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FINDING SIMILAR ITEMS



DISTANCE MEASURES

¡ Goal: Find near-neighbors in high-dim. space
• We formally define “near neighbors” as 

points that are a “small distance” apart

• For each application, we first need to define what 
“distance” means

• Today: Jaccard distance/similarity
• The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1ÇC2|/|C1ÈC2|

• Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|
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3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8



TASK: FINDING SIMILAR DOCUMENTS
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ENCODING SETS AS BIT VECTORS
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FROM SETS TO BOOLEAN 
MATRICES

• Rows = elements (shingles)

• Columns = sets (documents)
• 1 in row e and column s if and only if e is a 

member of s

• Column similarity is the Jaccard similarity of the 
corresponding sets (rows with value 1)

• Typical matrix is sparse!

• Each document is a column:
• Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6, 
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6
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HASHING COLUMNS (SIGNATURES)
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MIN-HASHING



THE MIN-HASH PROPERTY

• Choose a random permutation p

• Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

• Why?
• Let X be a doc (set of shingles), yÎ X is a shingle

• Then: Pr[p(y) = min(p(X))] = 1/|X|

• It is equally likely that any yÎ X is mapped to the min element

• Let y be s.t. p(y) = min(p(C1ÈC2))

• Then either:  p(y) = min(p(C1))  if y Î C1 , or

     p(y) = min(p(C2))  if y Î C2

• So the prob. that both are true is the prob. y Î C1 Ç C2

• Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2) 
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FOUR TYPES OF ROWS

• Given cols C1 and C2, rows may be classified as:
    C1 C2

   A 1 1
   B 1 0
   C 0 1
   D 0 0
• a = # rows of type A, etc.

• Note: sim(C1, C2) = a/(a +b +c)
• Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

• Look down the cols C1 and C2 until we see a 1

• If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not
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SIMILARITY FOR SIGNATURES
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MIN-HASHING EXAMPLE

Similarities:
                   1-3      2-4    1-2   3-4
Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M

1321
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MIN-HASH SIGNATURES
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LOCALITY SENSITIVE 
HASHING



LSH: FIRST CUT
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CANDIDATES FROM MIN-HASH

17



LSH FOR MIN-HASH
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PARTITION M INTO B BANDS

Signature matrix  M

r rows
per band

b  bands

One
signature



PARTITION M INTO BANDS
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Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.

HASHING BANDS



SIMPLIFYING ASSUMPTION
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EXAMPLE OF BANDS
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C1, C2 ARE 80% SIMILAR

• Find pairs of ³ s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.8
– Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate pair: We want them to hash to at 

least 1 common bucket (at least one band is identical)

• Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20 bands: (1-0.328)20 = 0.00035 
– i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)

– We would find 99.965% pairs of truly similar documents
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C1, C2 ARE 30% SIMILAR

• Find pairs of ³ s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO 

common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band: (0.3)5  = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 
0.0474

– In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming 
candidate pairs

• They are false positives since we will have to examine them (they are candidate 
pairs) but then it will turn out their similarity is below threshold s
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LSH INVOLVES A TRADEOFF

26



ANALYSIS OF LSH – WHAT WE WANT

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket
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No chance
if t < s

Probability = 1 
if t > s
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WHAT 1 BAND OF 1 ROW GIVES YOU
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket



B BANDS, R ROWS/BAND
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WHAT B  BANDS OF R  ROWS GIVES YOU

t r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 
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Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket



EXAMPLE: B  = 20; R  = 5

• Similarity threshold s

• Prob. that at least 1 band is identical:
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s 1-(1-sr)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996



PICKING R AND B: THE S-CURVE

• Picking r and b to get the best S-curve
• 50 hash-functions (r=5, b=10)
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LSH SUMMARY
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SUMMARY: 3 STEPS

• Shingling: Convert documents to sets
• We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short signatures, while 
preserving similarity

• We used similarity preserving hashing to generate signatures with 
property Pr[hp(C1) = hp(C2)] = sim(C1, C2)

• We used hashing to get around generating random permutations

• Locality-Sensitive Hashing: Focus on pairs of signatures likely 
to be from similar documents

• We used hashing to find candidate pairs of similarity ³ s
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GENERALIZATION OF LSH



LOCALITY SENSITIVE HASHING 

• Originally defined in terms of a similarity function 
[C’02]

• Given universe 𝑈 and a similarity 𝑠: 𝑈×𝑈 → [0,1] , 
does there exist a prob distribution over some 
hash family 𝐻	such that 
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Pr
!∈#

ℎ 𝑥 = ℎ 𝑦 = 𝑠(𝑥, 𝑦)

𝑠 𝑥, 𝑦 = 1	 → 𝑥 = 𝑦
𝑠 𝑥, 𝑦 = 𝑠(𝑦, 𝑥)	



LOCALITY SENSITIVE HASHING

• Hash family 𝐻	is locality sensitive if

• Not clear such functions exist for all distance functions 

Pr ℎ 𝑥 = 	ℎ 𝑦  is high if 𝑥	is close to 𝑦

Pr ℎ 𝑥 = ℎ 𝑦  is low if 𝑥	is far from 𝑦

[Indyk Motwani]



HAMMING DISTANCE

• Points are bit strings of length 𝑑

• 𝐻 𝑥, 𝑦 = | 𝑖, 𝑥! ≠ 𝑦! |      𝑆" 𝑥, 𝑦 = 1	 − " #,%
&

• Define a hash function ℎ by sampling a set of positions
• 𝑥 = 1011010001, 𝑦 = 0111010101
• 𝑆 = 1,5,7
• ℎ 𝑥 = 100, ℎ 𝑦 = 100
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LSH FOR HAMMING DISTANCE

• The above hash family is locality sensitive, 𝑘 = |𝑆|

39

Pr ℎ 𝑥 = ℎ 𝑦 = 1	 −
𝐻 𝑥, 𝑦
𝑑

!



LSH FOR ANGLE DISTANCE

• 𝑥, 𝑦 are unit norm vectors

• 𝑑 𝑥, 𝑦 = cos"# 𝑥 ⋅ 𝑦 = 𝜃

• 𝑆 𝑥, 𝑦 = 1	 − 𝜃/𝜋 

• Choose direction 𝑣	uniformly at random
• ℎ! 𝑥 = 𝑠𝑖𝑔𝑛 𝑣 ⋅ 𝑥

• Pr ℎ! 𝑥 = ℎ! 𝑦 = 1	 − 𝜃/𝜋
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ASIDE: PICKING A DIRECTION 
U.A.R.

• How to sample a vector 𝑥 ∈ 𝑅3, 𝑥 4 = 1	and the direction 
is uniform among all possible directions

• Generate 𝑥 = 𝑥5, … . 𝑥3 , 𝑥6 ∼ 𝑁(0, 1) iid

• Normalize 7
7 !

• By writing the pdf of the d-dimensional Gaussian in polar form, easy to see 
that this is uniform direction on unit sphere
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WHICH SIMILARITIES ADMIT LSH?

• There are various similarities and distance that are used in 
scientific literature

• Encyclopedia of distances DL’11

• Will there be an LSH for each one of them?

• Similarity is LSHable if there exists an LSH for it

42
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LSHABLE SIMILARITIES

Thm: S is LSHable à 1 – S is a metric

Fix hash function ℎ ∈ 𝐻 and define
Δ8 𝐴, 𝐵 = [ℎ 𝐴 ≠ ℎ 𝐵 ]
1	 − S A, B = Pr

8
[Δ8 𝐴, 𝐵 ]

Also
Δ8 𝐴, 𝐵 + Δ8 𝐵, 𝐶 ≥ Δ8 𝐴, 𝐶
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𝑑 𝑥, 𝑦 = 0	 → 𝑥 = 𝑦
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑(𝑥, 𝑧)



EXAMPLE OF NON-LSHABLE 
SIMILARITIES

• 𝑑 𝐴,𝐵 = 1	 − 𝑠(𝐴, 𝐵)

• Sorenson-Dice : 𝑠 𝐴, 𝐵 = ! "∩$
" % $

• Ex: 𝐴 = 𝑎 ,𝐵 = 𝑏 , 𝐶 = {𝑎, 𝑏}

• 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐵, 𝐶 = 𝑠 𝐴, 𝐶 = !
&

• Overlap: 𝑠 𝐴, 𝐵 = "∩$
'() " , $

• 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐴, 𝐶 = 1 = 𝑠(𝐵, 𝐶)

44



GAP DEFINITION OF LSH

• A family is 𝑟, 𝑅, 𝑝, 𝑞  LSH if 

Pr
5∈#

ℎ 𝑥 = ℎ 𝑦 ≥ 𝑝	𝑖𝑓	𝑑 𝑥, 𝑦 ≤ 𝑟	

Pr
5∈#

ℎ 𝑥 = ℎ 𝑦 ≤ 𝑞	𝑖𝑓	𝑑 𝑥, 𝑦 ≥ 𝑅	

Here 𝑝 > 𝑞.

45

IMRS’97, IM’98, GIM’99 



GAP LSH

• All the previous constructions satisfy the gap definition

• Ex: for 𝐽𝑆 𝑆, 𝑇 = 9∩;
9∪;

Hence is a 𝑟, 𝑅, 1 − 𝑟, 1 − 𝑅 	LSH
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𝐽𝐷 𝑆, 𝑇 ≤ 𝑟 → 𝐽𝑆 𝑆, 𝑇 ≥ 1	 − 𝑟 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≥ 1	 − 	𝑟

𝐽𝐷 𝑆, 𝑇 ≥ 𝑅 → 𝐽𝑆 𝑆, 𝑇 ≤ 1	 − 𝑅 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≤ 1	 − 𝑅



L2 NORM

• 𝑑 𝑥, 𝑦 = √(∑+ 𝑥+ − 𝑦+ !	

• 𝑢 =	random unit norm vector, 𝑤 ∈ 𝑅 parameter, 𝑏 ∼ 𝑈𝑛𝑖𝑓[0,𝑤]

• ℎ 𝑥 = ⌊,⋅.%/
0

⌋

• If 𝑥	 − 𝑦 ! <
0
!
,	 Pr ℎ 𝑥 = ℎ 𝑦 ≥ 1

&

• If 𝑥	 − 𝑦 ! > 4𝑤, Pr ℎ 𝑥 = ℎ 𝑦 ≤ 1
2
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SOLVING THE NEAR NEIGHBOUR

• 𝑟, 𝑐 −near neighbour problem
• Given query point 𝑞,	return all points 𝑝 such that 
𝑑 𝑝, 𝑞 < 𝑟 and none such that 𝑑 𝑝, 𝑞 > 𝑐𝑟 
• Solving this gives a subroutine to solve the “nearest 

neighbour”, by building a data-structure for each 𝑟	, in 
powers of (1 + 𝜖)   
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HOW TO ACTUALLY USE IT?

• Need to amplify the probability of collisions for “near” 
points

49



BAND CONSTRUCTION

• AND-ing of LSH

• Define a composite function 𝐻 𝑥 = (ℎN 𝑥 ,…ℎO 𝑥 )

• Pr 𝐻 𝑥 = 𝐻 𝑦 = ΠP Pr ℎQ 𝑥 = ℎQ 𝑦 = Pr ℎN 𝑥 = ℎN 𝑦 O

• OR-ing

• Create 𝐿	independent hash-tables for 𝐻N, 𝐻R, …𝐻S
• Given query 𝑥, search in ∪T 𝐻T(𝑥)
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EXAMPLE

51

S
1

S
2

S
3

S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S3

h1 1 2 1 2

h2 2 1 3 1

S1 S2 S3 S3

h3 3 1 2 1

h4 1 3 2 2



WHY IS THIS BETTER?

• Consider x, 𝑦 with Pr ℎ 𝑥 = ℎ 𝑦 = 1	 − 𝑑(𝑥, 𝑦)

• Probability of not finding 𝑦	as one of the candidates in 

∪T 𝐻T 𝑥 	

                                 1	 − 1 − 1 − 𝑑 O S
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CREATING AN LSH

• Query 𝑥

• If we have a (𝑟, 𝑐𝑟, 𝑝, 𝑞)	LSH

• For any 𝑦,	with 𝑥	 − 𝑦 < 𝑟,	

• Prob of 𝑦 as candidate in ∪$ 𝐻$ 𝑥 ≥ 1 − 1 − 𝑝! %
 ≥ 1	 − #

&

• For any 𝑧, 𝑥	 − 𝑧 > 𝑐𝑟,
• Prob of 𝑧	as candidate in any fixed 𝐻$(𝑥) ≤ 𝑞!

• Expected number of such 𝑧 ≤ 𝐿𝑞! ≤ 𝐿 = 𝑛'

• 𝜌 < 1

53

𝜌 = "#$ %
"#$ &

	 𝐿 = 𝑛'  𝑘 = log 𝑛 / log (
&
	



RUNTIME

• Space used = 𝑛NUV

• Query time = 𝑛V×(𝑘 + 𝑑)  [time for k-hashes & brute force comparison]

• We can show that for Hamming, angle etc, 𝜌 ≈ N
W

• Can get 2-approx near neighbors with	𝑂(√𝑛) neighbour 
comparisons
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LSH: THEORY VS PRACTICE

• In order to design LSH in practice, the theoretical 
parameter values are only a guidance

• Typically need to search over the parameter space to find a 
good operating point

• Data statistics can provide some guidance.
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HIERARCHICAL NAVIGABLE 
SMALL WORLD



APPROXIMATE NN SEARCH

● Data (D):
– Many vectors (millions or billions)

Input (Q):●

– One query vector (not necessarily 
from D)

Output:●

– The k vectors from D that are 
closest to Q



SOLUTIONS

• Locality sensitive hashing

• Space subdivision methods:
• KD-trees

• Slow for high-dimensional data

• Proximity Graph based methods
• HNSW

• For index compression (not discussed):
• Product quantization.



MOTIVATION: PROBABILITY SKIP LIST

• A linked list structure for fast search and insertion of new elements
• Allows fast search in a sorted array.

• Several layers of linked lists.
• First layer skip many intermediate nodes.

• The number of ‘skips’ decreases in lower layers

• Search: start at the highest layer follow links until you find the element 
greater than key.

• Move down the layer and repeat.



PROXIMITY GRAPH

• Vertices are datapoints
• Edges between datapoints close to each other.

• Search is performed by browsing neighbors for each points.
• Start with an initial point.

• Browse to the neighbor closest to the query point

• Stop when you have reached local minima, i.e. distance to the current node is less than 
distance to all neighbors

• K-nearest neighbor graph
• The length of search path is large.

• Not small world.



HIERARCHICAL NAVIGABLE SMALL 
WORLD

• The proximity graph should be:
• Navigable Small World graph.

• The maximum distance between any two nodes should be 
low.

• PolyLogarithmic scaling during greedy traversal.

• There are high degree nodes which are connected to many 
nodes.

• Sometimes, performance degrades due to far entry point.

• Hierarchical NSW:

• Graphs at different levels with varying sparsity.

• Inspired by skip lists.



HNSW - SEARCH

• Given a HNSW index for a dataset, and query q:
1. Start searching from the top layer with the default entry point.

2. Calculate the entry point to the lower layer from the nearest neighbor found in 
previous layer.

3. Repeat from step 1.

• For searching the nearest neighbors in each layer:
• Search the neighborhood of each point in the neighborhood of entry point.

• Return a list of ef closest points to query.

• Detailed algorithm in the next slide.



HNSW - SEARCH



HNSW – SEARCH LAYER



HNSW - INSERT

• The HNSW index is formed by first creating an empty index with no 
levels. The parameters are: 

• Normalization factor for level generation - 𝑚".

• Maximum number of connections for each datapoint per layer - 𝑀#$%.

• Randomly select the maximum layer l at which the datapoint is 
inserted.

• For each layer from l to 0:
• Find the nearest neighbors using entry point to the layer.

• Connect the inserted point to them and shrink each of them to size 𝑀#$%.



HNSW - INSERT



IMPLEMENTATION NOTES

• FAISS: 
• https://github.com/facebookresearch/faiss/wiki/

• L2 Distance based search.

• Many indexes implemented – Flat, IVF, IndexBinaryHash.

• Another key idea is Product quantization:
• Find k-centroids (e.g. using k-means clustering) – expensive

• Encode data as a binary vector by first splitting the vector dimensions and then 
encoding each dimension as sign of dot product with all the centroids.

• Multi-probe can be used to reduce memory requirement by reducing k.

https://github.com/facebookresearch/faiss/wiki/


FAISS SEARCH: FLAT INDEX

Input: vectors

Build index:

import faiss 

vector_dimension = vectors.shape[1] 

index = faiss.IndexFlatL2(vector_dimension) 

faiss.normalize_L2(vectors) 

index.add(vectors)

Search:

k = index.ntotal 

distances, ann = index.search(query_vector, k=k)



FAISS: HNSW

d = 128 # vector size 

M = 32 #maximum connectivity of vertices

index = faiss.IndexHNSWFlat(d, M) 

index.hnsw.efConstruction = efConstruction

index.add(xb)

# after adding our data the level has been set 

print(index.hnsw.max_level)

index.hnsw.efSearch = efSearch 

# and now we can search 

index.search(xq[:1000], k=1)



HNSW PARAMETERS



HNSW PARAMETERS
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