
C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

C and C++

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides heavily lifted from Programming in Modern C++ NPTEL Course

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Module Objectives

Understand differences between C and C++ programs

Appreciate the ease of programming in C++

Note that here we are trying to understand the difference between the C-style of
programming with the C++-style of programming, and how the C++ features make
programming easier and less error-prone compared to its C equivalent. This is different
from the compatibility issues between the two languages.

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Hello World

C Program C++ Program

// HelloWorld.c

#include <stdio.h>

int main() {
printf("Hello World in C");

printf("\n");

return 0;

}

// HelloWorld.cpp

#include <iostream>

int main() {
std::cout << "Hello World in C++";

std::cout << std::endl;

return 0;

}

Hello World in C Hello World in C++

• IO Header is stdio.h • IO Header is iostream
• printf to print to console • operator<< to stream to console
• Console is stdout file • Console is std::cout ostream (in std namespace)
• printf is a variadic function • operator<< is a binary operator
• \n to go to the new line • std::endl (in std namespace) to go to the new line
• \n is escaped newline character • std::endl is stream manipulator (newline) functor

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Add Two Numbers and Handling IO

C Program C++ Program

// Add_Num.c
#include <stdio.h>
int main() { int a, b; int sum;

printf("Input two numbers:\n");
scanf("%d%d", &a, &b);

sum = a + b;

printf("Sum of %d and %d", a, b);
printf(" is: %d\n", sum);

}

// Add_Num_c++.cpp
#include <iostream>
int main() { int a, b;

std::cout << "Input two numbers:\n";
std::cin >> a >> b;

int sum = a + b; // Declaration of sum

std::cout << "Sum of " << a << " and " << b <<
" is: " << sum << std::endl;

}

Input two numbers: Input two numbers:
3 4 3 4
Sum of 3 and 4 is: 7 Sum of 3 and 4 is: 7

• scanf to scan (read) from console • operator>> to stream from console
• Console is stdin file • Console is std::cin istream (in std namespace)
• scanf is a variadic function • operator>> is a binary operator
• Addresses of a and b needed in scanf • a and b can be directly used in operator>> operator
• All variables a, b & sum declared first (K&R) • sum may be declared when needed. Allowed from C89 too
• Formatting (%d) needed for variables • Formatting is derived from type (int) of variables

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Square Root of a number

C Program C++ Program

// Sqrt.c
#include <stdio.h>
#include <math.h>

int main() { double x, sqrt_x;
printf("Input number:\n");
scanf("%lf", &x);

sqrt_x = sqrt(x);

printf("Sq. Root of %lf is:", x);
printf(" %lf\n", sqrt_x);

}

// Sqrt_c++.cpp
#include <iostream>
#include <cmath>
using namespace std;

int main() { double x;
cout << "Input number:" << endl;
cin >> x;

double sqrt_x = sqrt(x);

cout << "Sq. Root of " << x;
cout << " is: " << sqrt_x << endl;

}

Input number: Input number:
2 2
Square Root of 2.000000 is: 1.414214 Square Root of 2 is: 1.41421

• Math Header is math.h (C Standard Library) • Math Header is cmath (C Standard Library in C++)
• Formatting (%lf) needed for variables • Formatting is derived from type (double) of variables
• sqrt function from C Standard Library • sqrt function from C Standard Library
• Default precision in print is 6 • Default precision in print is 5 (different)

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Using bool

C Program C++ Program

// bool.c
#include <stdio.h>
#define TRUE 1
#define FALSE 0

int main() {
int x = TRUE;

printf
("bool is %d\n", x);

}

// bool.c
#include <stdio.h>
#include <stdbool.h>

int main() {
bool x = true;

printf
("bool is %d\n", x);

}

// bool_c++.cpp
#include <iostream>

using namespace std;

int main() {
bool x = true;

cout <<
"bool is " << x;

}

bool is 1 bool is 1 bool is 1

• Using int and #define for bool • stdbool.h included for bool • No additional headers required
• Only way to have bool in K&R • Bool type & macros in C89 expanding:

bool to Bool bool is a built-in type
true to 1 true is a literal
false to 0 false is a literal
bool true false are defined to 1

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Fixed Size Array

C Program C++ Program

// Array_Fixed_Size.c
#include <stdio.h>

int main() {
short age[4];

age[0] = 23;
age[1] = 34;
age[2] = 65;
age[3] = 74;

printf("%d ", age[0]);
printf("%d ", age[1]);
printf("%d ", age[2]);
printf("%d ", age[3]);

return 0;
}

// Array_Fixed_Size_c++.cpp
#include <iostream>

int main() {
short age[4];

age[0] = 23;
age[1] = 34;
age[2] = 65;
age[3] = 74;

std::cout << age[0] << " ";
std::cout << age[1] << " ";
std::cout << age[2] << " ";
std::cout << age[3] << " ";

return 0;
}

23 34 65 74 23 34 65 74

• No difference between arrays in C and C++

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Arbitrary Size Array

This can be implemented in C (C++) in the following ways:

Case 1: Declaring a large array with size greater than the size given by users in all
(most) of the cases

Hard-code the maximum size in code
Declare a manifest constant for the maximum size

Case 2: Using malloc (new[]) to dynamically allocate space at run-time for the array

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 8



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Fixed large array / vector

C (array & constant) C++ (vector & constant)

// Array_Macro_c.c
#include <stdio.h>
#include <stdlib.h>

#define MAX 100

int main() { int arr[MAX];
printf("Enter no. of elements: ");
int count, sum = 0, i;
scanf("%d", &count);
for(i = 0; i < count; i++) {

arr[i] = i; sum + = arr[i];
}
printf("Array Sum: %d", sum);

}

// Array_Macro_c++.cpp
#include <iostream>
#include <vector>
using namespace std;
#define MAX 100

int main() { vector<int> arr(MAX); // MAX is within ()
cout <<"Enter the no. of elements: ";
int count, sum = 0;
cin >>count;
for(int i = 0; i < count; i++) {

arr[i] = i; sum + = arr[i];
}
cout << "Array Sum: " << sum << endl;

}

Enter no. of elements: 10
Array Sum: 45

Enter no. of elements: 10
Array Sum: 45

• MAX is the declared size of array • MAX is the declared size of vector
• No header needed • Header vector included
• arr declared as int [] • arr declared as vector<int>

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 9



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Dynamically managed array size

C Program C++ Program

// Array_Malloc.c
#include <stdio.h>
#include <stdlib.h>

int main() { printf("Enter no. of elements ");
int count, sum = 0, i;
scanf("%d", &count);

int *arr = (int*) malloc
(sizeof(int)*count);

for(i = 0; i < count; i++) {
arr[i] = i; sum + = arr[i];

}
printf("Array Sum:%d ", sum);

}

// Array_Resize_c++.cpp
#include <iostream>
#include <vector>
using namespace std;

int main() { cout << "Enter the no. of elements: ";
int count, sum=0;
cin >> count;

vector<int> arr; // Default size
arr.resize(count); // Set resize
for(int i = 0; i < arr.size(); i++) {

arr[i] = i; sum + = arr[i];
}
cout << "Array Sum: " << sum << endl;

}

Enter no. of elements: 10
Array Sum: 45

Enter no. of elements: 10
Array Sum: 45

• malloc allocates space using sizeof • resize fixes vector size at run-time

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 10



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Strings in C and C++

String manipulations in C and C++:

C-String and string.h library

C-String is an array of char terminated by NULL

C-String is supported by functions in string.h in C standard library

string type in C++ standard library

string is a type
With operators (like + for concatenation) it behaves like a built-in type
In addition, for functions from C Standard Library string.h can be used in C++ as
cstring in std namespace

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 11



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Concatenation of Strings

C Program C++ Program

// Add_strings.c
#include <stdio.h>
#include <string.h>

int main() { char str1[] = {’H’,’E’,’L’,’L’,’O’,’ ’,’\0’};
char str2[] = "WORLD";
char str[20];
strcpy(str, str1);
strcat(str, str2);

printf("%s\n", str);
}

// Add_strings_c++.cpp
#include <iostream>
#include <string>
using namespace std;

int main(void) { string str1 = "HELLO ";
string str2 = "WORLD";

string str = str1 + str2;

cout << str;
}

HELLO WORLD HELLO WORLD

• Need header string.h • Need header string
• C-String is an array of characters • string is a data-type in C++ standard library
• String concatenation done with strcat function • Strings are concatenated like addition of int
• Need a copy into str
• str must be large to fit the result

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 12



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

More Operations on Strings

Further,

operator= can be used on strings in place of strcpy function in C

operator<=, operator<, operator>=, operator> operators can be used on
strings in place of strcmp function in C

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 13



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Bubble Sort

C Program C++ Program

#include <stdio.h>

int main() { int data[] = {32, 71, 12, 45, 26};
int i, step, n = 5, temp;
for(step = 0; step < n - 1; ++step)

for(i = 0; i < n-step-1; ++i) {
if(data[i] > data[i+1]) {

temp = data[i];
data[i] = data[i+1];
data[i+1] = temp;

}
}

for(i = 0; i < n; ++i)
printf("%d ", data[i]);

}

#include <iostream>
using namespace std;
int main() { int data[] = {32, 71, 12, 45, 26};

int n = 5, temp;
for(int step = 0; step < n - 1; ++step)

for(int i = 0;i < n-step-1; ++i) {
if (data[i] > data[i+1]) {

temp = data[i];
data[i] = data[i+1];
data[i+1] = temp;

}
}

for(int i = 0; i < n; ++i)
cout << data[i] << " ";

}

12 26 32 45 71 12 26 32 45 71

• Implementation is same in both C and C++ apart from differences in header files

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 14



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Using sort from standard library

C Program (Desc order) C++ Program (Desc order)

#include <stdio.h>
#include <stdlib.h> // qsort function

// compare Function Pointer
int compare(

const void *a, const void *b) { // Type unsafe
return (*(int*)a < *(int*)b); // Cast needed

}
int main () { int data[] = {32, 71, 12, 45, 26};

// Start ptr., # elements, size, func. ptr.

qsort(data, 5, sizeof(int), compare);

for(int i = 0; i < 5; i++)
printf ("%d ", data[i]);

}

#include <iostream>
#include <algorithm> // sort function
using namespace std;
// compare Function Pointer
bool compare(

int i, int j) { // Type safe
return (i > j); // No cast needed

}
int main() { int data[] = {32, 71, 12, 45, 26};

// Start ptr., end ptr., func. ptr.

sort(data, data+5, compare);

for (int i = 0; i < 5; i++)
cout << data[i] << " ";

}

71 45 32 26 12 71 45 32 26 12

• sizeof(int) and compare function passed to qsort • Only compare passed to sort. No size is needed
• Only Size is inferred from the type int of data

• compare function is type unsafe & needs complicated cast • compare function is type safe & simple with no cast
CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 15



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Stack in C

Stack is a LIFO (last-In-First-Out) container that can maintain a collection of
arbitrary number of data items – all of the same type

To create a stack in C we need to:

Decide on the data type of the elements
Define a structure (container) (with maximum size) for stack and declare a top variable
in the structure
Write separate functions for push, pop, top, and isempty using the declared structure

Note:

Change of the data type of elements, implies re-implementation for all the stack codes
Change in the structure needs changes in all functions

Unlike sin, sqrt etc. function from C standard library, we do not have a ready-made
stack that we can use

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 16



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Reversing a string in C

#include <stdio.h>

typedef struct stack {
char data [100];
int top;

} stack;

int empty(stack *p) { return (p->top == -1); }

int top(stack *p) { return p -> data [p->top]; }

void push(stack *p, char x) {
p -> data [++(p -> top)] = x;

}

void pop(stack *p) {
if (!empty(p)) (p->top) = (p->top) -1;

}

int main() {
stack s;
s.top = -1;

char ch, str[10] = "ABCDE";

int i, len = sizeof(str);

for(i = 0; i < len; i++)
push(&s, str[i]);

printf("Reversed String: ");

while (!empty(&s)) {
printf("%c ", top(&s));
pop(&s);

}
}

Reversed String: EDCBA

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 17



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Understanding Stack in C++

C++ standard library provide a ready-made stack for any type of elements

To create a stack in C++ we need to:

Include the stack header
Instantiate a stack with proper element type (like char)
Use the functions of the stack objects for stack operations

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 18



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Program: Reverse a String in C++

#include <stdio.h>
#include <string.h>
#include "stack.h" // User defined codes

int main() { char str[10] = "ABCDE";
stack s; s.top = -1; // stack struct

for(int i = 0; i < strlen(str); i++)
push(&s, str[i]);

printf("Reversed String: ");
while (!empty(&s)) {

printf("%c ", top(&s)); pop(&s);
}

}

#include <iostream>
#include <cstring>
#include <stack> // Library codes
using namespace std;

int main() { char str[10]= "ABCDE";
stack<char> s; // stack class

for(int i = 0; i < strlen(str); i++)
s.push(str[i]);

cout << "Reversed String: ";
while (!s.empty()) {

cout << s.top(); s.pop();
}

}

• Lot of code for creating stack in stack.h • No codes for creating stack
• top to be initialized • No initialization
• Cluttered interface for stack functions • Clean interface for stack functions
• Implemented by user – error-prone • Available in library – well-tested

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 19



C and C++

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Arrays and
vectors

Strings

Sorting

Stack

Data Structures /
Containers

Data Structures / Containers in C++

Like Stack, several other data structures are available in C++ standard library

They are ready-made and work like a data type

Varied types of elements can be used for C++ data structures

Data Structures in C++ are commonly called Containers:

A container is a holder object that stores a collection of other objects (its elements)
The container

manages the storage space for its elements
provides member functions to access them
supports iterators - reference objects with similar properties to pointers

Many containers have several member functions in common, and share functionalities -
easy to learn and remember

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 20


	Arrays & vectors
	C-Style Strings and string type in C++
	Sorting in C and C++
	Stack in C
	Data Structures / Containers in C++

