
Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Quick Recap of C

Intructors: Abir Das and Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu}@cse.iitkgp.ac.in

Slides heavily lifted from Programming in Modern C++ NPTEL Course

by Prof. Partha Pratim Das

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 1

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Containers and Pointers

C supports two types of containers:

Array: Container for one or more elements of the same type. This is an indexed
container
Structure: Container for one or more members of the one or more different / same
type/s. This container allows access by member name

Union: It is a special type of structure where only one out of all the members can be
populated at a time. This is useful to deal with variant types

C supports two types of addressing:

Indexed: This is used in an array
Referential: This is available as Pointers where the address of a variable can be stored
and manipulated as a value

Using array, structure, and pointer various derived containers can be built in C
including lists, trees, graphs, stack, and queue

C Standard Library has no additional support for containers

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 2

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Pointers

A pointer is a variable whose value is a memory address. The type of a pointer is
determined by the type of its pointee
Defining a pointer
int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *pc; // pointer to a character

void *pv; // pointer to unknown / no type - will need a cast before use

Using a pointer
int main() {

int i = 20; // variable declaration

int *ip; // pointer declaration

ip = &i; // store address of i in pointer ip

printf("Address of variable: %p\n", &i); // Prints: Address of variable : 00A8F73C

printf("Value of pointer: %p\n", ip); // Prints: Value of pointer : 00A8F73C

printf("Value of pointee: %d\n", *ip); // Prints: Value of pointee : 20

}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 3

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Pointer Array Duality and Pointer to Structures

• Pointer-Array Duality • Pointer to a structure
int a[] = {1, 2, 3, 4, 5};
int *p;

p = a; // base of array a as pointer p
printf("a[0] = %d\n", *p); // a[0] = 1
printf("a[1] = %d\n", *++p); // a[1] = 2
printf("a[2] = %d\n", *(p+1)); // a[2] = 3

p = &a[2]; // Pointer to a location in array
*p = -10;
printf("a[2] = %d\n", a[2]); // a[2] = -10

struct Complex { // Complex Number
double re; // Real component
double im; // Imaginary component

} c = 0.0, 0.0 ;

struct Complex *p = &c; // Pointer to structure
(*p).re = 2.5; // Member selection
p->im = 3.6; // Access by redirection

printf("re = %lf\n", c.re); // re = 2.500000
printf("im = %lf\n", c.im); // im = 3.600000

• malloc-free • Dynamically allocated arrays
// Allocate and cast void* to int*
int *p = (int *)malloc(sizeof(int));
printf("%X\n", *p); // 0x8F7E1A2B

unsigned char *q = p; // Little endian: LSB 1st
printf("%X\n", *q++); // 0x2B
printf("%X\n", *q++); // 0x1A
printf("%X\n", *q++); // 0x7E
printf("%X\n", *q++); // 0x8F
free(p);
Note on Endian-ness: Link

// Allocate array p[3] and cast void* to int*
int *p = (int *)malloc(sizeof(int)*3);

p[0] = 1; p[1] = 2; p[2] = 3; // Used as array

// Pointer-Array Duality on dynamic allocation
printf("p[1] = %d\n", *(p+1)); // p[1] = 2
free(p);

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 4

https://en.wikipedia.org/wiki/Endianness

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Functions: Declaration and Definition

A function performs a specific task or computation

Has 0, 1, or more parameters. Every parameters has a type (void for no parameters)
If the parameter list is empty, the function can be called by any number of parameters
If the parameter list is void, the function can be called only without any parameter

May or may not return a result. Return value has a type (void for no result)
If the function has return type void, it cannot return any value (void funct(...) { return;
}) except void (void funct(...) { return <void>; })

Function declaration
// Function Prototype / Header / Signature
// Name of the function: funct
// Parameters: x and y. Types of parameters: int
// Return type: int
int funct(int x, int y);

Function definition
// Function Implementation
int funct(int x, int y)
// Function Body
{

return (x + y);
}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 5

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Functions: Call and Return by Value

Call-by-value mechanism for passing arguments. The value of an actual parameter is
copied to the formal parameter

Return-by-value mechanism to return the value, if any.

int funct(int x, int y) {
++x; ++y; // Formal parameters changed
return (x + y);

}
int main() { int a = 5, b = 10, z;

printf("a = %d, b = %d\n", a, b); // Prints: a = 5, b = 10

z = funct(a, b); // call by value. a copied to x. x becomes 5. b copied to y. y becomes 10
// x in funct changes to 6 (++x). y in funct changes to 11 (++y)
// return value (x + y) copied to z

printf("funct = %d\n", z); // Prints: funct = 17

// Actual parameters do not change on return (call-by-value)
printf("a = %d, b = %d\n", a, b); // Prints: a = 5, b = 10

}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 6

Quick Recap

Intructors: Abir
Das and

Sourangshu
Bhattacharya

Containers and
Pointers

Functions

Functions: Call by Reference

Call-by-reference is not supported in C in general. However, arrays are passed by
reference

#include <stdio.h>

int arraySum(
int a[], // Reference parameter - the base address of array a is passed
int n) { // Value parameter
int sum = 0;
for(int i = 0; i < n; ++i) {

sum += a[i];
a[i] = 0; // Changes the parameter values

}
return sum;

}

int main() {
int a[3] = {1, 2, 3};
printf("Sum = %d\n", arraySum(a, 3)); // Prints: Sum = 6 and changes the array a to all 0
printf("Sum = %d\n", arraySum(a, 3)); // Prints: Sum = 0 as elements of a changed in arraySum()

}

CS20202: Software Engineering Intructors: Abir Das and Sourangshu Bhattacharya 7

	Containers and Pointers
	Functions

