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Combinatorial Subset Selection Problems

V = { } A= {
Choose Subset

}

General Set function Optimization: veryhard!

What if there is some specialstructure?

𝑓(𝐴) is maximum



Submodular Functions

Negative of a  
Submodular  
Function is a  

Supermodular  
Function!



• Diminishing gains: for all

• Union-Intersection: for all
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Equivalent Definitions of Submodularity



Equivalent Definitions of Submodularity

Lemma: The above definitions for submodularity are equivalent.



Equivalent Definitions of Submodularity



Modular Functions

Modular Functions are both submodular and supermodular!



Monotone Submodular Functions



Instantiations of Submodular Functions

❑ Representation Functions
❑ Facility Location Function (k-mediods

clustering)
❑ Graph Cut Family, Saturated Coverage

❑ Diversity Functions

❑Dispersion Functions (Min, Sum, Min-
Sum)

❑ Determinantal Point Processes

❑ Coverage Functions
❑ Set Cover Function
❑ Probabilistic Set Cover Function
❑ Feature Based Functions

❑ Importance Functions
❑ Modular Functions

❑ Information Functions

❑ Mutual Information

❑ Entropy

❑ Discounted Cost Functions

❑ Clustered Concave over Modular Functions

❑ Cooperative Costs and Saturations

❑ Complexity Functions

❑ Bipartite Neighborhood Functions



Representation Functions

Picks Centroids
Iyer 2015, Kaushal et al 2019, Tschiatchek et al 2014, …Similarity Kernel



Diversity Functions: Dispersion

Dispersion Sum and Dispersion Min Not Submodular!

Outliers

Clusters

Picks items as different as possible!
Dasgupta et al 2013, Chakraborty et al 2015



Coverage Functions

Select instances which “cover” allconcepts

Wolsey et al 1982, …

Cat Dog Bird Man Beach…..
…

…

Set Cover Function

Concepts Covered by Instance i



Feature Based Functions

Achieve  
Uniformity in  

Feature  
Coverage

Feature Based Functions

Total Contribution of Feature u in the Set of Images S

Wei-Iyer et al 2014…



Information Functions

Entropy
Mutual Information  
Information Gain
…

Krause et al 2008,…



Master Optimization Problem

F Models:
• Diversity
• Representation
• Coverage
• Information
• Importance
• …

We shall study this and variants of this Master Optimization Problem!



Monotone Submodular Maximization

What is the Constraint?  
C(S) = |S|

Approximation  
Guarantee!



How good is Greedy in Practice?



How good is Greedy in Theory?

No Poly-time algorithm can do better than this in the worst case!



Proof (Nemhauser et al 1978)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



t I

Part I Part II

Proof (Nemhauser et al 1978)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Monotone Submodular – Budget Constraints

Sviridenko 2004, Leskovec et al 2007

Sviridenko 2004:
• Run the cost-sensitive  

greedy algorithm starting  
with all possible initial sets
{i,j,k}

• 𝑂(𝑛3) initial complexity
• (1 – 1/e) approximation!



Summary: Greedy Algorithm Framework

Monotone Submodular Function

Cost of Summary Subset S (e.g. size)

Problem Formulation Greedy Algorithm



Non-Monotone Submodular Functions

Theorem (Buchbinder et al 2014): The Randomized Greedy Algorithm achieves a 1/e approximation
guarantee for Non-Monotone Submodular Maximization subject to cardinality constraints!



Data subset selection



Model  
Validation

Often repeated for  
hyper-parameter tuning

Data  
Preparation

1. Data Labeling
2. Feature Engineering

Model  
Training

1. Model Selection
2. Training Budget
3. Batch sizes, Partitions

Model  
Deployment

1. Deployment Infra
2. Latency & Memory

Production Systems Constraints
1. Data Labeling => Time Consuming, Expensive, Noisy
2. Feature Selection => Latency & Memory
3. Model Training => Compute Intensive and Time Consuming
4. Hyper-Parameter Tuning/NAS => Very Time Consuming
5. Distribution Shift => Deployment vs Training

Can we train Models  
under these constraints  

without sacrificing
on accuracy?

6

Make ML Data Efficient and Robust



Data Subset Selection Setup

A Machine Learning model characterized by model parameters 

Training Data: Training log-likelihood function:

Training a machine learning model often reduces to finding the parameters that  
maximizes a log-likelihood function for given training data empirically.

Validation Data: Validation log-likelihood function:

Goal: Select a subset such that the resulting model performs the best!



Requirements for optimal subset  
selection

1. The subset selection algorithm needs to be as fast as possible.
• Subset Selection time <<<< Full training time

Example: Subset selection algorithm with negligible time complexity

2. Theoretical guarantees of subset selection algorithm.
• Can we show theoretical guarantees for subset selection algorithms?

Training on 10 % Subset Faster training



Approaches for Data Subset Selection

❑ Several different kinds of approaches studied in literature:
❑ Approach 1: Use Submodular Functions as proxy functions for data subset selection

❑ Approach 2: Choose data subset which approximates the gradient of the entire dataset

❑ Approach 3: Choose data subset which approximates the performance on full training
dataset (or validation set) as a bi-level optimization!

❑Approach 4: Choose data subset which minimizes a suitable divergence (e.g. KL  
divergence) between the distribution induced by the subset and full data!

❑ Types of Data Selection
❑ Supervised (Using the labels)

❑ Unsupervised (No access to labels)

❑ Validation based (Access to a validation set for focusing on generalization)



Idea: Gradient Matching/ CoreSets

Can we obtain a weighted  
gradient of a subset of points  that 

approximates the full  gradient?

Sivasubramaniam & Killamsetty et. al. 2021, Mirzasoleiman et al 2020



Gradient Matching: Main Idea

Sivasubramaniam & Killamsetty et. al. 2021



Directly Optimizing Gradient Error: GradMatch

Sivasubramaniam & Killamsetty et. al. 2021



Orthogonal Matching Pursuit



Convex DSS



Aim

• We study the problem of data efficient training of 

autonomous driving systems.

• Training using many frames on straight road sections may 

not be necessary. Frames at the turns turn out to be useful.

In the context of edge device deployment, multi-criteria online 

subset selection (OSS) framework can be useful in selecting 
informative frames, essential for an end-task.

REDUNDAN

T
INFORMATIV

E

Method Train One-Turn Test One-Turn

Uniform Skip 3/10 5/10



Subset selection on Edge devices

Adding to existing data



High Level Idea

• Given a compression ratio, find out representatives which 
have the least dissimilarity with the left-out elements 
besides having the highest task-specific loss.



Problem Setup

● 𝑋𝑡: the set of incoming datapoints at time t (Size m)

● D: set of all data points (Size N)

● 𝑅𝑡: Reduced set of data at time t

● 𝑑𝑖𝑗 : Distance between data points I and j.

● 𝑧𝑖𝑗 : Indicator variable indicating that datapoint i is a 
representative for datapoint j.



Convex Subset Selection

● Original formulation in set notation:

● Formulation using indicator random variables 𝑧𝑖𝑗 :

● Convex relaxation:
0 ≤ 𝑧𝑖𝑗 ≤ 1

Size regularizer



Online Subset Selection

● At time t:
𝑅𝑡−1: old set (denoted by superscript o)
𝑋𝑡: in the new set (denoted by superscript n)
𝑅𝑡: the new reduced set that we are trying to compute using 𝑧𝑖𝑗

𝑅𝑡 = 𝑅𝑡−1 ∪ {𝑖 ∈ 𝑋𝑡|𝑍𝑖𝑗 = 1}

● Revised formulation:

𝜖𝑜 = 𝑅𝑡−1
𝐷𝑛 = 𝑋𝑡



High Level Idea

• Given a compression ratio, find out representatives which 
have the least dissimilarity with the left-out elements 
besides having the highest task-specific loss.

• Highest task-specific loss ensures having situational tasks 
needed to be learnt more by the model.



TMCOSS

Adopts a facility location objective involving multiple criteria

Objective function
Compression Ratio

Denotes j from existing set o is a representative of element i from incoming set n 

Denotes j from incoming set n is a representative of element i from incoming set n 

Dissimilarity
Task specific Loss

Representative power of element j 

thresholded by 

Constraint 1 Constraint 2



Justification for thresholding

Multi-criteria OSS (MCOSS)1

1. Soumi Das, Sayan Mondal, Ashwin Bhoyar, Madhumita Bharde, Niloy Ganguly, Suparna Bhattacharya, Sourangshu Bhattacharya, "Mult i-criteria onlineframe-subset 

selection for autonomous vehicle videos." Pattern Recognit ion Letters 133 (2020): 349-355.
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