
NEAREST NEIGHBOR
SEARCH ALGORITHMS

SOURANGSHU BHATTACHARYA

CSE, IIT KHARAGPUR

WEB: HTTPS://CSE.IITKGP.AC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.IITKGP.AC.IN

https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

FINDING SIMILAR ITEMS

DISTANCE MEASURES

¡ Goal: Find near-neighbors in high-dim. space
• We formally define “near neighbors” as

points that are a “small distance” apart

• For each application, we first need to define what
“distance” means

• Today: Jaccard distance/similarity
• The Jaccard similarity of two sets is the size of their

intersection divided by the size of their union:
sim(C1, C2) = |C1ÇC2|/|C1ÈC2|

• Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

3

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

TASK: FINDING SIMILAR DOCUMENTS

4

ENCODING SETS AS BIT VECTORS

5

FROM SETS TO BOOLEAN
MATRICES

• Rows = elements (shingles)

• Columns = sets (documents)
• 1 in row e and column s if and only if e is a

member of s

• Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

• Typical matrix is sparse!

• Each document is a column:
• Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

6

0101
0111
1001

1000
1010
1011
0111

Documents

Sh
in

gl
es

HASHING COLUMNS (SIGNATURES)

7

8

MIN-HASHING

THE MIN-HASH PROPERTY

• Choose a random permutation p

• Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2)

• Why?
• Let X be a doc (set of shingles), yÎ X is a shingle

• Then: Pr[p(y) = min(p(X))] = 1/|X|

• It is equally likely that any yÎ X is mapped to the min element

• Let y be s.t. p(y) = min(p(C1ÈC2))

• Then either: p(y) = min(p(C1)) if y Î C1 , or

 p(y) = min(p(C2)) if y Î C2

• So the prob. that both are true is the prob. y Î C1 Ç C2

• Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2)

10

01

10

00

11
00

00

One of the two
cols had to have
1 at position y

FOUR TYPES OF ROWS

• Given cols C1 and C2, rows may be classified as:
 C1 C2

 A 1 1
 B 1 0
 C 0 1
 D 0 0
• a = # rows of type A, etc.

• Note: sim(C1, C2) = a/(a +b +c)
• Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

• Look down the cols C1 and C2 until we see a 1

• If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not

11

12

SIMILARITY FOR SIGNATURES

13

MIN-HASHING EXAMPLE

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1321

5

7

6

3

1

2

4

1312

4

5

1

6

7

3

2

1313

0101

0101

1010

1010

1010
1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

MIN-HASH SIGNATURES

14

LOCALITY SENSITIVE
HASHING

LSH: FIRST CUT

16

CANDIDATES FROM MIN-HASH

17

LSH FOR MIN-HASH

18

PARTITION M INTO B BANDS

Signature matrix M

r rows
per band

b bands

One
signature

PARTITION M INTO BANDS

20

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

HASHING BANDS

SIMPLIFYING ASSUMPTION

22

EXAMPLE OF BANDS

23

C1, C2 ARE 80% SIMILAR

• Find pairs of ³ s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.8
– Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate pair: We want them to hash to at

least 1 common bucket (at least one band is identical)

• Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20 bands: (1-0.328)20 = 0.00035
– i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

– We would find 99.965% pairs of truly similar documents

24

C1, C2 ARE 30% SIMILAR

• Find pairs of ³ s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band: (0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 =
0.0474

– In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming
candidate pairs

• They are false positives since we will have to examine them (they are candidate
pairs) but then it will turn out their similarity is below threshold s

25

LSH INVOLVES A TRADEOFF

26

ANALYSIS OF LSH – WHAT WE WANT

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

27

WHAT 1 BAND OF 1 ROW GIVES YOU

28

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

B BANDS, R ROWS/BAND

29

WHAT B BANDS OF R ROWS GIVES YOU

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

30

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

EXAMPLE: B = 20; R = 5

• Similarity threshold s

• Prob. that at least 1 band is identical:

31

s 1-(1-sr)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

PICKING R AND B: THE S-CURVE

• Picking r and b to get the best S-curve
• 50 hash-functions (r=5, b=10)

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

LSH SUMMARY

33

SUMMARY: 3 STEPS

• Shingling: Convert documents to sets
• We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short signatures, while
preserving similarity

• We used similarity preserving hashing to generate signatures with
property Pr[hp(C1) = hp(C2)] = sim(C1, C2)

• We used hashing to get around generating random permutations

• Locality-Sensitive Hashing: Focus on pairs of signatures likely
to be from similar documents

• We used hashing to find candidate pairs of similarity ³ s

34

GENERALIZATION OF LSH

LOCALITY SENSITIVE HASHING

• Originally defined in terms of a similarity function
[C’02]

• Given universe 𝑈 and a similarity 𝑠: 𝑈×𝑈 → [0,1] ,
does there exist a prob distribution over some
hash family 𝐻	such that

36

Pr
!∈#

ℎ 𝑥 = ℎ 𝑦 = 𝑠(𝑥, 𝑦)

𝑠 𝑥, 𝑦 = 1	 → 𝑥 = 𝑦
𝑠 𝑥, 𝑦 = 𝑠(𝑦, 𝑥)	

LOCALITY SENSITIVE HASHING

• Hash family 𝐻	is locality sensitive if

• Not clear such functions exist for all distance functions

Pr ℎ 𝑥 = 	ℎ 𝑦 is high if 𝑥	is close to 𝑦

Pr ℎ 𝑥 = ℎ 𝑦 is low if 𝑥	is far from 𝑦

[Indyk Motwani]

HAMMING DISTANCE

• Points are bit strings of length 𝑑

• 𝐻 𝑥, 𝑦 = | 𝑖, 𝑥! ≠ 𝑦! | 𝑆" 𝑥, 𝑦 = 1	 − " #,%
&

• Define a hash function ℎ by sampling a set of positions
• 𝑥 = 1011010001, 𝑦 = 0111010101
• 𝑆 = 1,5,7
• ℎ 𝑥 = 100, ℎ 𝑦 = 100

38

LSH FOR HAMMING DISTANCE

• The above hash family is locality sensitive, 𝑘 = |𝑆|

39

Pr ℎ 𝑥 = ℎ 𝑦 = 1	 −
𝐻 𝑥, 𝑦
𝑑

!

LSH FOR ANGLE DISTANCE

• 𝑥, 𝑦 are unit norm vectors

• 𝑑 𝑥, 𝑦 = cos"# 𝑥 ⋅ 𝑦 = 𝜃

• 𝑆 𝑥, 𝑦 = 1	 − 𝜃/𝜋

• Choose direction 𝑣	uniformly at random
• ℎ! 𝑥 = 𝑠𝑖𝑔𝑛 𝑣 ⋅ 𝑥

• Pr ℎ! 𝑥 = ℎ! 𝑦 = 1	 − 𝜃/𝜋

40

ASIDE: PICKING A DIRECTION
U.A.R.

• How to sample a vector 𝑥 ∈ 𝑅3, 𝑥 4 = 1	and the direction
is uniform among all possible directions

• Generate 𝑥 = 𝑥5, … . 𝑥3 , 𝑥6 ∼ 𝑁(0, 1) iid

• Normalize 7
7 !

• By writing the pdf of the d-dimensional Gaussian in polar form, easy to see
that this is uniform direction on unit sphere

41

WHICH SIMILARITIES ADMIT LSH?

• There are various similarities and distance that are used in
scientific literature

• Encyclopedia of distances DL’11

• Will there be an LSH for each one of them?

• Similarity is LSHable if there exists an LSH for it

42

[slide courtesy R. Kumar]

LSHABLE SIMILARITIES

Thm: S is LSHable à 1 – S is a metric

Fix hash function ℎ ∈ 𝐻 and define
Δ8 𝐴, 𝐵 = [ℎ 𝐴 ≠ ℎ 𝐵]
1	 − S A, B = Pr

8
[Δ8 𝐴, 𝐵]

Also
Δ8 𝐴, 𝐵 + Δ8 𝐵, 𝐶 ≥ Δ8 𝐴, 𝐶

43

𝑑 𝑥, 𝑦 = 0	 → 𝑥 = 𝑦
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑(𝑥, 𝑧)

EXAMPLE OF NON-LSHABLE
SIMILARITIES

• 𝑑 𝐴,𝐵 = 1	 − 𝑠(𝐴, 𝐵)

• Sorenson-Dice : 𝑠 𝐴, 𝐵 = ! "∩$
" % $

• Ex: 𝐴 = 𝑎 ,𝐵 = 𝑏 , 𝐶 = {𝑎, 𝑏}

• 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐵, 𝐶 = 𝑠 𝐴, 𝐶 = !
&

• Overlap: 𝑠 𝐴, 𝐵 = "∩$
'() " , $

• 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐴, 𝐶 = 1 = 𝑠(𝐵, 𝐶)

44

GAP DEFINITION OF LSH

• A family is 𝑟, 𝑅, 𝑝, 𝑞 LSH if

Pr
5∈#

ℎ 𝑥 = ℎ 𝑦 ≥ 𝑝	𝑖𝑓	𝑑 𝑥, 𝑦 ≤ 𝑟	

Pr
5∈#

ℎ 𝑥 = ℎ 𝑦 ≤ 𝑞	𝑖𝑓	𝑑 𝑥, 𝑦 ≥ 𝑅	

Here 𝑝 > 𝑞.

45

IMRS’97, IM’98, GIM’99

GAP LSH

• All the previous constructions satisfy the gap definition

• Ex: for 𝐽𝑆 𝑆, 𝑇 = 9∩;
9∪;

Hence is a 𝑟, 𝑅, 1 − 𝑟, 1 − 𝑅 	LSH

46

𝐽𝐷 𝑆, 𝑇 ≤ 𝑟 → 𝐽𝑆 𝑆, 𝑇 ≥ 1	 − 𝑟 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≥ 1	 − 	𝑟

𝐽𝐷 𝑆, 𝑇 ≥ 𝑅 → 𝐽𝑆 𝑆, 𝑇 ≤ 1	 − 𝑅 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≤ 1	 − 𝑅

L2 NORM

• 𝑑 𝑥, 𝑦 = √(∑+ 𝑥+ − 𝑦+ !	

• 𝑢 =	random unit norm vector, 𝑤 ∈ 𝑅 parameter, 𝑏 ∼ 𝑈𝑛𝑖𝑓[0,𝑤]

• ℎ 𝑥 = ⌊,⋅.%/
0

⌋

• If 𝑥	 − 𝑦 ! <
0
!
,	 Pr ℎ 𝑥 = ℎ 𝑦 ≥ 1

&

• If 𝑥	 − 𝑦 ! > 4𝑤, Pr ℎ 𝑥 = ℎ 𝑦 ≤ 1
2

47

SOLVING THE NEAR NEIGHBOUR

• 𝑟, 𝑐 −near neighbour problem
• Given query point 𝑞,	return all points 𝑝 such that
𝑑 𝑝, 𝑞 < 𝑟 and none such that 𝑑 𝑝, 𝑞 > 𝑐𝑟
• Solving this gives a subroutine to solve the “nearest

neighbour”, by building a data-structure for each 𝑟	, in
powers of (1 + 𝜖)

48

HOW TO ACTUALLY USE IT?

• Need to amplify the probability of collisions for “near”
points

49

BAND CONSTRUCTION

• AND-ing of LSH

• Define a composite function 𝐻 𝑥 = (ℎN 𝑥 ,…ℎO 𝑥)

• Pr 𝐻 𝑥 = 𝐻 𝑦 = ΠP Pr ℎQ 𝑥 = ℎQ 𝑦 = Pr ℎN 𝑥 = ℎN 𝑦 O

• OR-ing

• Create 𝐿	independent hash-tables for 𝐻N, 𝐻R, …𝐻S
• Given query 𝑥, search in ∪T 𝐻T(𝑥)

50

EXAMPLE

51

S
1

S
2

S
3

S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S3

h1 1 2 1 2

h2 2 1 3 1

S1 S2 S3 S3

h3 3 1 2 1

h4 1 3 2 2

WHY IS THIS BETTER?

• Consider x, 𝑦 with Pr ℎ 𝑥 = ℎ 𝑦 = 1	 − 𝑑(𝑥, 𝑦)

• Probability of not finding 𝑦	as one of the candidates in

∪T 𝐻T 𝑥 	

 1	 − 1 − 1 − 𝑑 O S

52

CREATING AN LSH

• Query 𝑥

• If we have a (𝑟, 𝑐𝑟, 𝑝, 𝑞)	LSH

• For any 𝑦,	with 𝑥	 − 𝑦 < 𝑟,	

• Prob of 𝑦 as candidate in ∪$ 𝐻$ 𝑥 ≥ 1 − 1 − 𝑝! %
 ≥ 1	 − #

&

• For any 𝑧, 𝑥	 − 𝑧 > 𝑐𝑟,
• Prob of 𝑧	as candidate in any fixed 𝐻$(𝑥) ≤ 𝑞!

• Expected number of such 𝑧 ≤ 𝐿𝑞! ≤ 𝐿 = 𝑛'

• 𝜌 < 1

53

𝜌 = "#$ %
"#$ &

	 𝐿 = 𝑛' 𝑘 = log 𝑛 / log (
&
	

RUNTIME

• Space used = 𝑛NUV

• Query time = 𝑛V×(𝑘 + 𝑑) [time for k-hashes & brute force comparison]

• We can show that for Hamming, angle etc, 𝜌 ≈ N
W

• Can get 2-approx near neighbors with	𝑂(√𝑛) neighbour
comparisons

54

LSH: THEORY VS PRACTICE

• In order to design LSH in practice, the theoretical
parameter values are only a guidance

• Typically need to search over the parameter space to find a
good operating point

• Data statistics can provide some guidance.

55

HIERARCHICAL NAVIGABLE
SMALL WORLD

APPROXIMATE NN SEARCH

● Data (D):
– Many vectors (millions or billions)

Input (Q):●

– One query vector (not necessarily
from D)

Output:●

– The k vectors from D that are
closest to Q

SOLUTIONS

• Locality sensitive hashing

• Space subdivision methods:
• KD-trees

• Slow for high-dimensional data

• Proximity Graph based methods
• HNSW

• For index compression (not discussed):
• Product quantization.

MOTIVATION: PROBABILITY SKIP LIST

• A linked list structure for fast search and insertion of new elements
• Allows fast search in a sorted array.

• Several layers of linked lists.
• First layer skip many intermediate nodes.

• The number of ‘skips’ decreases in lower layers

• Search: start at the highest layer follow links until you find the element
greater than key.

• Move down the layer and repeat.

PROXIMITY GRAPH

• Vertices are datapoints
• Edges between datapoints close to each other.

• Search is performed by browsing neighbors for each points.
• Start with an initial point.

• Browse to the neighbor closest to the query point

• Stop when you have reached local minima, i.e. distance to the current node is less than
distance to all neighbors

• K-nearest neighbor graph
• The length of search path is large.

• Not small world.

HIERARCHICAL NAVIGABLE SMALL
WORLD

• The proximity graph should be:
• Navigable Small World graph.

• The maximum distance between any two nodes should be
low.

• PolyLogarithmic scaling during greedy traversal.

• There are high degree nodes which are connected to many
nodes.

• Sometimes, performance degrades due to far entry point.

• Hierarchical NSW:

• Graphs at different levels with varying sparsity.

• Inspired by skip lists.

HNSW - SEARCH

• Given a HNSW index for a dataset, and query q:
1. Start searching from the top layer with the default entry point.

2. Calculate the entry point to the lower layer from the nearest neighbor found in
previous layer.

3. Repeat from step 1.

• For searching the nearest neighbors in each layer:
• Search the neighborhood of each point in the neighborhood of entry point.

• Return a list of ef closest points to query.

• Detailed algorithm in the next slide.

HNSW - SEARCH

HNSW – SEARCH LAYER

HNSW - INSERT

• The HNSW index is formed by first creating an empty index with no
levels. The parameters are:

• Normalization factor for level generation - 𝑚".

• Maximum number of connections for each datapoint per layer - 𝑀#$%.

• Randomly select the maximum layer l at which the datapoint is
inserted.

• For each layer from l to 0:
• Find the nearest neighbors using entry point to the layer.

• Connect the inserted point to them and shrink each of them to size 𝑀#$%.

HNSW - INSERT

IMPLEMENTATION NOTES

• FAISS:
• https://github.com/facebookresearch/faiss/wiki/

• L2 Distance based search.

• Many indexes implemented – Flat, IVF, IndexBinaryHash.

• Another key idea is Product quantization:
• Find k-centroids (e.g. using k-means clustering) – expensive

• Encode data as a binary vector by first splitting the vector dimensions and then
encoding each dimension as sign of dot product with all the centroids.

• Multi-probe can be used to reduce memory requirement by reducing k.

https://github.com/facebookresearch/faiss/wiki/

FAISS SEARCH: FLAT INDEX

Input: vectors

Build index:

import faiss

vector_dimension = vectors.shape[1]

index = faiss.IndexFlatL2(vector_dimension)

faiss.normalize_L2(vectors)

index.add(vectors)

Search:

k = index.ntotal

distances, ann = index.search(query_vector, k=k)

FAISS: HNSW

d = 128 # vector size

M = 32 #maximum connectivity of vertices

index = faiss.IndexHNSWFlat(d, M)

index.hnsw.efConstruction = efConstruction

index.add(xb)

after adding our data the level has been set

print(index.hnsw.max_level)

index.hnsw.efSearch = efSearch

and now we can search

index.search(xq[:1000], k=1)

HNSW PARAMETERS

HNSW PARAMETERS

REFERENCES

• Malkov, Yu A., and Dmitry A. Yashunin. "Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs." IEEE transactions on pattern analysis and machine
intelligence 42, no. 4 (2018): 824-836.

• Blog article: https://www.pinecone.io/learn/series/faiss/hnsw/

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in

mailto:sourangshu@cse.iitkgp.ac.in

