NEAREST NEIGHBOR
SEARCH ALGORITHMS

SOURANGSHU BHATTACHARYA
CSE, IIT KHARAGPUR
WEB: HTTPS://CSE.ITKGPAC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.IITKGPAC.IN



https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

FINDING SIMILAR ITEMS




DISTANCE MEASURES

= Goal: Find near-neighbors in high-dim. space

*  We formally define “near neighbors” as
points that are a “small distance” apart

* For each application, we first need to define what
“distance” means

* Today: Jaccard distance/similarity

* The Jaccard similarity of two sets is the size of their
intersection divided by the size of their union:
sim(C,, C;) = |C,NG,|/|CuC,|

* Jaccard distance: d(C,,C,) = | - |C,nC,|/|C,uC,|

3 in intersection

8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8




TASK: FINDING SIMILAR DOCUMENTS

* Goal: Given a large number (/in the millions or billions) of
documents, find “near duplicate” pairs

e Applications:
— Mirror websites, or approximate mirrors
* Don’t want to show both in search results
— Similar news articles at many news sites
* Cluster articles by “same story”

* Problems:

— Many small pieces of one document can appear
out of order in another

— Too many documents to compare all pairs

— Documents are so large or so many that they cannot
fit in main memory




ENCODING SETS AS BIT VECTORS

* Many similarity problems can be
formalized as finding subsets that
have significant intersection

* Encode sets using 0/1 (bit, boolean) vectors
— One dimension per element in the universal set

* Interpret set intersection as bitwise AND, and
set union as bitwise OR

* Example: C; =10111; C, =10011

— Size of intersection = 3; size of union =4,

— Jaccard similarity (not distance) = 3/4
— Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4




FROM SETS TO BOOLEAN
MATRICES

* Rows = elements (shingles)

* Columns = sets (documents)

* | in row e and column s if and only if e is a Documents
member of s 1 (1 11 10
* Column similarity is the Jaccard similarity of the 1 11 o |1
corresponding sets (rows with value /)
* Typical matrix is sparse! 0 o (1 0 |1
* Each document is a column: g O |0 |0 |1
« Example: sim(C, ,C,;) =? N 1 10 |10 |1
* Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6 1 1 1 0
* d(C,,C,) = | — (Jaccard similarity) = 3/6




HASHING COLUMNS (SIGNATURES)

* Keyidea: “hash” each column Cto a small signature h(C), such
that:
— (1) h(C) is small enough that the signature fits in RAM
— (2) sim(C,, C,) is the same as the “similarity” of signatures h(C;) and h(C,)

e Goal: Find a hash function h(-) such that:
— If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
— If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

* Hash docs into buckets. Expect that “most” pairs of near
duplicate docs hash into the same bucket!




MIN-HASHING

* Imagine the rows of the boolean matrix permuted under
random permutation 7

* Define a “hash” function h {C) = the index of the first (in the
permuted order ) row in which column C has value 1:

h,(C) = min, =(C)

 Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column




THE MIN-HASH PROPERTY

* Choose a random permutation ©
* Claim: Pr[h (C,) = h(C,)] =sim(C,, C,)

- Why?
* Let X be a doc (set of shingles), ye X is a shingle
Then: Pr[n(y) = min(n(X))] = 1/|X]

* ltis equally likely that any y € X is mapped to the min element

R O O| = | O] O
Ol r| O| = O] O

Let y be s.t. t(y) = min(n(C,UGC,))
Then either: n(y) = min(n(C,)) ify € C,,or

. _ One of the two
n(y) = min(n(Cy)) ify € G cols had to have
1 at position y

So the prob. that both are true is the prob.y € C;, N C,
Pr[min(n(C,))=min(n(C))]=|C,NC,|/|C,VUC,|= sim(C,, Cy)

t??

. ﬁ" ‘



FOUR TYPES OF ROWS

5 n,
<< x; O(OG
) '+
S
S L A\~
2/ .g\
zl8 ) 2
= ]
= S
. A \&
/K

* Given cols C, and C,, rows may be classified as:

C, G
A | |
B | 0
C 0 |
D 0 0

* a =#rows of type A etc.
* Note: sim(C,, C,) = al/(a +b +c)
* Then: Pr[h(C,) = h(C,)] = Sim(C,, C,)
* Look down the cols C; and C, until we see a |

* If it’s a type-A row, then h(C,) = h(C,)
If a type-B or type-C row, then not




SIMILARITY FOR SIGNATURES

We know: Pr[h,(C,) = h_(C,)] = sim(C,, C,)
Now generalize to multiple hash functions

The similarity of two signatures is the fraction of
the hash functions in which they agree

Note: Because of the Min-Hash property, the
similarity of columns is the same as the expected
similarity of their signatures




MIN-HASHING EXAMPLE

Permutation t Input matrix (Shingles x Documents)

. 3] [1 Jo 1 o
3
7
6
|
5
4

Signature matrix M

Similarities:
1-3 24 1-2 34
Col/Col| 0.75 0.75 0 O
Sig/Sig |0.67 1.00 0 O

NN - ==
= @ | = Y e
|~ Oo|lo|oOo|O
) | @) (S R




MIN-HASH SIGNATURES

L0
Gy
O\ =
>,
“¥
o S
< ~
= =
1& \&
/g
T

ATESESTR

* Pick K=100 random permutations of the rows
* Think of sig(C) as a column vector

* sig(C)[i] = according to the i-th permutation, the index of the first
row that hasa 1 in column C

sig(C)[i] = min (7(C))
* Note: The sketch (signature) of document Cis small ~100 bytes!

 We achieved our goal! We “compressed”
long bit vectors into short signatures




LOCALITY SENSITIVE
HASHING




LSH: FIRST CUT

* Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

 LSH — General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

* For Min-Hash matrices:
— Hash columns of signature matrix M to many buckets

— Each pair of documents that hashes into the
same bucket is a candidate pair




CANDIDATES FROM MIN-HASH

* Pick a similarity threshold s (0 <s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of

their rows:
M (i, x) = M (i, y) for at least frac. s values of i

— We expect documents x and y to have the same
(Jaccard) similarity as their signatures




LSH FOR MIN-HASH

e Bigidea: Hash columns of
signature matrix M several times

e Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

e Candidate pairs are those that hash to
the same bucket




PARTITION M INTO B BANDS

r rows
\ per band

b bands

\ One

signature

Signature matrix M




PARTITION M INTO BANDS

e Divide matrix M into b bands of r rows

* For each band, hash its portion of each
column to a hash table with k buckets

— Make k as large as possible

* Candidate column pairs are those that hash
to the same bucket for = 1 band

* Tune b and r to catch most similar pairs,
but few non-similar pairs




HASHING BANDS

Columns 2 and 6

are probably identical

(candidate pair)
Columns 6 and 7 are
surely different.

|

I FOWS b bands




SIMPLIFYING ASSUMPTION

* There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

* Assumption needed only to simplify analysis,
not for correctness of algorithm




EXAMPLE OF BANDS

Assume the following case:

e Suppose 100,000 columns of M (100k docs)
e Signatures of 100 integers (rows)

* Therefore, signatures take 40Mb

* Choose b =20 bands of r=5 integers/band

* Goal: Find pairs of documents that
are at least s = 0.8 similar




C,, C, ARE 80% SIMILAR

Find pairs of > s=0.8 similarity, set b=20, r=5

Assume: sim(C,,C,;) = 0.8

— Since sim(C,, C,) > s, we want C,, C, to be a candidate pair:VVe want them to hash to at
least | common bucket (at least one band is identical)

Probability C,, C, identical in one particular
band: (0.8)> = 0.328

Probability C,, C, are not similar in all of the 20 bands: (1-0.328)2° = 0.00035

— i.e,,about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

— We would find 99.965% pairs of truly similar documents




C,, C, ARE 30% SIMILAR

Find pairs of > s=0.8 similarity, set b=20, r=5

Assume: sim(C,,C,;) = 0.3

— Since sim(C,, C,) <'s we want C,, C, to hash to NO
common buckets (all bands should be different)

Probability C,, C, identical in one particular band: (0.3)° = 0.00243

Probability C,, C, identical in at least | of 20 bands: | - (I - 0.00243)20 =
0.0474

— In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming
candidate pairs

* They are false positives since we will have to examine them (they are candidate

pairs) but then it will turn out their similarity is below threshold s




LSH INVOLVES A TRADEOFF

ne number of Min-Hashes (rows of M)
ne number of bands b, and

— The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5
rows, the number of false positives would

go down, but the number of false negatives




ANALYSIS OF LSH —WHAT WEWANT

/

m Probability = 1
- if t> s
o
5
Probability v
of sharing N(i)fcthiansce =
a bucket =
1y
=
0p)]

Similarity ¢ =sim(C,, C,) of two sets —




WHAT | BAND OF | ROW GIVES YOU

Probability Remember:

of sharing Probability of

a bucket equal hash-values
= similarity

Similarity ¢ =sim(C,, C,) of two sets —




B BANDS, R ROWS/BAND

* Columns C, and C, have similarity t

* Pick any band (r rows)
— Prob. that all rows in band equal =t
— Prob. that some row in band unequal =1 -t

* Prob. that no band identical = (1 - t7)

 Prob. that at least 1 band identical =
1-(1-t)°




WHAT B BANDS OF R ROWS GIVES YOU

( At Iegst q No bands
pne .an identical
|den\t‘|cal ]

Probability s ~ (1/b)r 1-(1-¢r)b
of sharing
a bucket Lp/
All rows
- SOme oW yf 5 hand
e ofaband 5 equal
unequal

Similarity t=sim(C,, C,) of two sets ——




(SVE)XAMPLE:B =20;R =5
B,

* Similarity threshold s

* Prob. that at least | band is identical:

s | 1-(1-s")P
2 .006
3 047
4 186
D 470
6 .802
4 975




PICKING RAND B:THE S-CURVE

* Picking r and b to get the best S-curve
* 50 hash-functions (r=>5, b=10)

091

08|

07|

06|

05L

04|

03

02}

Prob. sharing a bucket

Blue area: False Negative rate
Green area: False Positive rate

0.1}

(0] L L L L
0 01 02 03 04 05 06 07 08 09 1

SimilaritI



LSH SUMMARY

* Tune M, b, r to get almost all pairs with

similar signatures, but eliminate most pairs
that do not have similar signatures

* Check in main memory that candidate pairs
really do have similar signatures

* Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents




SUMMARY: 3 STEPS

* Shingling: Convert documents to sets

* We used hashing to assign each shingle an ID

* Min-Hashing: Convert large sets to short signatures, while
preserving similarity
* We used similarity preserving hashing to generate signatures with
property Pr[h.(C,) = h,(C;)] = sim(C,, C,)

* We used hashing to get around generating random permutations

* Locality-Sensitive Hashing: Focus on pairs of signatures likely

to be from similar documents

* We used hashing to find candidate pairs of similarity > s




GENERALIZATION OF LSH




LOCALITY SENSITIVE HASHING

* Originally defined in terms of a similarity function
[C'02]
Pr [h(x) = h(y)] = s(x,y)

heH

* Given universe U and a similarity s: UXU - [0,1],
does there exist a prob distribution over some
hash family H such that

s(x,y)=1->x=y
s(x,y) =s(y,x)




LOCALITY SENSITIVE HASHING

[Indyk Motwani]
* Hash family H is locdlity sensitive if

Pr[h(x) = h(y)] is high if x is close to y

Pr|h(x) = h(y)] is low if x is far from y

* Not clear such functions exist for all distance functions




HAMMING DISTANCE

* Points are bit strings of length d

H(x,y)

.H(x'y)zl{ini'_’tyi}l SH(X,y)Zl N d

* Define a hash function h by sampling a set of positions
« x =1011010001,y = 0111010101
« S ={1,57}
- h(x) = 100, h(y) = 100




LSH FOR HAMMING DISTANCE

* The above hash family is locality sensitive, k = |S]|

_H(, y))k

Pr[h(x) = h(y)] = (1 7




V) LSH FOR ANGLE DISTANCE

* X,y are unit norm vectors

d(x,y) =cos (x-y)=206
S(x,y)=1—-0/n

Choose direction v uniformly at random

* h,(x) =sign(v-x)
* Prlh,(x) =h,()]=1—-6/n




ASIDE: PICKING A DIRECTION
U.AR.

 How to sample a vector x € R%, |x|, = 1 and the direction
is uniform among all possible directions

* Generate x = (x4, ....X4),x; ~ N(0, 1) iid

. X
* Normalize —
| x|

* By writing the pdf of the d-dimensional Gaussian in polar form, easy to see
that this is uniform direction on unit sphere




WHICH SIMILARITIES ADMIT LSH?

* There are various similarities and distance that are used in
scientific literature

* Encyclopedia of distances DL | |

* Will there be an LSH for each one of them?

* Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]




LSHABLE SIMILARITIES

Thm: S is LSHable =2 | — S is a metric

dx,y) =0 - x=vy

d(x,y) = d(y,x)
d(x,y) +d(y,z) = d(x,z)

Fix hash function h € H and define
An(A, B) = [h(4) # h(B)]
1 —S(A,B) = l?lr[Ah(A, B)]

Also

An(A,B) + A (B,C) = Ap(A,0C)




EXAMPLE OF NON-LSHABLE
SIMILARITIES

- d(4,B)=1 —s(4,B)

2|ANB|
|A[+|B|

* ExxA=1{a},B =1{b},C ={a,b}

* Sorenson-Dice :s(4,B) =

* s(4,B) =0,5(B,C) =s(A,C) = i?

|ANB|
min(|Al,|B])

* s(4,B) =0,s(4,C) =1=s(B,0)

* Overlap:s(A4,B) =




GAP DEFINITION OF LSH

* A family is (r, R, p, q) LSH if IMRS'97, IM’98, GIM'99

Prh(x) =h(y)] =pifdxy) <r

heH

Pr[h(x) = h(y)] < qif d(x,y) =R

heH

Here p > gq.




GAP LSH

: :

x 5] o

g -
;\‘;@‘A\\
AT Y

ATESESTR

 All the previous constructions satisfy the gap definition

* Ex:for JS(S,T) = ES;:

JD(S, T) <r->]JS(S,T) =1 —r -» Pr[h(S) =h(T)] =JS(S,T) =1 — r
JD(S,T) =R — JS(S,T) <1 — R = Pr[a(S) = h(T)] = JS(S,T) <1 — R

Henceisa (r,R,1—1,1—R) LSH




L2 NORM

© d(x,y) = V(i — y)?
* u = random unit norm vector, w € R parameter, b ~ Unif [0, w]

h(x) - lu-x+bJ

w

If x —ylo <3, Prlh(x) = h(»)] 2

1

3
1
4

If |x —y|, > 4w, Pr[h(x) = h(y)] <




SOLVING THE NEAR NEIGHBOUR

* (r, c) —near neighbour problem

* Given query point g, return all points p such that
d(p,q) < r and none such that d(p,q) > cr

* Solving this gives a subroutine to solve the “nearest

neighbour”, by building a data-structure for each r, in

powers of (1 + €)




HOW TO ACTUALLY USE IT?

* Need to amplify the probability of collisions for “near”

points




BAND CONSTRUCTION

* AND-ing of LSH
* Define a composite function H(x) = (hy(x), ... hy (x))
* Pr[H(x) = Hy)] = II; Pr[h;(x) = h;(y)] = Pr[hy(x) = hy (y)]*

* OR-ing
* Create L independent hash-tables for H;, H,, ... H

* Given query x, search in U; H;(x)




2
I
I
2

I
2
3
I

2
I
I
3

hi
h2
h3
h4

=

0
|
|
|
|

0

0

I
0
0
0
0

I

I

L
—
o
>
<
X
L

A |
B
C
D
E
F
G

0
0
I
I
I
0
0




WHY ISTHIS BETTER?

 Consider x,y with Pr[h(x) = h(y)] =1 —d(x,y)

* Probability of not finding y as one of the candidates in
Uj H] (X)

1 - (1-1-d)k)




‘s CREATING AN LSH

* Query x _log® ;5 g 1
p= o8 (@) L=nP k=1log(n)/log (q)
* If we have a (7, cr,p, q) LSH

* Forany y, with |[x —y| <7,
3
e

* Prob of y as candidate in U; H;(x) = 1 — (1 — p")L >1 —

* Forany z, |x —z| > cr,
* Prob of z as candidate in any fixed H;(x) < q"

* Expected number of such z < Lg* < L =n”

e p<l1




RUNTIME

e Space used = ni*’

= Query time = Tle(k + d) [time for k-hashes & brute force comparison]

1

* We can show that for Hamming, angle etc, p ~ -

» Can get 2-approx near neighbors with 0(v¥n) neighbour

comparisons




LSH: THEORY VS PRACTICE

* In order to design LSH in practice, the theoretical
parameter values are only a guidance

* Typically need to search over the parameter space to find a

good operating point

* Data statistics can provide some guidance.




HIERARCHICAL NAVIGABLE
SMALL WORLD




APPROXIMATE NN SEARCH

- Data (D):
- Many vectors (millions or billions)
* Input (Q):

- One query vector (not necessarily - ‘\,’ . .
from D) o AR
° () °
« Output:
- The k vectors from D that are
closest to Q




SOLUTIONS

Locality sensitive hashing

Space subdivision methods:

e KD-trees

* Slow for high-dimensional data

Proximity Graph based methods
* HNSW

For index compression (not discussed):

* Product quantization.




MOTIVATION: PROBABILITY SKIP LIST

* A linked list structure for fast search and insertion of new elements
* Allows fast search in a sorted array.

» Several layers of linked lists.

* First layer skip many intermediate nodes.

* The number of ‘skips’ decreases in lower layers

» Search: start at the highest layer follow links until you find the element
greater than key.
* Move down the layer and repeat.

looking for 11...

(entry layer)

layer 3 = >
layer 2 — > =
layer 1 e

layer O ——

start




PROXIMITY GRAPH

* Vertices are datapoints

* Edges between datapoints close to each other.

* Search is performed by browsing neighbors for each points.

* Start with an initial point.
* Browse to the neighbor closest to the query point

* Stop when you have reached local minima, i.e. distance to the current node is less than
distance to all neighbors

* K-nearest neighbor graph
* The length of search path is large.

* Not small world.




HIERARCHICAL NAVIGABLE SMALL
WORLD

* The proximity graph should be:
* Navigable Small World graph.

* The maximum distance between any two nodes should be
low.

* PolyLogarithmic scaling during greedy traversal.

* There are high degree nodes which are connected to many
nodes.

* Sometimes, performance degrades due to far entry point.

* Hierarchical NSWV:

* Graphs at different levels with varying sparsity.

* Inspired by skip lists.




HNSW - SEARCH

* Given a HNSW index for a dataset, and query q:
|. Start searching from the top layer with the default entry point.

2. Calculate the entry point to the lower layer from the nearest neighbor found in
previous layer.

3. Repeat from step |.

* For searching the nearest neighbors in each layer:

* Search the neighborhood of each point in the neighborhood of entry point.

* Return a list of ef closest points to query.

* Detailed algorithm in the next slide.




HNSW - SEARCH

Algorithm 5

K-NN-SEARCH(hnsw, g, K, ef)

Input: multilayer graph hnsw, query element g, number of nearest
neighbors to return K, size of the dynamic candidate list ef
Output: K nearest elements to g

1 W<« @ //set for the current nearest elements

2 ep « get enter point for hnsw

3 L« levelofep //top layer for hnsw

4 forle<L...1

5 W « SEARCH-LAYER(g, ep, ef<1, L)

6 ep < getnearest element from W to g

7 W« SEARCH-LAYER(y, ep, ¢f, I =0)

8 return K nearest elements from W to g

Algorithm 2

SEARCH-LAYER(g, ep, ef, L)

Input: query element g, enter points ep, number of nearest to g ele-
ments to return ef, layer number I

Output: ef closest neighbors to g

1 v<ep //setof visited elements

2 C«ep [/ setof candidates

3 Wee¢p // dynamic list of found nearest neighbors

4 while |C| >0

5 ¢« extract nearest element from C to g

6 f <« get furthest element from W to g

7 if distance(c, q) > distance(f, q)

8  break //all elementsin W are evaluated

9 for each e € neighbourhood(c) at layer Ic // update C and W
10 ifeé¢v

11 v—vUe

12 f < get furthest element from W to g

13 if distance(e, q) < distance(f, q) or |W| <ef

14 C—CUe

15 W«—WUe

16 if |W|>ef

17 remove furthest element from W to g
18 return W




HNSW — SEARCH LAYER

Algorithm 2
SEARCH-LAYER(g, ep, ¢f, L)
entry point —> . Input: query element g, enter points ep, number of nearest to g ele-
\ ments to return ef, layer number I
/ \ @ Output: ef closest neighbors to g
O 1 veep /setof visited elements
S O 2 C—ep [/l setof candidates
query vector 3 W«ep //dynamic list of found nearest neighbors
b 4 while [C| >0
/@ 5 ¢« extract nearest element from C to q

f <« get furthest element from W to g

7) ///WV 6
\ 7  if distance(c, q) > distance(f, q)
8 break // all elements in W are evaluated
9

@ for each e € neighbourhood(c) at layer I // update C and W
10 ife¢v
11 v—ovUe
12 f < get furthest element from W to g
13 if distance(e, q) < distance(f, q) or |W| <ef

14 C—CUe

15 W—WUe

16 if |W|>ef

17 remove furthest element from W to g
18 return W




HNSW - INSERT

« The HNSW index is formed by first creating an empty index with no
levels. The parameters are:
* Normalization factor for level generation - m; .

« Maximum number of connections for each datapoint per layer - M,,, ;.

* Randomly select the maximum layer | at which the datapoint is
inserted.

* For each layer from | to O:

* Find the nearest neighbors using entry point to the layer.

« Connect the inserted point to them and shrink each of them to size M,




HNSW - INSERT

Algorithm 1

INSERT (hnsw, q, M, Mmax, efConstruction, mr)

Input: multilayer graph hnsw, new element g, number of established
connections M, maximum number of connections for each element
per layer Mmax, size of the dynamic candidate list efConstruction, nor-
malization factor for level generation mL

Output: update hnsw inserting element g

1 W« @ //list for the currently found nearest elements

2 ep « get enter point for hnsw

3 L« levelofep //top layer for hnsw

4 | < |-In(unif(0..1))-mz| // new element’s level

5 forle—L...1+1

6 W<« SEARCH-LAYER(g, ep, ef<1, I
7  ep < get the nearest element from W to g

8 forl < min(L,I) ... 0

9

10
11
12
13
14

15

16
17

W « SEARCH-LAYER(g, ep, efConstruction, l.)
neighbors «— SELECT-NEIGHBORS(q, W, M, [.) // alg. 3 or alg. 4
add bidirectionall connectionts from neighbors to q at layer I
for each e € neighbors // shrink connections if needed
eConn « neighbourhood(e) at layer lc
if | eConn | > Mmax// shrink connections of e
/1if Ic = 0 then Mmax = Mmaxo
eNewConn «— SELECT-NEIGHBORS(e, eConn, Mmax, Lc)
// alg. 3 or alg. 4
set neighbourhood (e) at layer Ic to eNewConn
ep —W

18ifI>L

19

set enter point for hnsw to q




IMPLEMENTATION NOTES

* FAISS:

* https://github.com/facebookresearch/faiss/wiki/

* L2 Distance based search.
* Many indexes implemented — Flat, IVF, IndexBinaryHash.

* Another key idea is Product quantization:

* Find k-centroids (e.g. using k-means clustering) — expensive

* Encode data as a binary vector by first splitting the vector dimensions and then
encoding each dimension as sign of dot product with all the centroids.

¢ Multi-probe can be used to reduce memory requirement by reducing k.



https://github.com/facebookresearch/faiss/wiki/

FAISS SEARCH: FLAT INDEX

N

Input: vectors

Build index:

import faiss

vector dimension = vectors.shapel[l]

index = failss.IndexFlatLZ (vector dimension)
faiss.normalize L2 (vectors)

index.add (vectors)

Search:
k = index.ntotal
distances, ann = 1ndex.search(query vector, k=k)




FAISS: HNSW

d = 128 # vector size

M = 32 #maximum connectivity of vertices

index = faiss.IndexHNSWFlat (d, M)
index.hnsw.efConstruction = efConstruction
index.add (xb)

# after adding our data the level has been set
print (index.hnsw.max level)
index.hnsw.efSearch = efSearch

# and now we can search

index.search (xqg[:1000], k=1)




HNSW PARAMETERS

recall@1

1.0 = —
.8
M
o - —2
— 8
—32
4 =
- —512
N /
1 Y T T [ T \ T T [ T \ T I |

50 100 150 200 250 250 250
efSearch




HNSW PARAMETERS

5
10°- M
VS
W)
S i
E —8
5 10% —32
=
S
S
A —515
10°
] \ 1 I I J \ A I I J \ A 1 r
50 100 150 200 250 250 250

efSearch




REFERENCES

* Malkov, Yu A., and Dmitry A. Yashunin. "Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs." IEEE transactions on pattern analysis and machine

intelligence 42, no. 4 (2018): 824-836.

* Blog article: https://www.pinecone.io/learn/series/faiss/hnsw/




THANKS

QUESTIONS!?

Email: sourangshu@cse.iitkgp.ac.in



mailto:sourangshu@cse.iitkgp.ac.in

