t actually exist

Property

Student

+ name: String
+date_of_birth: Date
+roll_no: String {unique}
+/age: Integer

+subject: Subject[1..*]

CS20202: Software Engineering 9

Notation for Operations (Methods)

e Operation (Methods) specification format:

Visibility OperationName (ParameterName : Type) : ReturnType
{ Property string}

O The visibility of the operations are denoted by +(public), #(protected)
and —(private)

O OperationName is underlined if it is Static, and is italic if it is Abstract

O Return type is optional

Operations O An operation may be Read Only, Static, Ordered, Unique, Abstract,

Sequential, Guarded or Concurrent

Student

+name: String

+date_of_birth: Date

+roll_no: String unique

+/age: Integer

+subject: Subject[1..*]
##recordAttendance(): bool
+getCertificates(): Certificates[*] {unique, ordered}
—changeSubject(Subject s): bool
+calculateAge(): Integer
+bookMusicClassSlots (): bool {concurrent}

CS20202: Software Engineering 10

ﬁ Abstract Classes of LMS

Operations

o We represent below the two abstract classes of LMS

Employee {Abstract}

Leave {Abstract}

+name: String

+eid: String

+gender: {Male, Female}
+onDuty: Bool

+salary: Double

+doj: Date

+reportsTo: String

+recordAttendance():Bool
+requestLeave(): Void
+cancelLeave(): Void
+availLeave(): Void
+exportLeave(): Leave

+startDate: Date
+endDate: Date

+status: {New, Approved}
+/isvalid: Bool

+type: {}

+approveCond: Bool
+eid: String

+type(): String
+approvelLeave(Employee e): Bool
+isValid(): Bool

CS20202: Software Engineering

11

Examples

class Library Domain Model

Book
ISBN: String[0. 1] {ig}
name. stiing
subject: Stiing
overview: Stiing

blishe Stiing
publicationDate; ~ Date
lang Stiing

«dataType» «dataTypes
Address. FullName

1. Awote 1.0

«entity» Book item

barcode:
tag:
AISBN:
Asubject:

tie:

isReferenceOnly.

lang

numberOfPages:
mat

borrowed
lloanPeriod
JdueDate:

JisOverdue

stiing (0..1] {id)
RFID [0, 1] (id)}
stringl0. 1]
Stiing

String {redefines name)

Boolean = false

Language {redefines lang} | 0-3 <« reserved

Integer
Format

Date
Integer (readOnly)
Date {readOnly)
Boolean = false

0.12 4 borrowed

[

Author
name: String (i} Language
biography: String
English Active
brihDate: Date French Frozen
German Closed
Spanish
talian
Format
Paperback
Hardcover
Audiobook
<entity» Account Q“:;“C%D
number. () POF
history: Histony0.]
opened: Date account
state; Accountstate
accounts
1
Library | Patron

records b

1
Catalog }-

£
]

«interfacen
Bt Search

name: Stiing
address: Address
«use

ainterfaces |
Manage

iname: FullName
address: Address

Librarian

name: FulName
address: Address
position: String

© uml-diagrams.org

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering

12

reading order
Book /

setiactclase ISBN: String{0. ‘““’) v Author attributes
title: String 10 awote q- nerail
summary e P T enumeration
publisher A biography: String'| dein type
publication date \ /
number of pages AN \ s
language «enumeration»
A multiplicity AccountState
generalization === Active
/ Frozen
<onity» Account

«entity» Book item

barcode: String [0..1] id} [0.12 « bomowed number (id)
tag: RFID [0..1] {id) [history: History(0.*] |----
Date

opened;

stereotyped_
ss ate.
state: AccountState

isReferenceOnly 0.3 < reserved

© uml-diagrams.org

Examples
aggregation

L v Library Patron

records
name name

=z @ address «usen .- address

Librarian
name
- address
- osition
T dintertaces | - i
. \
interface realization §
usage dependency

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 13

Association: RECAP

e Semantic Dependencies
o Most general and most semantically weak
o Bidirectional by default
o Often refined over the analysis process

Daisy Flocoer Daisy - ocser
| i
Early relationship Refined to IS_A

Flocoex petd Flocser | petal
_— [| _—
Early relationship Refined to HAS_A
[Tadgeaq | Flocser
Early relationship Refined to ?

CS20202: Software Engineering 14

E@;‘ Association: Notation

® An association icon (a line connector with label — association name) connects
multiple classes and denotes a logical connection

® Associations can be binary of N-ary

® A class may have association to itself (Reflexive)

Association

R

AN

Binary N-ary
Association Association

>

N

Aggregation Composition
<>———=> > >—

Association

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)
CS20202: Software Engineering 15

E@;} Association: Notation

We show an association below between a Professor and a Book

1= Wrotep 0.

Professor Book
author textbook

An association has three main concepts
e Association End

o Navigability

e Association Arity

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 16

itself

Query
Builder

e Association end could be owned either by end class or association

e Ownership of association ends by an associated classifier may be
indicated graphically by a small filled circle (aka dot)

Builds

CS20202: Software Engineering

Query

qbuilder query

Association end query is owned by classifier QueryBuilder and association end gbuilder is owned by

association Builds itself

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

17

Navigability

e End property of association is navigable from the opposite end(s)
of association if instances of the classes at this end of the link can
be accessed efficiently at run-time from instances at the other
ends of the link

e Navigable end is indicated by an open arrowhead on the end of an
association

e Not navigable end is indicated with a small x on the end of an
association

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 18

Association

Navigability

4{3,

Both ends of association have unspecified navigability.

Ag s not navigable from By while B4 is navigable from A4.

‘ * H * |

A2 B2
Az has unspecified igability while Bz
A3 B3

is igable from Az. As is navigable from Bs and Bs is navigable from As.

‘ AB H B6 ‘

Azis not navigable from B3 while B3 has unspecified navigability. A6 is not navigable from B6 and B6 is not navigable from A6.

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering

19

Arity — Binary Association

Each association has specific arity as it could relate two or more
classes

e Binary association relates two typed instances

e |t is normally rendered as a solid line connecting two classifiers, or
a solid line connecting a single classifier to itself (the two ends are

distinct)

e The line may consist of one or more connected segments

Job Year

Job and Year classes are associated
Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 20

e N-ary association may be drawn as a diamond (larger than a
terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end'’s type

e N-ary association with more than two ends can only be drawn the
following way

Design

)

Year

Car

Design Bureau

Ternary association Design relates three classes

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 21

E@;} Associations in LMS

| Employee {Abstract} <> Employees
Leave approvelLA] ‘r

*
Executive Requests Leave, Reportsto
1
Lead
‘equests Leave, Reportsto
Lﬁ *
Manager
1
®

‘ Leave {Abstract} }—O| Leave Records

Associations in LMS

CS20202: Software Engineering 22

Aggregation (HAS_A): RECAP

e Whole / Part relationships
o Say, we model Flower HAS_A Petal

o Flower contains many Petals
o Flower is the Whole, Petal is the Part
o Depicted as:
[Flozer | [Petd)
™ |

o Physical Containment — Composition / Strong Aggregation
o Member relationship

o Say, we model Library HAS Users

o Library enrolls many Users

o Library does not contain the Users

@]

Depicted as:
LErart-t Users ‘
| |

o Conceptual Containment — Weak Aggregation

CS20202: Software Engineering 23

E@;} Weak Aggregation

o Weak aggregation is depicted as an association decorated with a
hollow diamond at the aggregate end of the association line

Triangle <>+—5i“;' Segment

*

Triangle has 'sides’ collection of three line Segments
Each line Segment could be part of none, one, or several triangles

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 24

Weak Aggregation

o Weak aggregation could be depicted together with navigability
and association end ownership

+sides
Triangle - : : Segment
3 {unique

Triangle has 'sides’ collection of three unique line Segments.
Line segments are navigable from Triangle.

Association end 'sides’ is owned by Triangle, not by association itself

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 25

e Strong Aggregation (Composition)

e Strong aggregation (Composition) is depicted as a binary
association decorated with a filled black diamond at the
aggregate (whole) end.

parent file
Folder 101— File

Folder could contain many files, while each File has exactly one
Folder parent
If Folder is deleted, all contained Files are deleted as well

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 26

Examples

class Library Domain Model

«adataTypes «dataTypes
Address FullName

Book
1SBN: String[0..1] {id} “Author
name: String . .
subject: String 10 dwote 1 ame: String (id) Language
overview: String biography: String
tiing bithDate: Date Engien pote
publicationDate: Date " Fozen
fong oo erman ose
Spanish
Italian
Format
<oty Book ltem Paperback
barcode: String (0..1] {id) :3;::;:;
ag: RFID [0..1] {id) Auio 6O
AISBN String[0..1] «entitys Account o
Asubject Strin -
tie: String {redefines name) | 9124 borrowed number: {d} POF
isReferenceOnly: Boolean = false history: History{0..]
Jang: Language {redefines lang) | 0.3 < reserved opened: Dat account
numberOfPages: Integer sate: Accountstate
format Format
borrowed Date aceounts] *
floanPeriod Integer {readOnly)
IdueDate Date (readOnly)
fisOverdue: Boolean = false 1
| Library Patron

name: String

Catalog

o recordse

address: Address

winterfacer [~
= -

winterfaces |- -
Manage

Iname: FullName
address: Address

Librarian

iname: FullName
address: Address
position: String

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering

27

Book

abstract class 1SBN: String[0. 1] i) ¥ Author
title: String A 1.+ Awote g«

3 summary name: String . enumeration
publisher 4 biography: String| data type:
publication date \ J
number of pages. ¥
language / «enumeration»

multiplicity / AccountState
wse»
generalization - =] active
/ /! Frozen
«wentity» Book Item i «entity» Account ! Closed
barcode: String [0..1] () |0.12 < borrowed number (id) |
tag: RFID [0..1] {id} history: History(0..*] |----'
isReferenceOnly 0.3 < reserved opened: Date
state: AccountState
. . accounts | *
aggregation © uml-diagrams.org
Library Patron
name name
address _ address
Examples
Librarian
name
address
position

usage dependency

Domain diagram overview - classes, interfaces, associations, usage, realization, multiplicity.
Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 28

Inheritance (IS_A): RECAP

e Generalization / Specialization relationships

o Say, we model Daisy IS_A Flower

o Daisy will inherit the properties of Flower, and have
some more of its own

Flower is the Generalization

Daisy is the Specialization

Depicted as:

5]
[

(e]

o

(¢]

ogoRY
T

e Semantically most interesting
e Can delegate behavior to related objects
e Comes in a number of flavors

o Single / Multilevel / Hierarchical Inheritance
o Multiple Inheritance
o Hybrid Inheritance

CS20202: Software Engineering 29

E@?’! Generalization

e A generalization is shown as a line with a hollow triangle as an
arrowhead

Account Account
Checking Savings Credit Checking Savings Credit
A A t A t Account Account Account
Separate target style Shared target style

Generalization

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (10-Aug-16)

(CS20202: Software Engineering 30

Multiple Inheritance

e Multiple inheritance is implicitly allowed by UML standard, while
the standard provides no definition of what it is.

N

Temporary
Employee

Permanent
Employee

>l

Generalization

Permanent
Manager

Consultant
Manager

| Director |

Multiple inheritance for Consultant Manager and Permanent Manager — both inherit from two classes

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (10-Aug-16)

(CS20202: Software Engineering 31

Y ;j Dependency

e Dependency is a directed relationship which is used to show that
some UML element or a set of elements requires, needs or
depends on other model elements for specification or
implementation

Search) «interface»
Controller SiteSearch

Class SearchController depends on (requires) SiteSearch interface

Source: UML 2.5 Diagrams Overview: http://www.uml-diagrams.org/uml-25-diagrams.html (17-Aug-16)

CS20202: Software Engineering 32

E@;} Constraints

Vendor should be
listed in NSE
Purchased from
Vendor
. =

Constraint on Vendor List

‘ Regulated Water Cooler ‘

Activates Activates

Constraints.

Heater Cooler

Constraint on Activation of Heater and Cooler

CS20202: Software Engineering 33

LMS Class
Diagram

Use-Case Diagram for LMS
RECAP (Module 25)

Daily Attendance
<<lncluder> |

Validate Leave

Fouestome

[— Manager
Maternity, Sick Leave
Ll extension points "
Maternily, Sick Leave - »
Parental Leave =
Th. e<Extend>>
Parental leave
Lead
1 v/ Check Parental o
1 Certificate
: Batch Job tficatos
L
NSRQ203seSeftan o Esiginaeringletails 3

E@ﬁ Class Diagram for LMS

We now derive the Class Diagram for LMS. The steps involved
are:
e Identify Classes {Abstract Classes}

e Identify Properties and Operations
e |dentify the Relationships among Classes

e Class Diagram

LMS Class
Diagram

CS20202: Software Engineering 35

E@;} |dentification of Classes {Abstract Classes}

® Reading through the specification of the Leave Management System, we
identify the various instances, that is, objects

® \We categorize them into two abstract classes: Employee and Leave

Employee {Abstract} ‘ ‘ Leave {Abstract}

LMS Class
Diagram

CS20202: Software Engineering 36

E@;‘ |dentification of Properties

LMS Class
Diagram

Properties of the two abstract class of LMS

Employee {Abstract}

Leave {Abstract}

+name: String

+eid: String

+gender: {Male, Female}
+onDuty: Bool

+salary: Double

+doj: Date

+reportsTo: String

CS20202: Software Engineering

+startDate: Date
+endDate: Date

+status: {New, Approved}
+fisValid: Bool

+type: {}

+approveCond: Bool
+eid: String

ﬁ |dentification of Operations

Employee {Abstract} Leave {Abstract}

in.adr?:t: .Strmg +startDate: Date
+E' .d ”_n‘?m e F | +endDate: Date
+ger|; er..{B ale, emale} +status: {New, Approved}

onDuty: Boo +/isValid: Bool
+salary: Double

N +type: {}
+doj: Date
. +approveCond: Bool
+reportsTo: 5tring N
+eid: String

+recordAttendance():Bool -
+requestLeave(): Void +type(): String
+cancelLeave(): Void +approveleave(Employee e): Bool
+availLeave(): Void +isValid(): Bool
+exportLeave(): Leave

LMS Class
Diagram

CS20202: Software Engineering 38

E@;j Identification of Associations

*

LMS Class
Diagram

CS20202: Software Engineering 39

E@;j Identification of Generalizations

Personal
Paid{Abstract}

A)

No
Clubbing{Abstract}

Post
facto{Abstract}
A

| Certified

| Uncertified
{Abstract}

{Abstract}

LMS Class
Diagram

CS20202: Software Engineering 40

> issues

> Consuts . [Doctor

1 Leave Records Documentation

Certificate

[rname : Sting ' ——
[+gender : (Male, Female) Ao
veid - Sting)
+salary : Double
> Requests o
starDate : Date
endDate : Date
eave Approve [+id : String
B [#status : (New, Approved)
A Leave Approve. Paid{Abstract}
T A
ifi Post No
Rnarae facto{Abstract} Clubbing{Abstract}

{Abstract}

A Leave Approve

[Cst] [m] [P] [Cee | [e [e | [wep |[WL]
[[] [] [I I] [|

LMS Class
Diagram

CS20202: Software Engineering 41

Module Summary

Class diagrams are introduced

Representations for properties and operations are discussed

An example is used for detailed illustration

Association Relationships among classes are discussed

Weak Aggregation and Strong Aggregation are important
binary associations

Summary

CS20202: Software Engineering 42

	Objectives & Outline
	What are Class Diagrams?
	Class
	Property (Attributes) of a class
	Operations (Methods) of a class
	Examples

	Relationships
	Association
	Weak Aggregation
	Strong Aggregation
	Examples
	Generalization
	Dependency
	Constraints

	LMS Class Diagram
	Module Summary

