
Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Module 06: Programming in Modern C++
Constants and Inline Functions

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Module Objectives

• Understand const in C++ and contrast with Manifest Constants

• Understand inline in C++ and contrast with Macros

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Module Outline

• const-ness and cv-qualifier

◦ Notion of const
◦ Advantages of const

▷ Natural Constants – π, e
▷ Program Constants – array size
▷ Prefer const to #define

◦ const and pointer

▷ const-ness of pointer / pointee. How to decide?

◦ Notion of volatile

• inline functions

◦ Macros with params

▷ Advantages
▷ Disadvantages

◦ Notion of inline functions

▷ Advantages
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Program 06.01: Manifest constants in C

• Manifest constants are defined by #define

• Manifest constants are replaced by CPP (C Pre-Processor)
Source Program Program after CPP

#include <iostream>
#include <cmath>
using namespace std;

#define TWO 2 // Manifest const
#define PI 4.0*atan(1.0) // Const expr.

int main() { int r = 10;
double peri = TWO * PI * r;
cout << "Perimeter = " << peri << endl;

}

// Contents of <iostream> header replaced by CPP
// Contents of <cmath> header replaced by CPP
using namespace std;

// #define of TWO consumed by CPP
// #define of PI consumed by CPP

int main() { int r = 10;
double peri = 2 * 4.0*atan(1.0) * r; // By CPP
cout << "Perimeter = " << peri << endl;

}

Perimeter = 62.8319 Perimeter = 62.8319

• TWO is a manifest constant • CPP replaces the token TWO by 2
• PI is a manifest constant as macro • CPP replaces the token PI by 4.0*atan(1.0) and evaluates
• TWO & PI look like variables • Compiler sees them as constants

• TWO * PI = 6.28319 by constant folding of compiler
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Notion of const-ness

• The value of a const variable cannot be changed after definition

const int n = 10; // n is an int type variable with value 10. n is a constant
...
n = 5; // Is a compilation error as n cannot be changed
...
int m;
int *p = 0;
p = &m; // Hold m by pointer p
*p = 7; // Change m by p; m is now 7
...
p = &n; // Is a compilation error as n may be changed by *p = 5;

• Naturally, a const variable must be initialized when defined

const int n; // Is a compilation error as n must be initialized

• A variable of any data type can be declared as const

typedef struct _Complex {
double re;
double im;

} Complex;
const Complex c = {2.3, 7.5}; // c is a Complex type variable

// It is initialized with c.re = 2.3 and c.im = 7.5. c is a constant
...
c.re = 3.5; // Is a compilation error as no part of c can be changed

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Program 06.02: Compare #define and const

Using #define Using const

#include <iostream>
#include <cmath>
using namespace std;

#define TWO 2
#define PI 4.0*atan(1.0)

int main() { int r = 10;
// Replace by CPP
double peri = 2 * 4.0*atan(1.0) * r;
cout << "Perimeter = " << peri << endl;

}

#include <iostream>
#include <cmath>
using namespace std;

const int TWO = 2;
const double PI = 4.0*atan(1.0);

int main() { int r = 10;
// No replacement by CPP
double peri = TWO * PI * r;
cout << "Perimeter = " << peri << endl;

}

Perimeter = 62.8319 Perimeter = 62.8319

• TWO is a manifest constant • TWO is a const variable initialized to 2
• PI is a manifest constant • PI is a const variable initialized to 4.0*atan(1.0)
• TWO & PI look like variables • TWO & PI are variables
• Types of TWO & PI may be indeterminate • Type of TWO is const int
• TWO * PI = 6.28319 by constant folding of compiler • Type of PI is const double

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Advantages of const

• Natural Constants like π, e, Φ (Golden Ratio) etc. can be compactly defined and used

const double pi = 4.0*atan(1.0); // pi = 3.14159
const double e = exp(1.0); // e = 2.71828
const double phi = (sqrt(5.0) + 1) / 2.0; // phi = 1.61803

const int TRUE = 1; // Truth values
const int FALSE = 0;

const int null = 0; // null value

Note: NULL is a manifest constant in C/C++ set to 0

• Program Constants like number of elements, array size etc. can be defined at one place (at
times in a header) and used all over the program

const int nArraySize = 100;
const int nElements = 10;

int main() {
int A[nArraySize]; // Array size
for (int i = 0; i < nElements; ++i) // Number of elements

A[i] = i * i;
}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Advantages of const

• Prefer const over #define

Using #define Using const

Manifest Constant Constant Variable

• Is not type safe • Has its type
• Replaced textually by CPP • Visible to the compiler
• Cannot be watched in debugger • Can be watched in debugger
• Evaluated as many times as replaced • Evaluated only on initialization

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers

• const-ness can be used with Pointers in one of the two ways:

◦ Pointer to Constant data where the pointee (pointed data) cannot be changed
◦ Constant Pointer where the pointer (address) cannot be changed

• Consider usual pointer-pointee computation (without const):

int m = 4;
int n = 5;
int * p = &n; // p points to n. *p is 5
...
n = 6; // n and *p are 6 now
*p = 7; // n and *p are 7 now. POINTEE changes
...
p = &m; // p points to m. *p is 4. POINTER changes
*p = 8; // m and *p are 8 now. n is 7. POINTEE changes

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers: Pointer to Constant data

Consider pointed data
int m = 4;
const int n = 5;
const int * p = &n;
...
n = 6; // Error: n is constant and cannot be changed
*p = 7; // Error: p points to a constant data (n) that cannot be changed
p = &m; // Okay
*p = 8; // Error: p points to a constant data. Its pointee cannot be changed

Interestingly,

int n = 5;
const int * p = &n;
...
n = 6; // Okay
*p = 6; // Error: p points to a constant data (n) that cannot be changed

Finally,

const int n = 5;
int *p = &n; // Error: If this were allowed, we would be able to change constant n
...
n = 6; // Error: n is constant and cannot be changed
*p = 6; // Would have been okay, if declaration of p were valid

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers: Example

What will be the output of the following program:

#include <iostream>
using namespace std;

int main() {
const int a = 5;
int *b;
b = (int *) &a;
*b = 10;
cout << a << " " <<b<<" "<< &a <<" "<< *b <<"\n";
}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers: Example

What will be the output of the following program:

#include <iostream>
using namespace std;

int main() {
const int a = 5;
int *b;
b = (int *) &a;
*b = 10;
cout << a << " " <<b<<" "<< &a <<" "<< *b <<"\n";
}

Standard g++ compiler prints: 5 0x16b58f4ec 0x16b58f4ec 10
b actually points to a
But when accessed through a the compiler substitutes the constant expression Technically the behavior is undefined

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers: Constant Pointer

Consider pointer

int m = 4, n = 5;
int * const p = &n;
...
n = 6; // Okay
*p = 7; // Okay. Both n and *p are 7 now
...
p = &m; // Error: p is a constant pointer and cannot be changed

By extension, both can be const

const int m = 4;
const int n = 5;
const int * const p = &n;
...
n = 6; // Error: n is constant and cannot be changed
*p = 7; // Error: p points to a constant data (n) that cannot be changed
...
p = &m; // Error: p is a constant pointer and cannot be changed

Finally, to decide on const-ness, draw a mental line through *

int n = 5;
int * p = &n; // non-const-Pointer to non-const-Pointee
const int * p = &n; // non-const-Pointer to const-Pointee
int * const p = &n; // const-Pointer to non-const-Pointee
const int * const p = &n; // const-Pointer to const-Pointee
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

const and Pointers: The case of C-string

Consider the example:

char * str = strdup("IIT, Kharagpur");
str[0] = ’N’; // Edit the name
cout << str << endl;
str = strdup("JIT, Kharagpur"); // Change the name
cout << str << endl;

Output is:

NIT, Kharagpur
JIT, Kharagpur

To stop editing the name:

const char * str = strdup("IIT, Kharagpur");
str[0] = ’N’; // Error: Cannot Edit the name
str = strdup("JIT, Kharagpur"); // Change the name

To stop changing the name:

char * const str = strdup("IIT, Kharagpur");
str[0] = ’N’; // Edit the name
str = strdup("JIT, Kharagpur"); // Error: Cannot Change the name

To stop both:

const char * const str = strdup("IIT, Kharagpur");
str[0] = ’N’; // Error: Cannot Edit the name
str = strdup("JIT, Kharagpur"); // Error: Cannot Change the name

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Notion of volatile

• Variable Read-Write

◦ The value of a variable can be read and / or assigned at any point of time
◦ The value assigned to a variable does not change till a next assignment is made

• const

◦ A const variable’s value is set only at initialization – can’t be changed afterwards

• volatile

◦ In contrast, the value of a volatile variable can be modified by actions other than
those in the user application.

◦ Therefore, the volatile keyword is useful for declaring variables in shared memory
that can be accessed by multiple processes for communication with interrupt service
routines. It can be changed by hardware, the kernel, another thread etc.

◦ When a name is declared as volatile, the compiler reloads the value from memory
each time it is accessed by the program. This dramatically reduces the possible
optimizations.

• cv-qualifier: A declaration may be prefixed with a qualifier – const or volatile
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Using volatile

Consider:

static int i;
void fun(void) {

i = 0;
while (i != 100);

}

This is an infinite loop! Hence the compiler should optimize as:

static int i;
void fun(void) {

i = 0;
while (1); // Compiler optimizes

}

Now qualify i as volatile:

static volatile int i;
void fun(void) {

i = 0;
while (i != 100); // Compiler does not optimize

}

Being volatile, i can be changed by hardware anytime. It waits till the value becomes 100

(possibly some hardware writes to a port).

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Program 06.03: Macros with Parameters

• Macros with Parameters are defined by #define

• Macros with Parameters are replaced by CPP

Source Program Program after CPP

#include <iostream>
using namespace std;

#define SQUARE(x) x * x

int main() {
int a = 3, b;

b = SQUARE(a);

cout << "Square = " << b << endl;
}

#include <iostream> // Header replaced by CPP
using namespace std;

// #define of SQUARE(x) consumed by CPP

int main() {
int a = 3, b;

b = a * a; // Replaced by CPP

cout << "Square = " << b << endl;
}

Square = 9 Square = 9

• SQUARE(x) is a macro with one param • CPP replaces the SQUARE(x) substituting x with a
• SQUARE(x) looks like a function • Compiler does not see it as function

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Pitfalls of macros

Consider the example:

#include <iostream>
using namespace std;

#define SQUARE(x) x * x

int main() {
int a = 3, b;

b = SQUARE(a + 1); // Error: Wrong macro expansion

cout << "Square = " << b << endl;
}

Output is 7 in stead of 16 as expected. On the expansion line it gets:

b = a + 1 * a + 1;

To fix:

#define SQUARE(x) (x) * (x)

Now:

b = (a + 1) * (a + 1);

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Pitfalls of macros

Continuing ...

#include <iostream>
using namespace std;

#define SQUARE(x) (x) * (x)

int main() {
int a = 3, b;

b = SQUARE(++a);

cout << "Square = " << b << endl;
}

Output is 25 in stead of 16 as expected. On the expansion line it gets:

b = (++a) * (++a);

and a is incremented twice before being used! There is no easy fix.

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

inline Function

• An inline function is just a function like any other

• The function prototype is preceded by the keyword inline

• An inline function is expanded (inlined) at the site of its call and the overhead of
passing parameters between caller and callee (or called) functions is avoided

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Program 06.04: Macros as inline Functions

• Define the function
• Prefix function header with inline

• Compile function body and function call together
Using macro Using inline

#include <iostream>
using namespace std;
#define SQUARE(x) x * x
int main() {

int a = 3, b;
b = SQUARE(a);
cout << "Square = " << b << endl;

}

#include <iostream>
using namespace std;
inline int SQUARE(int x) { return x * x; }
int main() {

int a = 3, b;
b = SQUARE(a);
cout << "Square = " << b << endl;

}

Square = 9 Square = 9

• SQUARE(x) is a macro with one param • SQUARE(x) is a function with one param
• Macro SQUARE(x) is efficient • inline SQUARE(x) is equally efficient
• SQUARE(a + 1) fails • SQUARE(a + 1) works
• SQUARE(++a) fails • SQUARE(++a) works
• SQUARE(++a) does not check type • SQUARE(++a) checks type

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 21

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Macros & inline Functions: Compare and Contrast

Macros inline Functions

• Expanded at the place of calls • Expanded at the place of calls
• Efficient in execution • Efficient in execution
• Code bloats • Code bloats
• Has syntactic and semantic pitfalls • No pitfall
• Type checking for parameters is not done • Type checking for parameters is robust
• Errors are not checked during compilation • Errors are checked during compilation
• Not available to debugger • Available to debugger in DEBUG build

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 22

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Limitations of Function inlineing

• inlineing is a directive – compiler may not inline functions with large body

• inline functions may not be recursive

• Function body is needed for inlineing at the time of function call. Hence,
implementation hiding is not possible. Implement inline functions in header files

• inline functions must not have two different definitions

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 23

Module 06

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline functions

Macros

inline

Summary

Module Summary

• Revisit manifest constants from C

• Understand const-ness, its use and advantages over manifest constants

• Understand the interplay of const and pointer

• Understand the notion and use of volatile data

• Revisit macros with parameters from C

• Understand inline functions and their advantages over macros

• Limitations of inlineing

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 24

	Objectives & Outline
	const-ness and cv-qualifier
	Notion of const-ness
	Advantages of const
	const and pointer
	Notion of volatile

	inline functions
	Macros with Params in C
	Notion of inline

	Summary of module-6

