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CPU VS GPU
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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CPU vs GPU
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# Cores Clock Speed Memory Price

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core  
i7-6950X)

10
(20 threads  with  
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU  
(NVIDIA  
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,  

but each core is  

much faster and  

much more  

capable; great at  

sequential tasks

GPU: More cores,  

but each core is  

much slower and  

“dumber”; great for  

parallel tasks



CPU vs GPU in practice
(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks
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CPU vs GPU in practice
cuDNN much faster than  

“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks
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CPU / GPU Communication

Model  

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017
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If you aren’t careful, training can  

bottleneck on reading data and  

transferring to GPU!

Solutions:

-Read all data into RAM

-Use SSD instead of HDD

-Use multiple CPU threads  to 

prefetch data



DEEP LEARNING FRAMEWORKS

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University



Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017
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CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,  

Hong Kong U, etc but main framework of  

choice at AWS

And others...



The point of deep learning frameworks

Lecture 8 -2525

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

(1) Easily build big computational graphs

(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)



Computational Graphs

x y z

*

a
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b
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c

Numpy

Problems:

- Can’t run on GPU

- Have to compute  

our own gradients



Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch
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Computational Graphs

x y z
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c

PyTorch

Define Variables to  
start building a  computational 

graph

Lecture 8 -3535



Computational Graphs
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PyTorch

Forward pass  
looks just like  numpy

Lecture 8 -3636



Computational Graphs
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PyTorch

Calling c.backward()  
computes all  gradients

Lecture 8 -3737



Computational Graphs

x y z
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PyTorch

Run on GPU by  

casting to .cuda()

Lecture 8 -3838



PyTorchNumpy



PyTorch (more detail)

Lecture 8 -4040



PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray,  but runs on GPU

• Variable: Node in a  computational graph; stores  data 

and gradient

• Module: A neural network  layer; may store state or  

learnable weights



PyTorch: Tensors

Lecture 8 -8282

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors are just like numpy  

arrays, but they can run on GPU.

No built-in notion of computational  

graph, or gradients, or deep learning.

Here we fit a two-layer net using  

PyTorch Tensors:



PyTorch: Tensors

Create random tensors  

for data and weights

Lecture 8 -8383

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Tensors

Forward pass: compute  

predictions and loss

Lecture 8 -8484

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Tensors

Backward pass:  

manually compute  

gradients

Lecture 8 -8585



PyTorch: Tensors

Gradient descent  

step on weights

Lecture 8 -8686

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Tensors

To run on GPU, just cast  

tensors to a cuda datatype!

Lecture 8 -8787

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Autograd

Lecture 8 -8888

Fei-Fei Li & Justin Johnson & Serena Yeung

A PyTorch Variable is a node in a  

computational graph

x.data is a Tensor

x.grad is a Variable of gradients  

(same shape as x.data)

x.grad.data is a Tensor of gradients



PyTorch: Autograd

Lecture 8 -8989

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors and Variables  

have the same API!

Variables remember how they were  

created (for backprop)



PyTorch: Autograd

We will not want gradients  

(of loss) with respect to data

Do want gradients with  

respect to weights

Lecture 8 -9090

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Autograd

Forward pass looks exactly   
the same as the Tensor  version, but 

everything is a  variable now

Lecture 8 -9191

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Autograd

Compute gradient of loss  
with respect to w1 and w2  (zero out 

grads first)

Lecture 8 -9292



PyTorch: Autograd

Make gradient

step on weights

Lecture 8 -9393

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: New Autograd Functions

Define your own autograd  

functions by writing forward  

and backward for Tensors

(similar to modular layers in A2)

Lecture 8 -9494

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: New Autograd Functions

Can use our new autograd  

function in the forward pass

Lecture 8 -9595



PYTORCH NN MODULE



PyTorch: nn

Higher-level wrapper for  

working with neural nets

Similar to Keras and friends …  

but only one, and it’s good =)

Lecture 8 -9696

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: nn

Define our model as a  

sequence of layers

nn also defines common  loss 

functions

Lecture 8 -9797

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: nn

Forward pass: feed data  
to model, and prediction  to loss 

function

Lecture 8 -9898



PyTorch: nn

Backward pass:  

compute all gradients

Lecture 8 -9999



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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PyTorch: nn

Make gradient step on

each model parameter

Lecture 8 - 100
0



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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PyTorch: optim

Use an optimizer for

different update rules

Lecture 8 - 101
1



PyTorch: optim

Update all parameters  

after computing gradients

10
Lecture 8 - 102

Fei-Fei Li & Justin Johnson & Serena Yeung
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PyTorch: nn
Define new Modules

10
Lecture 8 - 103

Fei-Fei Li & Justin Johnson & Serena Yeung
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A PyTorch Module is a neural net  

layer; it inputs and outputs Variables

Modules can contain weights (as  

Variables) or other Modules

You can define your own Modules  

using autograd!



PyTorch: nn

Define new Modules

Define our whole model  

as a single Module

10
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PyTorch: nn

Define new Modules

Initializer sets up two  

children (Modules can  

contain modules)

10
Lecture 8 - 105
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PyTorch: nn
Define new Modules

Define forward pass using  

child modules and  

autograd ops on Variables

No need to define  

backward - autograd will  

handle it

10
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PyTorch: nn
Define new Modules

Construct and train an  

instance of our model

10
Lecture 8 - 107

Fei-Fei Li & Justin Johnson & Serena Yeung
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PyTorch: DataLoaders

A DataLoader wraps a  

Dataset and provides  

minibatching, shuffling,  

multithreading, for you

When you need to load  

custom data, just write  

your own Dataset class

10
Lecture 8 - 108
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PyTorch: DataLoaders

Iterate over loader to form  

minibatches

Loader gives Tensors so you  

need to wrap in Variables

10
Lecture 8 - 109
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PyTorch: Pretrained Models

Super easy to use pretrained models with 

torchvision  https://github.com/pytorch/vision

11
Lecture 8 - 110

0

https://github.com/pytorch/vision


Static vs Dynamic Graphs

Lecture 8 -4040



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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0

Static vs Dynamic Graphs
TensorFlow: Build graph once, then  

run many times (static)

PyTorch: Each forward pass defines  

a new graph (dynamic)

Build  

graph

Run each  

iteration

New graph each iteration

Lecture 8 - 120



Static vs Dynamic: Optimization

With static graphs,  

framework can  
optimize the  

graph for you  

before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote Equivalent graph with
fused operations

Conv+ReLU

Conv+ReLU

Conv+ReLU

April 27, 2017



Static vs Dynamic: Serialization

Static

Once graph is built, 

can  serialize it and 
run it  without the code 

that  built the graph!

Dynamic

Graph building and 

execution  are intertwined, 

so always  need to keep 
code around



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

3

if z > 0  

otherwise

Lecture 8 - 123



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

if z > 0  

otherwise

PyTorch: Normal Python

4
Lecture 8 - 124



Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

if z > 0  

otherwise

PyTorch: Normal Python

TensorFlow: Special TF

control flow operator!

12
Lecture 8 - 125
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Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

12
Lecture 8 - 126
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Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
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Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
Lecture 8 - 128
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Tensorboard

Lecture 8 -4040



Visualizing 
pytorch
 graphs



Visualizing pytorch graphs



ONNX EXPORT



ONNX

• Open neural network exchange

• Provides an open format for saving DL models in files

• Models can be saved from various tools

– Pytorch, Tensorflow, Scikit-learn

• Models saved in ONNX format can be executed in various 
platforms:

– Caffe2 – Python

– https://onnxruntime.ai/ 

https://onnxruntime.ai/


Exporting Pytorch module to ONNX



ONNX File format



ONNX File format



Running ONNX models



References

• Deep Learning with Pytorch. Eli Stevens, Luca Antiga, Thomas 
Viehman, Manning publishers.

• Exporting a model from pytorch to ONNX and running using 
ONNX runtime: 
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

• Tensorboard tutorial: 
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
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