
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

CPU VS GPU

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

Lecture 8 -7

Fei-Fei Li & Justin Johnson & Serena Yeung

7

https://creativecommons.org/licenses/by/2.0/deed.en

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

Lecture 8 -8

Fei-Fei Li & Justin Johnson & Serena Yeung

8

CPU vs GPU

Lecture 8 -1111

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Cores Clock Speed Memory Price

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core
i7-6950X)

10
(20 threads with
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,

but each core is

much faster and

much more

capable; great at

sequential tasks

GPU: More cores,

but each core is

much slower and

“dumber”; great for

parallel tasks

CPU vs GPU in practice
(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 6

CPU vs GPU in practice
cuDNN much faster than

“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 7

CPU / GPU Communication

Model

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

8

If you aren’t careful, training can

bottleneck on reading data and

transferring to GPU!

Solutions:

-Read all data into RAM

-Use SSD instead of HDD

-Use multiple CPU threads to

prefetch data

DEEP LEARNING FRAMEWORKS

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

19

CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

The point of deep learning frameworks

Lecture 8 -2525

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

(1) Easily build big computational graphs

(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Problems:

- Can’t run on GPU

- Have to compute

our own gradients

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Lecture 8 -3434

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to
start building a computational

graph

Lecture 8 -3535

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Forward pass
looks just like numpy

Lecture 8 -3636

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward()
computes all gradients

Lecture 8 -3737

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by

casting to .cuda()

Lecture 8 -3838

PyTorchNumpy

PyTorch (more detail)

Lecture 8 -4040

PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray, but runs on GPU

• Variable: Node in a computational graph; stores data

and gradient

• Module: A neural network layer; may store state or

learnable weights

PyTorch: Tensors

Lecture 8 -8282

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors are just like numpy

arrays, but they can run on GPU.

No built-in notion of computational

graph, or gradients, or deep learning.

Here we fit a two-layer net using

PyTorch Tensors:

PyTorch: Tensors

Create random tensors

for data and weights

Lecture 8 -8383

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Forward pass: compute

predictions and loss

Lecture 8 -8484

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Backward pass:

manually compute

gradients

Lecture 8 -8585

PyTorch: Tensors

Gradient descent

step on weights

Lecture 8 -8686

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

To run on GPU, just cast

tensors to a cuda datatype!

Lecture 8 -8787

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Lecture 8 -8888

Fei-Fei Li & Justin Johnson & Serena Yeung

A PyTorch Variable is a node in a

computational graph

x.data is a Tensor

x.grad is a Variable of gradients

(same shape as x.data)

x.grad.data is a Tensor of gradients

PyTorch: Autograd

Lecture 8 -8989

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors and Variables

have the same API!

Variables remember how they were

created (for backprop)

PyTorch: Autograd

We will not want gradients

(of loss) with respect to data

Do want gradients with

respect to weights

Lecture 8 -9090

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Forward pass looks exactly
the same as the Tensor version, but

everything is a variable now

Lecture 8 -9191

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2 (zero out

grads first)

Lecture 8 -9292

PyTorch: Autograd

Make gradient

step on weights

Lecture 8 -9393

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: New Autograd Functions

Define your own autograd

functions by writing forward

and backward for Tensors

(similar to modular layers in A2)

Lecture 8 -9494

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: New Autograd Functions

Can use our new autograd

function in the forward pass

Lecture 8 -9595

PYTORCH NN MODULE

PyTorch: nn

Higher-level wrapper for

working with neural nets

Similar to Keras and friends …

but only one, and it’s good =)

Lecture 8 -9696

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Define our model as a

sequence of layers

nn also defines common loss

functions

Lecture 8 -9797

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Forward pass: feed data
to model, and prediction to loss

function

Lecture 8 -9898

PyTorch: nn

Backward pass:

compute all gradients

Lecture 8 -9999

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
10

PyTorch: nn

Make gradient step on

each model parameter

Lecture 8 - 100
0

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
10

PyTorch: optim

Use an optimizer for

different update rules

Lecture 8 - 101
1

PyTorch: optim

Update all parameters

after computing gradients

10
Lecture 8 - 102

Fei-Fei Li & Justin Johnson & Serena Yeung

2

PyTorch: nn
Define new Modules

10
Lecture 8 - 103

Fei-Fei Li & Justin Johnson & Serena Yeung

3

A PyTorch Module is a neural net

layer; it inputs and outputs Variables

Modules can contain weights (as

Variables) or other Modules

You can define your own Modules

using autograd!

PyTorch: nn

Define new Modules

Define our whole model

as a single Module

10
Lecture 8 - 104

Fei-Fei Li & Justin Johnson & Serena Yeung

4

PyTorch: nn

Define new Modules

Initializer sets up two

children (Modules can

contain modules)

10
Lecture 8 - 105

Fei-Fei Li & Justin Johnson & Serena Yeung

5

PyTorch: nn
Define new Modules

Define forward pass using

child modules and

autograd ops on Variables

No need to define

backward - autograd will

handle it

10
Lecture 8 - 106

Fei-Fei Li & Justin Johnson & Serena Yeung

6

PyTorch: nn
Define new Modules

Construct and train an

instance of our model

10
Lecture 8 - 107

Fei-Fei Li & Justin Johnson & Serena Yeung

7

PyTorch: DataLoaders

A DataLoader wraps a

Dataset and provides

minibatching, shuffling,

multithreading, for you

When you need to load

custom data, just write

your own Dataset class

10
Lecture 8 - 108

8

PyTorch: DataLoaders

Iterate over loader to form

minibatches

Loader gives Tensors so you

need to wrap in Variables

10
Lecture 8 - 109

9

PyTorch: Pretrained Models

Super easy to use pretrained models with

torchvision https://github.com/pytorch/vision

11
Lecture 8 - 110

0

https://github.com/pytorch/vision

Static vs Dynamic Graphs

Lecture 8 -4040

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

0

Static vs Dynamic Graphs
TensorFlow: Build graph once, then

run many times (static)

PyTorch: Each forward pass defines

a new graph (dynamic)

Build

graph

Run each

iteration

New graph each iteration

Lecture 8 - 120

Static vs Dynamic: Optimization

With static graphs,

framework can
optimize the

graph for you

before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote Equivalent graph with
fused operations

Conv+ReLU

Conv+ReLU

Conv+ReLU

April 27, 2017

Static vs Dynamic: Serialization

Static

Once graph is built,

can serialize it and
run it without the code

that built the graph!

Dynamic

Graph building and

execution are intertwined,

so always need to keep
code around

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

3

if z > 0

otherwise

Lecture 8 - 123

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

if z > 0

otherwise

PyTorch: Normal Python

4
Lecture 8 - 124

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

if z > 0

otherwise

PyTorch: Normal Python

TensorFlow: Special TF

control flow operator!

12
Lecture 8 - 125

April 27, 2017

5

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

12
Lecture 8 - 126

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

6

Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
Lecture 8 - 127

April 27, 2017

7

Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
Lecture 8 - 128

8

Tensorboard

Lecture 8 -4040

Visualizing
pytorch
 graphs

Visualizing pytorch graphs

ONNX EXPORT

ONNX

• Open neural network exchange

• Provides an open format for saving DL models in files

• Models can be saved from various tools

– Pytorch, Tensorflow, Scikit-learn

• Models saved in ONNX format can be executed in various
platforms:

– Caffe2 – Python

– https://onnxruntime.ai/

https://onnxruntime.ai/

Exporting Pytorch module to ONNX

ONNX File format

ONNX File format

Running ONNX models

References

• Deep Learning with Pytorch. Eli Stevens, Luca Antiga, Thomas
Viehman, Manning publishers.

• Exporting a model from pytorch to ONNX and running using
ONNX runtime:
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

• Tensorboard tutorial:
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

	Slide 1: CS60021: Scalable Data Mining
	Slide 2: CPU vs GPU
	Slide 3: Spot the CPU! (central processing unit)
	Slide 4: Spot the GPUs! (graphics processing unit)
	Slide 5: CPU vs GPU
	Slide 6: CPU vs GPU in practice
	Slide 7: CPU vs GPU in practice
	Slide 8: CPU / GPU Communication
	Slide 18: Deep learning frameworks
	Slide 19: Paddle (Baidu)
	Slide 20: The point of deep learning frameworks
	Slide 21: Computational Graphs
	Slide 27: Computational Graphs
	Slide 28: Computational Graphs
	Slide 29: Computational Graphs
	Slide 30: Computational Graphs
	Slide 31: Computational Graphs
	Slide 32: PyTorch
	Slide 52: PyTorch (more detail)
	Slide 53: PyTorch: Three Levels of Abstraction
	Slide 54: PyTorch: Tensors
	Slide 55
	Slide 56: PyTorch: Tensors
	Slide 57: PyTorch: Tensors
	Slide 58: PyTorch: Tensors
	Slide 59
	Slide 60: PyTorch: Autograd
	Slide 61: PyTorch: Autograd
	Slide 62: PyTorch: Autograd
	Slide 63: PyTorch: Autograd
	Slide 64: PyTorch: Autograd
	Slide 65: PyTorch: Autograd
	Slide 66: PyTorch: New Autograd Functions
	Slide 67: PyTorch: New Autograd Functions
	Slide 68: Pytorch NN Module
	Slide 69: PyTorch: nn
	Slide 70: PyTorch: nn
	Slide 71: PyTorch: nn
	Slide 72: PyTorch: nn
	Slide 73: PyTorch: nn
	Slide 74: PyTorch: optim
	Slide 75: PyTorch: optim
	Slide 76: PyTorch: nn Define new Modules
	Slide 77
	Slide 78
	Slide 79: PyTorch: nn Define new Modules
	Slide 80: PyTorch: nn Define new Modules
	Slide 81: PyTorch: DataLoaders
	Slide 82: PyTorch: DataLoaders
	Slide 83
	Slide 84: Static vs Dynamic Graphs
	Slide 85: Static vs Dynamic Graphs
	Slide 86: Static vs Dynamic: Optimization
	Slide 87: Static vs Dynamic: Serialization
	Slide 88: Static vs Dynamic: Conditional
	Slide 89: Static vs Dynamic: Conditional
	Slide 90: Static vs Dynamic: Conditional
	Slide 91: Static vs Dynamic: Loops
	Slide 92: Static vs Dynamic: Loops
	Slide 93: Static vs Dynamic: Loops
	Slide 95: Tensorboard
	Slide 99: Visualizing pytorch graphs
	Slide 100: Visualizing pytorch graphs
	Slide 101: ONNX export
	Slide 102: ONNX
	Slide 103: Exporting Pytorch module to ONNX
	Slide 104: ONNX File format
	Slide 105: ONNX File format
	Slide 106: Running ONNX models
	Slide 107: References

