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MUCH OF ML IS OPTIMIZATION

Linear Classification                             Maximum Likelihood
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STOCHASTIC OPTIMIZATION

• Goal of machine learning :
• Minimize expected loss

given samples

• This is Stochastic Optimization
• Assume loss function is convex



BATCH (SUB)GRADIENT DESCENT FOR ML

• Process all examples together in each step

• Entire training set examined at each step

• Very slow when n is very large



STOCHASTIC (SUB)GRADIENT DESCENT

• “Optimize” one example at a time

• Choose examples randomly (or reorder and 
choose in order)

• Learning representative of example distribution



STOCHASTIC (SUB)GRADIENT DESCENT

• Equivalent to online learning (the weight vector w changes 
with every example)

• Convergence guaranteed for convex functions (to local 
minimum)



SGD CONVERGENCE
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Iterations / updates

Objective function oscillates 
over the iterations.

Not a “Descent Method”

Maintain the running 
minimum loss and 
corresponding model 
parameters.



CONVERGENCE OF SGD

• Given dataset 𝐷 = { 𝑥!, 𝑦! , … , 𝑥", 𝑦" }

• Loss function: 𝐿 𝜃, 𝐷 = !
#
∑$%!# 𝑙(𝜃; 𝑥$ , 𝑦$)

• For linear models: 𝑙 𝜃; 𝑥$ , 𝑦$ = 𝑙(𝑦$ , 𝜃&𝜙 𝑥$ )

• Assumption 𝐷 is drawn IID from some distribution 𝒫.

• Problem:

min
'
𝐿(𝜃, 𝐷)



• Input: 𝐷

• Output: �̅�

Algorithm:

• Initialize 𝜃!

• For 𝑡 = 1,… , 𝑇
𝜃"#$ = 𝜃" − 𝜂"𝛻%𝑙(𝑦" , 𝜃&𝜙 𝑥" )

• �̅� = ∑!"#$ (!%!

∑!"#$ (!
.

CONVERGENCE OF SGD



• Expected loss: 𝑠 𝜃 = 𝐸𝒫[𝑙(𝑦, 𝜃5𝜙 𝑥 ]

• Optimal Expected loss: 𝑠∗ = 𝑠 𝜃∗ = min
7
𝑠(𝜃)

• Convergence:

𝐸87 𝑠 �̅� − 𝑠∗ ≤
𝑅9 + 𝐿9∑:;<5 𝜂:9

2∑:;<5 𝜂:
• Where: 𝑅 = 𝜃= − 𝜃∗

• 𝐿 = max𝛻𝑙(𝑦, 𝜃5𝜙 𝑥 )

CONVERGENCE OF SGD



SGD CONVERGENCE PROOF

• Define 𝑟! = 𝜃! − 𝜃∗  and 𝑔! = 𝛻#𝑙 𝑦!, 𝜃$𝜙 𝑥!

• 𝑟!%&' = 𝑟!' + 𝜂!' 𝑔! ' − 2𝜂! 𝜃! − 𝜃∗ $𝑔!

• Taking expectation w.r.t 𝒫, �̅� and using 𝑠∗ − 𝑠 𝜃! ≥
𝐸( 𝑔! $(𝜃∗ − 𝜃!), we get:
𝐸)# 𝑟!%&' − 𝑟!' ≤ 𝜂!'𝐿' + 2𝜂! 𝑠∗ − 𝐸)# 𝑠 𝜃!  

• Taking sum over 𝑡 = 1,… , 𝑇 and using

𝐸)# 𝑟$' − 𝑟*' ≤ 𝐿'<
!+*

$,&

𝜂!' + 2<
!+*

$,&

𝜂!(𝑠∗ − 𝐸)#[𝑠 𝜃! ])



SGD CONVERGENCE PROOF

• Using convexity of 𝑠:

"
!"#

$%&

𝜂! 𝐸'( 𝑠 �̅� ≤ 𝐸'(["
!"#

$%&

𝜂!𝑠 𝜃! ]

• Substituting in the expression from previous slide:

𝐸'( 𝑟$) − 𝑟#) ≤ 𝐿)"
!"#

$%&

𝜂!) + 2"
!"#

$%&

𝜂! 𝑠∗ − 𝐸'( 𝑠 �̅�

• Rearranging the terms proves the result.



SGD - ISSUES

• Convergence very sensitive to learning rate 
( 𝜂! ) 
 (oscillations near solution due to probabilistic 
nature of sampling)

• Might need to decrease with time to 
ensure the algorithm converges eventually

• Basically – SGD good for machine learning 
with large data sets!
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MINI-BATCH SGD

• Stochastic – 1 example per iteration

• Batch – All the examples!

• Mini-batch SGD: 
• Sample m examples at each step and perform SGD 

on them

• Allows for parallelization, but choice of m 
based on heuristics

14



EXAMPLE: TEXT CATEGORIZATION

• Example by Leon Bottou:
• Reuters RCV1 document corpus

• Predict a category of a document

• One vs. the rest classification

• n = 781,000 training examples (documents)

• 23,000 test examples

• d = 50,000 features
• One feature per word

• Remove stop-words

• Remove low frequency words



EXAMPLE: TEXT CATEGORIZATION

• Questions:
• (1) Is SGD successful at minimizing f(w,b)?

• (2) How quickly does SGD find the min of f(w,b)?

• (3) What is the error on a test set?

16

Training time         Value of f(w,b)        Test error 
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable



OPTIMIZATION “ACCURACY”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast



LEARNING RATE / STEP-SIZE SCHEDULE

• Need to choose learning rate h and t0

• Leon suggests:
• Choose t0 so that the expected initial updates are comparable with the expected size of the weights

• Choose 𝜂!:

• Select a small subsample

• Try various rates 𝜂!	 (e.g., 10, 1, 0.1, 0.01, …)

• Pick the one that most reduces the cost

• Use h for next 100k iterations on the full dataset

• Alternative form:

𝜂 =
𝜂!

1 + (𝑑𝑒𝑐𝑎𝑦 ∗ 𝑡)

• Step decay schedule:
• Drop the learning rate by half every 10 epochs.

• 𝜂 = 𝜂! ∗ 𝑑𝑟𝑜𝑝
"#$$%( !

!"#$%
)

𝑤%&' ← 𝑤% −
𝜂(

𝑡 + 𝑡(
𝜕𝐿 𝑥) , 𝑦)

𝜕𝑤
; 	 𝜂 =

𝜂(
𝑡 + 𝑡(



LEARNING RATE COMPARISON



ACCELERATED GRADIENT 
DESCENT



STOCHASTIC GRADIENT DESCENT

Idea: Perform a parameter update for each 
training example x(i) and label y(i)

Update: 𝜃 = 𝜃 - 𝜂 ∙ ∇𝜃 J (𝜃; x(i), y(i))

Performs redundant computations for large
datasets



MOMENTUM GRADIENT DESCENT

• Idea: Overcome ravine oscillations by momentum
•

Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃 J(𝜃)

• 𝜃 = 𝜃 - vt

SGD

SGD with 
momentum



The momentum term increases for dimensions whose  
gradients point in the same direc2ons.

Demo : h(p://dis.ll.pub/2017/momentum/

The momentum term reduces updates for  
dimensions whose gradients change direc2ons.

WHY MOMENTUM REALLY WORKS

http://distill.pub/2017/momentum/


• However, a ball that rolls down a hill, blindly  
following the slope, is highly unsa7sfactory.

• We would like to have a smarter ball that has a  
no7on of where it is going so that it knows to slow  
down before the hill slopes up again.

• Nesterov accelerated gradient gives us a way of it.

NESTEROV ACCELERATED GRADIENT



Approxima2on of the next posi2on of  
the parameters(predict)

NESTEROV ACCELERATED GRADIENT



Approxima2on of the next posi2on of  
the parameters(predict)

Approxima2on of the next posi2on of  
the parameters’ gradient(correc2on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of  
the parameters(predict)

Approxima)on ofthe next posi)on of  
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of  
the parameters(predict)

Approxima)on ofthe next posi)on of  
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correction

Green line :accumulated gradient Approxima)onof the next posi)on of  
the parameters(predict)

Approxima)on ofthe next posi)on of  
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of  
the parameters(predict)

Approxima)on ofthe next posi)on of  
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approxima)on ofthe next posi)on of  
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT



Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)

NESTEROV ACCELERATED GRADIENT



• This an7cipatory update prevents us from going  
too fast and results in increased responsiveness.

• Now , we can adapt our updates to the slope of our  
error func7on and speed up SGD in turn.

NESTEROV ACCELERATED GRADIENT



• Previous methods :
• we used the same learning rate 𝜼 for all parameters𝜽

• Adagrad :
• It uses a different learning rate for every parameter 𝜃𝑖 at  

every 8me step 𝑡

ADAPTIVE GRADIENTS



• We also want to adapt our updates to each  
individual parameter to perform larger or smaller  
updates depending on their importance.

• Adagrad
• Adadelta
• RMSprop
• Adam

WHAT’S NEXT ?



• Adagrad adapts the learning rate to the parameters
• Performing larger updates for infrequent
• Performing smaller updates for frequent parameters.

• Ex.
• Training large-scale neural nets at Google that learned to

recognize cats in Youtube videos.

ADAGRAD



Adagrad

SGD

𝐺𝑡 =

ℝ𝑑×𝑑

⋯ ⋯

Adagrad modifies the general learning  
rate 𝜼 based on the past gradients  
that have been computed for 𝜽𝒊

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD



Adagrad

SGD

𝐺𝑡 is a diagonal matrix where eachdiagonal
element (𝑖,𝑖) is the sum of the squares of the  
gradients 𝜃𝑖 up to 7me step 𝑡.

𝐺!,;; = <
<+&

!

𝑔!,;'

𝐺𝑡 =

ℝ𝑑×𝑑
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD



Adagrad

SGD

𝜀 is a smoothing term that avoids division by  
zero (usually on the order of 1e − 8).

𝐺𝑡 =

ℝ𝑑×𝑑
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD



• Advantages :
• It is well-suited for dealing with sparse data.
• It greatly improved the robustness of SGD.
• It eliminates the need to manually tune the learning rate.

ADAGRAD’S ADVANTAGE



• Disadvantage :
• Main weakness is its accumula8on of the squared  

gradients in the denominator.

ADAGRAD’S DISADVANTAGE



• The disadvantage causes the learning rate to shrink  
and become infinitesimally small. The algorithm  
can no longer acquire addi7onal knowledge.

• The following algorithms aim to resolve this flaw.
• Adadelta
• RMSprop
• Adam

ADAGRAD’S DISADVANTAGE



• The expected square sum of gradients  is recursively 
defined as a decaying average of all  past squared
gradients.

• 𝐸[𝑔2]𝑡 ：The running average at 8me step 𝑡.
• 𝛾 : A frac8on similarly to the Momentum term, around  

0.9

ADADELTA



GDSAdagrad

Adadelta

ADADELTA



GDSAdagrad

Replace the diagonal matrix 𝐺𝑡 with the decaying  
average over past squared gradients 𝐸[𝑔2]𝑡

Adadelta

ADADELTA



SGDAdagrad

Adadelta Adadelta

Replace the diagonal matrix 𝐺𝑡 with the decaying  
average over past squared gradients 𝐸[𝑔2]𝑡

ADADELTA



• The units in this update do not match and the  
update should have the same hypothe7cal units as  
the parameter.

• As well as in SGD, Momentum, or Adagrad

• To realize this, first defining another exponen7ally  
decaying average

ADADELTA



AdadeltaAdadelta

ADADELTA



• Replacing the learning rate 𝜂 in the previous update  
rule with 𝑅𝑀𝑆[∆𝜃]𝑡−1 finally yields the Adadelta  
update rule:

• Note : we do not even need to set a default  
learning rate

ADADELTA UPDATE RULE



RMSprop and Adadelta have both been developed  
independently around the same 7me to resolve
Adagrad’s radically diminishing learning rates.

RMSprop

RMSPROP



RMSprop as well divides the learning rate by an  
exponentially decaying average of squared gradients.

RMSprop

Hinton suggests 𝛾 to be set to 0.9, while a good  
default value for the learning rate 𝜂 is 0.001.

RMSPROP



• Adam’s feature :
• Storing an exponen8ally decaying average of past  

squared gradients 𝑣𝑡 like Adadelta and RMSprop
• Keeping an exponen8ally decaying average of past  

gradients 𝑚 𝑡 ,  similar tomomentum.

The first moment (the mean)

The second moment (the  
uncentered variance)

ADAM



• As 𝑚 𝑡 and 𝑣𝑡 are ini7alized as vectors of 0’s, they  
are biased towards zero.

• Especially during the ini8al 8me steps
• Especially when the decay rates are small

• (i.e. β1 and β2 are close to 1).

• Counterac7ng these biases in Adam
Adam

Note : default values of 0.9 for 𝛽1,  
0.999 for 𝛽2, and 10−8 for𝜀

ADAM



VISUALIZATION



VISUALIZATION



ENHANCEMENTS COMPARISON



• There are two main ideas at play:
• Momentum : Provide consistency in update directions by 

incorporating past update directions.

• Adaptive gradient : Scale the scale updates to individual variables 
using the second moment in that direction.

• This also relates to adaptively altering step length for each 
direction.

SUMMARY
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