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Submodular Subset
Selection

Slides taken from 1JCAI 2020 tutorial by
Rishabh lyer and Ganesh Ramakrishnan



Combinatorial Subset Selection Problems
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f:2V 3R Choose Subset A C V

f(A4) is maximum

General Set function Optimization: very hard!

What if there is somespedalstructure?



Submodular Functions

F(AUV) — f(A) > F(BU V) — f(B), f AC B

f = # of distinct colors of balls in the urn.

Negative of a
Submodular
Functionisa
Supermodular
Function!



Equivalent Definitions of Submodularity

. Diminishing gains: forall A, B CV . tes

fF(AUV) — f(A) > f(BUV) — f(B), if AC B

- Union-Intersection: forall A. B CV

( )+f( )> f(AU B) + f(AN B)

+2f _fAHB q
i 0‘:




Equivalent Definitions of Submodularity

Lemma: The above definitions for submodularity are equivalent.

Proof: We first assume that for all A, B C S, we have
f(ANB)+ f(AUB) < f(A) + f(B).
Suppose that A C B, then for any ¢ € S \ B, we have that

f(AULi}) + f(B) 2 f(AUB U {i}) + f((AU{i}) N B)
= f(BU{i}) + f(4),

where the equality holds since A C B.



Equivalent Definitions of Submodularity

We now assume that

fF(AU{i}) — f(A) = f(BU{i}) — f(B)
foreach AC BC Sandie€ S\ B.
Consider any two sets A and B. If A\ B = (), then we have A C B, and thus

f(ANB) + f(AUB) = f(4) + f(B) < f(A) + f(B).

Otherwise, let B\ A = {v1,v3,...,v,} and denote X; = {vy,vo,...,v;} and Xy = 0. Since
(AN B)UX; C AU X; We thus have
fF(ANB)UX;U{vita}) — F((ANB)U X;) > f((AUX;) U{vita}) — F((AUXY),

that is
f((ANB)UXip1) — F((ANB)UXy) > f(AU Xiq1) — f(AUXG).

Summing from i = 0 to n — 1, and we yield
F((ANB)UX,) — f(AN B) = f(AU Xy) — f(A).
Combined with X,, = B\ A, we have

f(ANB) + f(AU B) < f(A) + f(B).



Modular Functions

« each element e has a weight w(e) a
F(S) = i
es

e

ACB
F(AUe) — F(A)=w(e) = F(BUe)— F(B)=w(e)

Modular Functions are both submodular and supermodular!



Monotone Submodular Functions

@ A set function is called monotonic if
ACBCV = F(A) < F(B)

¢ Examples:
® Influence in social networks [Kempe et al KDD 03]

® For discrete RVs, entropy F(A) = H(X,) is monotonic:
Suppose B=A U C. Then
F(B) = H(X,, Xc) = H(X,) + H(X. | X,) > H(X,) = F(A)

® Information gain: F(A) = H(Y)-H(Y | X,)



Instantiations of Submodular Functions

(] Representation Functions
0 Facility Location Function (k-mediods
clustering)
O Graph Cut Family, Saturated Coverage

O Diversity Functions

W Dispersion Functions (Min, Sum, Min-
Sum)
[ Determinantal Point Processes

O Coverage Functions
 Set Cover Function
L Probabilistic Set Cover Function
(] Feature Based Functions

O Importance Functions
) Modular Functions

] Information Functions
J Mutual Information

[ Entropy

] Discounted Cost Functions
() Clustered Concave over Modular Functions

) Cooperative Costs and Saturations

) Complexity Functions
() Bipartite Neighborhood Functions



Representation Functions

2 0
Facility Location D icy MAXpeX Sik
Saturated Coverage Z:Ziev iﬂin{Zjex 2851 a;} Representation Functions
Graph Cut ADiev 2iiex Sii — Qijex Sij . .
1 Picks Centroids

Similarity Kernel lyer 2015, Kaushal et al 2019, Tschiatchek et d2014, ...



Diversity Functions: Dispersion
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Dispersion Sum and Dispersion Min Not Submodular!

Diversity Functions
Picks items as different as possible!

Dasgupta et al 2013, Chakraborty et al 2015



Coverage Functions

Cat Dog Bird Man Beach.....
. . . . . . cee . ' Male @i oh i Vs s BERETR VR .'..".".
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Set Cover Function

f(X) = w(UiexUs;), :
1 Coverage Functions
Concepts Covered by Instance i

73 Female

Selectinstances which “cover” dconcepts
Wolseyet d1982, ...



Feature Based Functions

Input
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Feature Based Functions

ffea(s) - Z g(my(S)).

uel '

Total Contribution of Feature u in the Set of Images S

Layer 7

Gutput

Achieve
Uniformity in
Feature
Coverage

Wei-lyer et d2014...



Information Functions

Xi,...,Xn discrete random variables: X, € {1,...,m}
F(S) = H(Xg) = joint entropy of variables indexed by S

ACB,e¢ B F(AUe)— F(A) > F(BUe) — F(B)??

H(Xave) —H(X4a) =H(X.|Xa)
< H(X.|Xp) ‘information never hurts”
= H(XBue) — H(XB)

discrete entropy is submodular!
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Entropy

Mutual Information
Information Gain

Krause et d2008, ...



Master Optimization Problem

Set Function F Models:
—— Selected set e
max F'(A) o
ACY * Representation

Selection cost————, Budget * Coverage
i e g
subject to C(A) <B * Information

[ ]
F = Monotone Submodular, Importance

Non Monotone Submodular,
Dispersion Functions,

We shall study this and variants of this Master Optimization Problem!



Monotone Submodular Maximization

max F(S) st. |S| <k

What is the Constraint?
C(S) = |S|

e greedy algorithm:

= F(S; U
o =g M (5; U {e})

Sipq1 = 5; U {6*}

Approximation

How “good” is Sk ?

Guarantee!



How good is Greedy in Practice?

empirically:
9
8l optimal sensor placement
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Number of sensors placed



How good is Greedy in Theory?

max F(S) s.t. |S| <k

Theorem (Nemhauser, Fisher, Wolsey "78)

F monotone submodular, S; solution of greedy. Then

F(Sx) = (1 - 1) F(S”)

(& \
optimal solution

No Poly-time algorithm can do better than this in the worst case!




Proof (Nemhauser et al 1978)

Let:

e A, = ('vl I 'uz-) be the the chain formed by the greedy algorithm, as defined
above

« A" = (v}, v},...,v}) be the optimal solution, in an arbitrary order

« f be a monotone submodular function. Let f > 0 (Update on 04/25/2019: | thought
this was w.l.0.g., but Andrey Kolobov pointed out that we actually need f to be non
negative)

« OPT = f(A*), the value of the optimal solution.

We will prove that

f(Ay) > (1 - 1/e)OPT

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

Forall 2 < k, we have:

f(A*) < f(A* U A; ) Monotonicity
+ZA vi|Ai U{v],v5,...,v; ,})
o-E Z A(z|A;) Using submodularity
zeA"
< f(4i) + Z A(vit1]4i) Vitl = ArgMmayey\ 4 A(v|4;)
ze A"

= f(A:) + kA(vit1]4:)

Rearranging the terms, we have proved that

A(vinl4s) > 7 (OPT - (4)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

/ Part | \ / Part Il \

1\*
Now we define 6; = OPT — f(A;). This implies = O < (1 B E) %o
0;i — dip1 = f(Air1) — f(Ai) = A(vi1|Ai)
1\* 1
Plugging this into our previous equation, we have: |:> 0 < | 1— E OPT < EOPT
[ |
= 6= i > (%) = OPT — f(4;) < Lopr
e
1
D> b < (1— )i —> f(Ag) > (1 — 1) OPT
e

- AN /

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/




Monotone Submodular — Budget Constraints

max F(S) s.t. Zce

ecS

1. run greedy: S
2. run a modified greedy: § SVIrldenkO 2004:

d
e Run the cost-sensitive
greedy algorithm starting

3 F(S; U{e}) — F(S;) with all possible initial sets
e’ = arg max {ij,k}
C(@) 1)
_ « 0(nd)initial complexity
3. pick better of Sgr’ Smod * (1-1/e)approximation!
even better but less fast:
=>» approximation factor: partial enumeration

(Sviridenko, 2004) or
— (1 — —) filtering (Badanidiyuru &
Vondrak 2014)

Sviridenko 2004, Leskovec et al 2007



Summary: Greedy Algorithm Framework

Monotone Submodular Function

!
max f(S)
SCV.o(S)<B

Cost of Summary Subset S (e.g. size)

Problem Formulation

Initialization S « 0.

repeat

Pick an element v* € argmax, s
Update S <+ SuU v*

until Reaching the budget, i.e., ¢(S) > B

f(vUS)—£(S)
c(v)

Greedy Algorithm




Non-Monotone Submodular Functions

max F(S) s.t. |[S| <k

Start with Yy = 0
for:=1 to k do

Let M; = argmax y cy\y;_,,|X|=k ZUGX f(v|Y}_1);

Choose y as a uniformly random element in M;;

| Ya=Ye Uy

return Y.

Theorem (Buchbinder et al 2014): The Randomized Greedy Algorithm achieves a 1/e approximation
guarantee for Non-Monotone Submodular Maximization subject to cardinality constraints!



Data subset selection



Make ML Data Efficient and Robust

Data Model Model Model
Preparation Training Validation Deployment
1. Data Labeling L. qu?I Selection 1. Deployment Infra
2. Feature Engineering 2. Training Budget Often repeated for 2. Latency & Memory

3. Batch sizes, Partitions hyper-parameter tuning

Production Systems Constraints
Data Labeling .=> Time Consuming, Expensive, Noisy under these constraints
Feature Selection => Latency & Memory without sacrificing
Model Training => Compute Intensive and Time Consuming on accuracy?
Hyper-Parameter Tuning/NAS => Very Time Consuming

Distribution Shift => Deployment vs Training

Can we train Models

LW e



Data Subset Selection Setup

A Machine Learning model characterized by model parameters

Training Data: {(Qj‘“ yi),i - L{} Training log-likelihood function: LLT(Q,Z/{)

Training a machine learning model often reduces to finding the parameters that
maximizes a log-likelihood function for given training data empirically.

0* = argmax LL1(0,U)
0
Validation Data: {(x;,%;),% € V} Validation log-likelihood function: LLy (6, V)

Goal: Select a subset S C U such that the resulting model performs the best!



Requirements for optimal subset
selection

1. The subset selection algorithm needs to be as fast as possible.
* Subset Selection time <<<< Full training time

Example: Subset selection algorithm with negligible time complexity
Training on 10 % Subset mmmm) ()¢ Faster training

2. Theoretical guarantees of subset selection algorithm.
* Can we show theoretical guarantees for subset selection algorithms?



Approaches for Data Subset Selection

O Several different kinds of approaches studied in literature:
L Approach 1: Use Submodular Functions as proxy functions for data subset selection

O Approach 2: Choose data subset which approximates the gradient of the entire dataset

O Approach 3: Choose data subset which approximates the performance on full training
dataset (or validation set) as a bi-level optimization!

U Approach 4: Choose data subset which minimizes a suitable divergence (e.g. KL
divergence) between the distribution induced by the subset and full data!
O Types of Data Selection
1 Supervised (Using the labels)
L Unsupervised (No access to labels)
[ Validation based (Access to a validation set for focusing on generalization)



|dea: Gradient Matching/ CoreSets

Can we obtain a weighted
gradient of a subset of points that
approximates the full gradient?

> wiVyLip(0) ~ VoL (0)

1€ X5

Sivasubramaniam & Killamsetty et. al. 2021, Mirzasoleiman et al 2020



Gradient Matching: Main Idea

The theorem indicates that an effective data selection algorithm
should try to have a low error Err(w!, X;, L, L7, 6,) for

t=1,---.,T. Thus, we can pose the problem as,
w', X; = min Err(w,X,L,Lr,0;)
w,X:| X|<k

: t )
= o o w; VoLy(0;) — VoL(6
BB 2 wiVeLi(8) — VoL(60)]
1C At

Sivasubramaniam & Killamsetty et. al. 2021



Directly Optimizing Gradient Error: GradMatch

Define the regularized version of our objective:

E\(X) = min || Y~ wiVoLr(8:) = VoL(6y)||” + Al|w'||
1€ X

N e

Ey(Xt,wt)

This problem can be solved efficiently using Orthogonal Matching
Pursuit (OMP) described as,

1.

o o B 00

Find projection of r = VyL%.(6;) for each i € W along VyL(6;) and
chose the 7 with whom projection is maximum and add it X

Solve linear regression problem to find w! for i € Xs.

Set r = V@L(@t) — ZieXt ”LU%V@LzT(Qt)

Repeat the steps with new r until the |r| < e or | X| < k(budget)
Return X, w;

Sivasubramaniam & Killamsetty et. al. 2021



R W N

Orthogonal Matching Pursuit

The OMP algorithm

Algorithm 1: OMP(A,b)

Input: A,b

Result: x;

Initialization ro = b, A = @;

Normalize all columns of A to unit La norm;

Remove duplicated columns in A ;

for k=1,2,... do

Step-1. \; = argmax |(aj,rk_1)
JEM 1

Step-2. Ay = A1 U {)\k};

Step-3. xx(i € Ag) = argmin ||Ap, x — bll2, xx(i € Ag) =0;

X

Step-4. by = Axy;
Step-5. rp «— b — Bk;
end




Convex DSS



Aim

* We study the problem of data efficient training of
autonomous driving systems.

* Training using many frames on straight road sections may
not be necessary. Frames at the turns turn out to be useful.

P - ——

REDUNDAN INFORMATIV
T E
Method Train One-Turn Test One-Turn
Uniform Skip 3/10 5/10

In the context of edge device deployment, multi-criteria online

subset selection (OSS) framework can be useful in selecting
Informative frames, essential for an end-task.



Subset selection on Edge devices

O
)
‘ Incoming!videc

frames/ data
points

Trained
E 3 model

——— i — —
- -

-
-~ —
T - - - —

Pairwise
Distances

Pointwise
Losses

Multi-Criteria OSS

l

Selected incoming video
frames / data points

Reduced video / | L
dataset |

Task specific
models
E.g. driving model, |,
semantic
segmentation model,

/
\

el -
- - -

Adding to existing data




High Level Idea

* Glven a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.



Problem Setup

« X;:the set of incoming datapoints at time t (Size m)
o D: set of all data points (Size N)
e R;:Reduced set of data at time' t

o d;;: Distance between data points | and j.

o z;j: Indicator variable indicating that datapoint i is a
representative for datapoint j.



Convex Subset Selection

o Original formulation in set notation:

min \|S| + E min d;;,
SCD L ics
j€D

 Formulation using indicator random variables z;;:

{zi5}

/véED jeED €D

Size regularizer

N
s.t. 25 €{0,1}, Y z;=1, Vi,j€D.
1=1

o« Convex relaxation:
0< Zij <1



Online Subset Selection

e Attimet:
R;_q: old set (denoted by superscript o)
X;:in the new set (denoted by superscript n)

R;: the new reduced set that we are trying to compute using z;;
Rt — Rt—l U {l (S thzl] — 1}

o Revised formulation:

Jénc Z Z don o*n,_|_ Z Z dnn :;n,

3680 JGD 1€D,p JGD

min Joo + A D0 1| [ 25" -],

i€Dn €0 = R¢—1

s.t. 23", 27 €{0,1}, Vi, j, Dn = X

Zz,ij?n—l— Zz%’”zl, V4 €D,,

i€€o 1€Dn



High Level Idea

* Glven a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.

* Highest task-specific loss ensures having situational tasks
needed to be learnt more by the model.



TMCOSS

Adopts a facility location objective involving multiple criteria
IR

rmn?(z z”)s t. EZIJ+EZH—1’ZIJ ZIJE[O 1]; Z”[Z]d sz]llp_frac m

N | -

' [ mpression Rati

Obijective function Constraint 1 Constraint 2 Compression Ratio

0 — l Denotes j from existing set o is a representative of element i from incoming set n
ZU
Z:’? = 1 Denotes j from incoming set n is a representative of element i from incoming setn

)

I [Rl |R [
G2 =p( Y Y 20d3(0) + Z 2d(0) = (1= p)( Y ST* L7+ E Sp* L) where, 57 = _m.nw Zz ), 8" = _m.n{f Z "

i=1 j=1 ij=1 =1 j=1 =1

Dissimilarity Representative power of element j

Task specific Loss thresholded by €



Justification for thresholding

TI'““'_""'“ I Ler = f"““r iy i ”i”' “-”fr”””'l solutian for for- Corollary 1.1 Ler : ;') and = " be the optimal solution for
mulation 1. A new frame 3 € Xy is selected as a repre-

o . ! T . . i on I. A new r"\, s I8 selected as a rep-
sentative frame for af least one incoming frame 1 € X, j( J "“I(”.I "l A ’_( ‘f’ waed '\' +1 l (.l( cie d‘ 4 (l-l(/
ie =z =1, only if BOTH these conditions held: resentative frame for at least one incoming frame i € X t+1,

) . o N i.e. ziy = 1, only if BOTH these conditions hold:

* For some incoming frame i € Xoyq . Q7 < QF. for

B}
all ' € Xygy and §' # 3 o L} > LY forall j' € X¢yy and j' # j
. r‘-r_lII:I some {rr:'nrrr{ufg _ﬁ-.um_- i € XNy @, < . [P )BT A 4 o | P | B
Vo By l."'\:'."n""_k Iz 4 ”zu !l
25 Il

hoye: = :
where k= u.lt,lrrr.'.rr_lzl_l::‘}EJ','_J,. and |2_'r'||l where k = “"/"”"er—l -

m n
o P E Ay
P R =1 “%"3

o=~ Zm,j lllp

0

and |z}|, =

Multi-criteria OSS (MCOSS)!

Qi = pd; — (1 —p)L; {,—pd" (1-p)L’
m |R|

min ) ) 2200+ Zz "y )
ij=1

-2
22 i=1 j=1 -

J=
8]

5.1, Zziu,+z = 1,Vi € X220, € [0,1], Vil j

Jj=1

1. soumiDas, Sayan Mondal, Ashwin Bhoyar, Madhumita Bharde, Niloy Ganguly, Suparna Bhattacharya, Sourangshu Bhattacharya, "Multi-criteria onlineframe-subset
selection for autonomous vehicle videos." Pattern Recognition Letters 133 (2020): 349-355.
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