
BIG DATA PROCESSING
WITH SPARK

SOURANGSHU BHATTACHARYA

CSE, IIT KHARAGPUR

WEB: HTTPS://CSE.IITKGP.AC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.IITKGP.AC.IN

https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

BIG DATA PROCESSING

MOTIVATION: GOOGLE EXAMPLE

• 20+ billion web pages x 20KB = 400+ TB

• A computer reads 30-35 MB/sec from disk

– ~4 months to read the data

• ~ 400 hard drives to store the data

• Takes even more to do something useful with the data!

• Today, a standard architecture for such problems is used:

– Cluster of commodity Linux nodes

– Commodity network (ethernet) to connect them

3

CLUSTER ARCHITECTURE

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch
1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

4

LARGE-SCALE COMPUTING

• Large-scale computing for data mining problems on commodity

hardware

• Challenges:

– How do you distribute computation?

– How can we make it easy to write distributed programs?

– Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• People estimated Google has ~1M machines

– 1,000 machines fail every day!

5

BIG DATA CHALLENGES

• Scalability: processing should scale with increase in data.

• Fault Tolerance: function in presence of hardware failure

• Cost Effective: should run on commodity hardware

• Ease of use: programmers do not write additional code for

communication, fault tolerance, etc.

• Flexibility: able to process unstructured data

• Solution: Map Reduce !

IDEA AND SOLUTION

• Issue: Copying data over a network takes time

• Ideas:

• Bring computation close to the data

• Store files multiple times for reliability

• Map-reduce addresses these problems

• Elegant way to work with big data

• Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS

• Programming model

• Map-Reduce

7

WHAT IS HADOOP ?

• A scalable fault-tolerant distributed system for data storage and

processing.

• Core Hadoop:

• Hadoop Distributed File System (HDFS)

• Hadoop YARN: Job Scheduling and Cluster Resource Management

• Hadoop Map Reduce: Framework for distributed data processing.

• Open Source system with large community support.

 https://hadoop.apache.org/

WHAT IS MAP REDUCE ?

• Programming paradigm for seamlessly distributing a task across multiple

servers.

• Proposed by Dean and Ghemawat, 2004.

• Consists of two developer created phases:

• Map

• Reduce

• In between Map and Reduce is the Shuffle and Sort phase.

• User is responsible for casting the algorithm into map – reduce framework.

PROGRAMMING MODEL: MAPREDUCE

10

TASK: WORD COUNT

Case 1:

– File too large for memory, but all <word, count> pairs fit in memory

– Use a hashmap.

Case 2:

• Count occurrences of words:

– words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per a

line

• Case 2 captures the essence of MapReduce

11

MAPREDUCE: OVERVIEW

• Both sequentially read and write a lot of data records

• Map:

– Extract something you care about

– Output is (key, value) pair

• Group by key: Sort and Shuffle

• Reduce:

– Process records with the same key value: e.g. Aggregate, summarize, etc.

• Write the result
Outline stays the same, Map and

Reduce change to fit the problem

12

MORE SPECIFICALLY

• Input: a set of key-value pairs

• Programmer specifies two methods:

• Map(k, v) → <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

• E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

• Reduce(k’, <v’>*) → <k’, v’’>*

• All values v’ with same key k’ are reduced together

and processed in v’ order

• There is one Reduce function call per unique key k’

MAPREDUCE: WORD COUNTING

The crew of the space shuttle

Endeavor recently returned to Ear th

as ambassadors, harbingers of a

new era of space exploration.

Scientis ts at NASA are say ing that

the recent assembly of the Dextre

bot is the fir st step in a long-term
space-based man/mache

partnership. '"The work we're doing

now -- the robotics we're doing -- is

what we're going to need

……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)
(space, 1)

(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and produces

a set of key-value pairs

Group by key:
Collect all pairs with

same key

Reduce:
Collect all values

belonging to the key and

output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
q

ue
n

ti
al

ly
 re

a
d

th
e

da
ta

O
n

ly

se
q

ue
n

ti
al

 re

ad
s

WORD COUNT USING MAPREDUCE

map(key, value):

// key: document name; value: text of the document

 for each word w in value:

 emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over

counts

 result = 0

 for each count v in values:

 result += v

 emit(key, result)

HADOOP MAP REDUCE

• Provides:

• Automatic parallelization and Distribution

• Fault Tolerance

• Methods for interfacing with HDFS for colocation of computation and

storage of output.

• Status and Monitoring tools

• API in Java

• Ability to define the mapper and reducer in many languages through Hadoop

streaming.

HDFS

WHAT’S HDFS

• HDFS is a distributed file system that is fault tolerant, scalable and extremely

easy to expand.

• HDFS is the primary distributed storage for Hadoop applications.

• HDFS provides interfaces for applications to move themselves closer to data.

• HDFS is designed to ‘just work’, however a working knowledge helps in

diagnostics and improvements.

COMPONENTS OF HDFS

There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem, it maintains and manages

the file system metadata. E.g; what blocks make up a file, and on which

datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are usually quite a

few of these.

HDFS ARCHITECTURE

HDFS

• Design Assumptions

• Hardware failure is the norm.

• Streaming data access.

• Write once, read many times.

• High throughput, not low latency.

• Large files.

• Characteristics:

• Performs best with modest number of large files

• Optimized for streaming reads

• Layer on top of native file system.

HDFS

• Data is organized into file and directories.

• Files are divided into blocks and distributed to nodes.

• Block placement is known at the time of read

• Computation moved to same node.

• Replication is used for:

• Speed

• Fault tolerance

• Self healing.

HDFS ARCHITECTURE

DATANODE

• A Block Server

 – Stores data in the local file system (e.g. ext3)

 – Stores meta-data of a block (e.g. CRC)

 – Serves data and meta-data to Clients

• Block Report

 – Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data

 – Forwards data to other specified DataNodes

NAMENODE METADATA

• Meta-data in Memory

 – The entire metadata is in main memory

 – No demand paging of meta-data

• Types of Metadata

 – List of files

 – List of Blocks for each file

 – List of DataNodes for each block

 – File attributes, e.g creation time, replication factor

• A Transaction Log

 – Records file creations, file deletions. etc

HDFS – USER COMMANDS (DFS)

List directory contents

Display the disk space used by files

hdfs dfs –ls

hdfs dfs -ls /

hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/

hdfs dfs -du -h /hbase/data/hbase/namespace/

hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS – USER COMMANDS (DFS)

Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata

hdfs dfs -ls

hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata

hdfs dfs -ls –R

cd tutorials/data/

hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs

md5sum geneva.csv geneva.csv.hdfs

HDFS – USER COMMANDS (ACLS)

List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt

hdfs dfs -ls –R

hdfs dfs -cat tdataset/tfile.txt

HDFS READ CLIENT

Source: Hadoop: The Definitive Guide

HDFS WRITE CLIENT

Source: Hadoop: The Definitive Guide

BLOCK PLACEMENT

• Current Strategy

 -- One replica on local node

 -- Second replica on a remote rack

 -- Third replica on same remote rack

 -- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable

NAMENODE FAILURE

• A single point of failure

• Transaction Log stored in multiple directories

 – A directory on the local file system

 – A directory on a remote file system (NFS/CIFS)

DATA PIPELINING

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• Usually, when all replicas are written, the Client moves on to write the next

block in file

36

Conclusion:

• We have seen:

• The structure of HDFS.

• The shell commands.

• The architecture of HDFS system.

• Internal functioning of HDFS.

MAPREDUCE INTERNALS

HADOOP MAP REDUCE

• Provides:

• Automatic parallelization and Distribution

• Fault Tolerance

• Methods for interfacing with HDFS for colocation of computation and storage of output.

• Status and Monitoring tools

• API in Java

• Ability to define the mapper and reducer in many languages through Hadoop streaming.

HADOOP(V2)
 MR JOB

Source: Hadoop: The Definitive Guide

WORDCOUNT PROGRAM

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

WORDCOUNT PROGRAM - MAIN

public class WordCount {

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

} }

WORDCOUNT PROGRAM - MAPPER

public static class TokenizerMapper extends Mapper<Object, Text, Text,

IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken()); context.write(word, one);

 }

}

}

WORDCOUNT PROGRAM - REDUCER

public static class IntSumReducer extends

Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

}

}

WORDCOUNT PROGRAM - RUNNING

export JAVA_HOME=[Java home directory]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]

HADOOP(V2)
 MR JOB

Source: Hadoop: The Definitive Guide

WORDCOUNT IN PYTHON

Mapper.py

WORDCOUNT IN PYTHON

Reducer.py

EXECUTION CODE

bin/hadoop dfs -ls

bin/hadoop dfs –copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file

wordcount-py.example/mapper.py -mapper wordcount-py.example/mapper.py

-file wordcount-py.example/reducer.py -reducer wordcount-

py.example/reducer.py -input example -output java-output

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

HADOOP(V2)
 MR JOB

Source: Hadoop: The Definitive Guide

MAP REDUCE DATA FLOW

HADOOP MR DATA FLOW

Source: Hadoop: The Definitive Guide

SHUFFLE AND SORT

Source: Hadoop: The Definitive Guide

DATA FLOW

54

HADOOP(V2)
 MR JOB

Source: Hadoop: The Definitive Guide

FAULT TOLERANCE

❑Comes from scalability and cost effectiveness

❑HDFS:

❑Replication

❑Map Reduce

❑Restarting failed tasks: map and reduce

❑Writing map output to FS

❑Minimizes re-computation

COORDINATION: MASTER

57

FAILURES

❑Task failure

❑Task has failed – report error to node manager, appmaster, client.

❑Task not responsive, JVM failure – Node manager restarts tasks.

❑Application Master failure

❑Application master sends heartbeats to resource manager.

❑ If not received, the resource manager retrieves job history of the run tasks.

❑Node manager failure

DEALING WITH FAILURES

• Map worker failure

– Map tasks completed or in-progress at

worker are reset to idle

– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure

– Only in-progress tasks are reset to idle

– Reduce task is restarted

• Master failure

– MapReduce task is aborted and client is notified

59

HOW MANY MAP AND REDUCE JOBS?

• M map tasks, R reduce tasks

• Rule of a thumb:

– Make M much larger than the number of nodes in the

cluster

– One DFS chunk per map is common

– Improves dynamic load balancing and speeds up recovery

from worker failures

• Usually R is smaller than M

– Because output is spread across R files

60

TASK GRANULARITY & PIPELINING

• Fine granularity tasks: map tasks >> machines

– Minimizes time for fault recovery

– Can do pipeline shuffling with map execution

– Better dynamic load balancing

61

REFINEMENTS: BACKUP TASKS

• Problem
• Slow workers significantly lengthen the job completion time:

• Other jobs on the machine
• Bad disks

• Weird things

• Solution
• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
• Dramatically shortens job completion time

62

REFINEMENT: COMBINERS

• Often a Map task will produce many pairs of the form (k,v1), (k,v2),
… for the same key k

• E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:

• combine(k, list(v1)) → v2

• Combiner is usually same
as the reduce function

• Works only if reduce
function is commutative and associative

63

REFINEMENT: COMBINERS

• Back to our word counting example:

– Combiner combines the values of all keys of a single

mapper (single machine):

– Much less data needs to be copied and shuffled!

64

REFINEMENT: PARTITION FUNCTION

65

SPARK

SPARK

Spark is an In-Memory Cluster Computing platform for Iterative and

Interactive Applications.

• Started in AMPLab at UC Berkeley.

• Resilient Distributed Datasets.

• Data and/or Computation Intensive.

• Scalable – fault tolerant.

• Integrated with SCALA.

• Straggler handling.

• Data locality.

• Easy to use.

MAP REDUCE DATA FLOW

Current popular programming models for clusters transform
data flowing from stable storage to stable storage

E.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

MAP REDUCE DATA FLOW

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide

where to run tasks and can automatically

recover from failures

• Current popular programming models for clusters

transform data flowing from stable storage to stable

storage

• E.g., MapReduce:

MOTIVATION

• Acyclic data flow is a powerful abstraction, but is not efficient for applications

that repeatedly reuse a working set of data:

• Iterative algorithms (many in machine learning)

• Interactive data mining tools (R, Excel, Python)

• Spark makes working sets a first-class concept to efficiently support these apps

SPARK OBJECTIVE

• Provide distributed memory abstractions for clusters

to support apps with working sets

• Retain the attractive properties of MapReduce:

• Fault tolerance (for crashes & stragglers)

• Data locality

• Scalability

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

RESILIENT DISTRIBUTED DATASETS

• Immutable distributed data collections inspired by Scala.

• Array, List, Map, Set, etc.

• Transformations on RDDs create new RDDs.

• Map, ReducebyKey, Filter, Join, etc.

• Actions on RDD return values.

• Reduce, collect, count, take, etc.

• RDDs are materialized when needed – lazy execution.

• RDDs are can be cached to disk – graceful degradation with memory size.

• Spark framework re-computes lost splits of RDDs – fault tolerance.

RDD OPERATIONS

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Actions
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDD LAZY EXECUTION

• RDDs maintain lineage information that can be used to reconstruct

lost partitions

• Ex:

cachedMsgs = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))
 .cache()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

BENEFITS OF RDD MODEL

• Consistency due to immutability

• New RDDs take input from old RDDs which cannot be changed once

created.

• Inexpensive fault tolerance

• Lineage rather than replicating/checkpointing data

• Only lost partitions are recomputed.

• Locality-aware scheduling of tasks on partitions

• Despite being restricted, model seems applicable to a

broad variety of applications

SPARK CLUSTER ARCHITECTURE

WORD COUNT IN SPARK

val lines = spark.textFile(“hdfs://...”)

val counts = lines.flatMap(_.split(“\\s”))
 .reduceByKey(_ + _)

counts.save(“hdfs://...”)

EXAMPLE: MAPREDUCE

• MapReduce data flow can be expressed using RDD transformations

res = data.flatMap(rec => myMapFunc(rec))
 .groupByKey()
 .map((key, vals) => myReduceFunc(key, vals))

Or with combiners:

res = data.flatMap(rec => myMapFunc(rec))
 .reduceByKey(myCombiner)
 .map((key, val) => myReduceFunc(key, val))

SPARK PI

val slices = if (args.length > 0) args(0).toInt else 2

val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow

val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>

 val x = random * 2 - 1

 val y = random * 2 - 1

 if (x*x + y*y <= 1) 1 else 0

 }.reduce(_ + _)

println(s"Pi is roughly ${4.0 * count / (n)}")

EXAMPLE: LOGISTIC REGRESSION

LOGISTIC REGRESSION

• Binary Classification. y ε {+1, -1}

• Probability of classes given by linear model:

• Regularized ML estimate of w given dataset (xi, yi) is obtained by

minimizing:

82

p(y | x,w) =
1

1+ e(-ywT x)

l(w) = log(1+ exp(-yiw
T xi))+

l

2
wTw

i

å

LOGISTIC REGRESSION

• Gradient of the objective is given by:

• Gradient Descent updates are:

Ñl(w) = (1-s (yiw
T xi))yixi - lw

i

å

wt+1 =wt - sÑl(wt)

SPARK IMPLEMENTATION

val x = loadData(file) //creates RDD

var w = 0

do {

//creates RDD

val g = x.map(a => grad(w,a)).reduce(_+_)

s = linesearch(x,w,g)

w = w – s * g

}while(norm(g) > e)

SCALEUP WITH CORES

SCALEUP WITH NODES

996.24 s

Liblinear-C++

EXAMPLE: MATRIX MULTIPLICATION

MATRIX MULTIPLICATION

• Representation of Matrix:

• List <matrix id, Row index, Col index, Value>

• Size of matrices: First matrix (A): m*k, Second matrix (B): k*n

• Scheme: For each record

• if matrix 1: emit i=1,…,n records <(row ind, i), (col ind, value)>

• Else: emit i=1,…,m records <(i , col ind), (row ind, value)>

• GroupByKey: so that there are m*n groups, each with 2*k records:

• (col ind, value) for first matrix or (row ind,value) for second matrix

• Foreach group and for each record (i, value):

• Find another record (j, value) such that i=j

• Multiply the corresponding values and add to sum

EXAMPLE: PAGERANK

BASIC IDEA

• Give pages ranks (scores) based on links to them

• Links from many pages

 ➔ high rank

• Link from a high-rank page

 ➔ high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

ALGORITHM

1.0 1.0

1.0

1.0

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

ALGORITHM

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

ALGORITHM

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58 1.0

1.85

0.58

ALGORITHM

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

ALGORITHM

0.39 1.72

1.31

0.58

. . .

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

ALGORITHM

0.46 1.37

1.44

0.73

Final state:

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rankp / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

SPARK IMPLEMENTATION

val links = // RDD of (url, neighbors) pairs

var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {

 val contribs = links.join(ranks).flatMap {

 (url, (nhb, rank)) =>

 nhb.flatMap(dest => (dest, rank/nhb.size))

 }

 ranks = contribs.reduceByKey(_ + _)

 .mapValues(0.15 + 0.85 * _)

}

ranks.saveAsTextFile(...)

EXAMPLE: ALTERNATING LEAST SQUARES

COLLABORATIVE FILTERING

MATRIX FACTORIZATION

ALTERNATING LEAST SQUARES

NAÏVE SPARK ALS

EFFICIENT SPARK ALS

CACHING OF RDDS
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache() Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD

Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec

(vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

SPARK INTERNALS

SPARK SCHEDULER

• Input: DAGs

• Creates the physical execution

plan

• Breaks job into stages.

• Stages are DAG subgraphs with

fat dependencies.

• DAG Scheduler:

• Pipelines functions within a stage

• Cache-aware work reuse & locality

• Partitioning-awareto avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition

PHYSICAL EXECUTION PLAN

• User code defines a DAG (directed acyclic graph) of RDDs
• Operations on RDDs create new RDDs that refer back to their

parents, thereby creating a graph.

• Actions force translation of the DAG to an execution plan
• When you call an action on an RDD, it’s parents must be computed.

That job will have one or more stages, with tasks for each partition.
Each stage will correspond to one or more RDDs in the DAG.
A single stage can correspond to multiple RDDs due to pipelining.

• Tasks are scheduled and executed on a cluster
• Stages are processed in order, with individual tasks launching to

compute segments of the RDD. Once the final stage is finished in a
job, the action is complete.

TASKS

• Each task internally performs the following steps:

• Fetching its input, either from data storage (if the RDD is an input RDD), an

existing RDD (if the stage is based on already cached data), or shuffle outputs.

• Performing the operation necessary to compute RDD(s) that it represents. For

instance, executing filter() or map() functions on the input data, or performing

grouping or reduction.

• Writing output to a shuffle, to external storage, or back to the driver (if it is the

final RDD of an action such as count()).

ADVANCED EXAMPLES

USER LOG MINING

val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...").persist()

def processNewLogs(logFileName: String) {

val events = sc.sequenceFile[UserID, LinkInfo](logFileName)

val joined = userData.join(events) // RDD of (UserID, (UserInfo, LinkInfo))

pairs

val offTopicVisits = joined.filter {// Expand the tuple into its components

case (userId, (userInfo, linkInfo)) =>

 userInfo.topics.contains(linkInfo.topic)

}.count()

println("Number of visits to non-subscribed topics: " + offTopicVisits)

}

Calculate the number of off-topic visits for a user.

USER LOG MINING

USER LOG MINING

val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...")

.partitionBy(new HashPartitioner(100)) // Create 100 partitions

.persist()

def processNewLogs(logFileName: String) {

val events = sc.sequenceFile[UserID, LinkInfo](logFileName)

val joined = userData.join(events) // RDD of (UserID, (UserInfo, LinkInfo))

pairs

val offTopicVisits = joined.filter {

 // Expand the tuple into its components

(userId, (userInfo, linkInfo)) => userInfo.topics.contains(linkInfo.topic)

}.count()

println("Number of visits to non-subscribed topics: " + offTopicVisits)

}

USER LOG MINING

PARTITIONING

• RDD splits are created using a common hash function for related RDDs.

• Records with same keys are mapped to same split / partition.

• Reduces network communication.

• Operations benefitting from partitioning:
cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter Join(),

groupByKey(), reduceByKey(), combineByKey(), and lookup().

• Operations affecting partitioning:
cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter Join(),

groupByKey(), reduceByKey(), combineByKey(), partitionBy(), sort()

mapValues() (if the parent RDD has a partitioner),

flatMapValues() (if parent has a partitioner)

filter() (if parent has a partitioner).

PAGE RANK (REVISITED)

val links = sc.objectFile[(String, Seq[String])]("links") .

partitionBy(new HashPartitioner(100)).persist()

var ranks = links.mapValues(v => 1.0)

for(i<-0 until 10) {

val contributions = links.join(ranks).flatMap {

case (pageId, (nbh, rank)) => nbh.map(dest => (dest, rank / nbh.size))

}

ranks = contributions.reduceByKey((x, y) => x + y).

mapValues(v => 0.15 + 0.85*v)

 }

ranks.saveAsTextFile("ranks")

ACCUMULATORS

val sc = new SparkContext(...) val file = sc.textFile("file.txt")

val blankLines = sc.accumulator(0)

// Create an Accumulator[Int] initialized to 0

val callSigns = file.flatMap(

line => { if (line == "") {

blankLines += 1 // Add to the accumulator

}

line.split(" ") })

callSigns.saveAsTextFile("output.txt”)

println("Blank lines: " + blankLines.value)

117
References:

• Learning Spark: Lightning-Fast Big Data Analysis. Holden Karau, Andy Konwinski,

Patrick Wendell, Matei Zaharia. O Reilly Press 2015.

• Any book on scala and spark.

• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd edition.

- Cambridge University Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in

mailto:sourangshu@cse.iitkgp.ac.in

	Slide 1: Big data processing with spark
	Slide 2: Big data processing
	Slide 3: Motivation: Google Example
	Slide 4: Cluster Architecture
	Slide 5: Large-scale Computing
	Slide 6: Big Data Challenges
	Slide 7: Idea and Solution
	Slide 8: What is Hadoop ?
	Slide 9: What is Map Reduce ?
	Slide 10: Programming Model: MapReduce
	Slide 11: Task: Word Count
	Slide 12: MapReduce: Overview
	Slide 13: More Specifically
	Slide 14: MapReduce: Word Counting
	Slide 15: Word Count Using MapReduce
	Slide 16: Hadoop Map Reduce
	Slide 17
	Slide 18: What’s HDFS
	Slide 19: Components of HDFS
	Slide 20
	Slide 21: HDFS
	Slide 22: HDFS
	Slide 25: HDFS Architecture
	Slide 26: DataNode
	Slide 27: NameNode Metadata
	Slide 28: HDFS – User Commands (dfs)
	Slide 29: HDFS – User Commands (dfs)
	Slide 30: HDFS – User Commands (acls)
	Slide 31: HDFS read client
	Slide 32: HDFS write Client
	Slide 33: Block Placement
	Slide 34: NameNode Failure
	Slide 35: Data Pipelining
	Slide 36
	Slide 37: Mapreduce internals
	Slide 38: Hadoop Map Reduce
	Slide 39: Hadoop(v2) MR job
	Slide 40: Wordcount program
	Slide 41: Wordcount program - Main
	Slide 42: Wordcount program - Mapper
	Slide 43: Wordcount program - Reducer
	Slide 44: Wordcount program - running
	Slide 45: Hadoop(v2) MR job
	Slide 46: Wordcount in python
	Slide 47: Wordcount in python
	Slide 48: Execution code
	Slide 49: Hadoop(v2) MR job
	Slide 50: Map Reduce Data Flow
	Slide 51
	Slide 52: Hadoop MR Data Flow
	Slide 53: Shuffle and sort
	Slide 54: Data Flow
	Slide 55: Hadoop(v2) MR job
	Slide 56: Fault tolerance
	Slide 57: Coordination: Master
	Slide 58: Failures
	Slide 59: Dealing with Failures
	Slide 60: How many Map and Reduce jobs?
	Slide 61: Task Granularity & Pipelining
	Slide 62: Refinements: Backup Tasks
	Slide 63: Refinement: Combiners
	Slide 64: Refinement: Combiners
	Slide 65: Refinement: Partition Function
	Slide 66: Spark
	Slide 67: Spark
	Slide 68: Map reduce data flow
	Slide 69: Map reduce data flow
	Slide 70: Motivation
	Slide 71: Spark objective
	Slide 72: Resilient Distributed Datasets
	Slide 74: RDD Operations
	Slide 75: RDD Lazy execution
	Slide 76: Benefits of RDD Model
	Slide 77: Spark cluster Architecture
	Slide 78: Word Count in Spark
	Slide 79: Example: MapReduce
	Slide 80: Spark Pi
	Slide 81: Example: Logistic Regression
	Slide 82: Logistic Regression
	Slide 83: Logistic Regression
	Slide 84: Spark Implementation
	Slide 85: Scaleup with Cores
	Slide 86: Scaleup with Nodes
	Slide 87: Example: Matrix Multiplication
	Slide 88: Matrix Multiplication
	Slide 89: Example: PageRank
	Slide 90: Basic Idea
	Slide 91: Algorithm
	Slide 92: Algorithm
	Slide 93: Algorithm
	Slide 94: Algorithm
	Slide 95: Algorithm
	Slide 96: Algorithm
	Slide 97: Spark Implementation
	Slide 98: Example: Alternating Least squares
	Slide 99: Collaborative filtering
	Slide 100: Matrix Factorization
	Slide 101: Alternating Least Squares
	Slide 102: Naïve Spark ALS
	Slide 103: Efficient Spark ALS
	Slide 104: Caching of RDDs
	Slide 105: Spark internals
	Slide 106: Spark Scheduler
	Slide 107: Physical Execution Plan
	Slide 108: Tasks
	Slide 109: Advanced examples
	Slide 110: User Log Mining
	Slide 111: User Log Mining
	Slide 112: User Log Mining
	Slide 113: User Log Mining
	Slide 114: Partitioning
	Slide 115: Page Rank (Revisited)
	Slide 116: Accumulators
	Slide 117
	Slide 118: Thanks questions?

