
STOCHASTIC
OPTIMIZATION FOR
LARGE SCALE ML

SOURANGSHU BHATTACHARYA

CSE, IIT KHARAGPUR

WEB: HTTPS://CSE.IITKGP.AC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.IITKGP.AC.IN

https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

MUCH OF ML IS OPTIMIZATION

Linear Classification Maximum Likelihood

K-Means

argmax
✓

nX

i=1

log p✓(xi)

arg min
µ1,µ2,. . . ,µk

J(µ) =
kX

j=1

X

i2Cj

||xi � µj ||2

argmin
w

nX

i=1

||w||2 + C
nX

i=1

⇠i

s.t. 1� yix
T
i w ⇠i

⇠i � 0

STOCHASTIC OPTIMIZATION

• Goal of machine learning :
• Minimize expected loss

given samples

• This is Stochastic Optimization
• Assume loss function is convex

BATCH (SUB)GRADIENT DESCENT FOR ML

• Process all examples together in each step

• Entire training set examined at each step

• Very slow when n is very large

STOCHASTIC (SUB)GRADIENT DESCENT

• “Optimize” one example at a time

• Choose examples randomly (or reorder and
choose in order)

• Learning representative of example distribution

STOCHASTIC (SUB)GRADIENT DESCENT

• Equivalent to online learning (the weight vector w changes
with every example)

• Convergence guaranteed for convex functions (to local
minimum)

SGD CONVERGENCE
O

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e

Iterations / updates

Objective function oscillates
over the iterations.

Not a “Descent Method”

Maintain the running
minimum loss and
corresponding model
parameters.

CONVERGENCE OF SGD

• Given dataset 𝐷 = { 𝑥!, 𝑦! , … , 𝑥", 𝑦" }

• Loss function: 𝐿 𝜃, 𝐷 = !
#
∑$%!# 𝑙(𝜃; 𝑥$, 𝑦$)

• For linear models: 𝑙 𝜃; 𝑥$, 𝑦$ = 𝑙(𝑦$, 𝜃&𝜙 𝑥$)

• Assumption 𝐷 is drawn IID from some distribution 𝒫.

• Problem:

min
'
𝐿(𝜃, 𝐷)

• Input: 𝐷

• Output: �̅�

Algorithm:

• Initialize 𝜃!

• For 𝑡 = 1,… , 𝑇
𝜃"#$ = 𝜃" − 𝜂"𝛻%𝑙(𝑦" , 𝜃&𝜙 𝑥")

• �̅� = ∑!"#$ (!%!

∑!"#$ (!
.

CONVERGENCE OF SGD

• Expected loss: 𝑠 𝜃 = 𝐸𝒫[𝑙(𝑦, 𝜃5𝜙 𝑥]

• Optimal Expected loss: 𝑠∗ = 𝑠 𝜃∗ = min
7
𝑠(𝜃)

• Convergence:

𝐸87 𝑠 �̅� − 𝑠∗ ≤
𝑅9 + 𝐿9∑:;<5 𝜂:9

2∑:;<5 𝜂:
• Where: 𝑅 = 𝜃= − 𝜃∗

• 𝐿 = max𝛻𝑙(𝑦, 𝜃5𝜙 𝑥)

CONVERGENCE OF SGD

SGD CONVERGENCE PROOF

• Define 𝑟! = 𝜃! − 𝜃∗ and 𝑔! = 𝛻#𝑙 𝑦!, 𝜃$𝜙 𝑥!

• 𝑟!%&' = 𝑟!' + 𝜂!' 𝑔! ' − 2𝜂! 𝜃! − 𝜃∗ $𝑔!

• Taking expectation w.r.t 𝒫, �̅� and using 𝑠∗ − 𝑠 𝜃! ≥
𝐸(𝑔! $(𝜃∗ − 𝜃!), we get:
𝐸)# 𝑟!%&' − 𝑟!' ≤ 𝜂!'𝐿' + 2𝜂! 𝑠∗ − 𝐸)# 𝑠 𝜃!

• Taking sum over 𝑡 = 1,… , 𝑇 and using

𝐸)# 𝑟$' − 𝑟*' ≤ 𝐿'<
!+*

$,&

𝜂!' + 2<
!+*

$,&

𝜂!(𝑠∗ − 𝐸)#[𝑠 𝜃!])

SGD CONVERGENCE PROOF

• Using convexity of 𝑠:

"
!"#

$%&

𝜂! 𝐸'(𝑠 �̅� ≤ 𝐸'(["
!"#

$%&

𝜂!𝑠 𝜃!]

• Substituting in the expression from previous slide:

𝐸'(𝑟$) − 𝑟#) ≤ 𝐿)"
!"#

$%&

𝜂!) + 2"
!"#

$%&

𝜂! 𝑠∗ − 𝐸'(𝑠 �̅�

• Rearranging the terms proves the result.

SGD - ISSUES

• Convergence very sensitive to learning rate
(𝜂!)
 (oscillations near solution due to probabilistic
nature of sampling)

• Might need to decrease with time to
ensure the algorithm converges eventually

• Basically – SGD good for machine learning
with large data sets!

13

MINI-BATCH SGD

• Stochastic – 1 example per iteration

• Batch – All the examples!

• Mini-batch SGD:
• Sample m examples at each step and perform SGD

on them

• Allows for parallelization, but choice of m
based on heuristics

14

EXAMPLE: TEXT CATEGORIZATION

• Example by Leon Bottou:
• Reuters RCV1 document corpus

• Predict a category of a document

• One vs. the rest classification

• n = 781,000 training examples (documents)

• 23,000 test examples

• d = 50,000 features
• One feature per word

• Remove stop-words

• Remove low frequency words

EXAMPLE: TEXT CATEGORIZATION

• Questions:
• (1) Is SGD successful at minimizing f(w,b)?

• (2) How quickly does SGD find the min of f(w,b)?

• (3) What is the error on a test set?

16

Training time Value of f(w,b) Test error
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

OPTIMIZATION “ACCURACY”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

LEARNING RATE / STEP-SIZE SCHEDULE

• Need to choose learning rate h and t0

• Leon suggests:
• Choose t0 so that the expected initial updates are comparable with the expected size of the weights

• Choose 𝜂!:

• Select a small subsample

• Try various rates 𝜂!	 (e.g., 10, 1, 0.1, 0.01, …)

• Pick the one that most reduces the cost

• Use h for next 100k iterations on the full dataset

• Alternative form:

𝜂 =
𝜂!

1 + (𝑑𝑒𝑐𝑎𝑦 ∗ 𝑡)

• Step decay schedule:
• Drop the learning rate by half every 10 epochs.

• 𝜂 = 𝜂! ∗ 𝑑𝑟𝑜𝑝
"#$$%(!

!"#$%
)

𝑤%&' ← 𝑤% −
𝜂(

𝑡 + 𝑡(
𝜕𝐿 𝑥) , 𝑦)

𝜕𝑤
; 	 𝜂 =

𝜂(
𝑡 + 𝑡(

LEARNING RATE COMPARISON

ACCELERATED GRADIENT
DESCENT

STOCHASTIC GRADIENT DESCENT

Idea: Perform a parameter update for each
training example x(i) and label y(i)

Update: 𝜃 = 𝜃 - 𝜂 ∙ ∇𝜃 J (𝜃; x(i), y(i))

Performs redundant computations for large
datasets

MOMENTUM GRADIENT DESCENT

• Idea: Overcome ravine oscillations by momentum
•

Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃 J(𝜃)

• 𝜃 = 𝜃 - vt

SGD

SGD with
momentum

The momentum term increases for dimensions whose
gradients point in the same direc2ons.

Demo : h(p://dis.ll.pub/2017/momentum/

The momentum term reduces updates for
dimensions whose gradients change direc2ons.

WHY MOMENTUM REALLY WORKS

http://distill.pub/2017/momentum/

• However, a ball that rolls down a hill, blindly
following the slope, is highly unsa7sfactory.

• We would like to have a smarter ball that has a
no7on of where it is going so that it knows to slow
down before the hill slopes up again.

• Nesterov accelerated gradient gives us a way of it.

NESTEROV ACCELERATED GRADIENT

Approxima2on of the next posi2on of
the parameters(predict)

NESTEROV ACCELERATED GRADIENT

Approxima2on of the next posi2on of
the parameters(predict)

Approxima2on of the next posi2on of
the parameters’ gradient(correc2on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of
the parameters(predict)

Approxima)on ofthe next posi)on of
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of
the parameters(predict)

Approxima)on ofthe next posi)on of
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correction

Green line :accumulated gradient Approxima)onof the next posi)on of
the parameters(predict)

Approxima)on ofthe next posi)on of
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of
the parameters(predict)

Approxima)on ofthe next posi)on of
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approximationof the next position of
the parameters(predict)

Approxima)on ofthe next posi)on of
the parameters’ gradient(correc)on)

NESTEROV ACCELERATED GRADIENT

Blue line : predict

Red line : correc2on

Green line :accumulated gradient Approxima)onof the next posi)on of
the parameters(predict)

Approximation ofthe next position of
the parameters’ gradient(correction)

NESTEROV ACCELERATED GRADIENT

• This an7cipatory update prevents us from going
too fast and results in increased responsiveness.

• Now , we can adapt our updates to the slope of our
error func7on and speed up SGD in turn.

NESTEROV ACCELERATED GRADIENT

• Previous methods :
• we used the same learning rate 𝜼 for all parameters𝜽

• Adagrad :
• It uses a different learning rate for every parameter 𝜃𝑖 at

every 8me step 𝑡

ADAPTIVE GRADIENTS

• We also want to adapt our updates to each
individual parameter to perform larger or smaller
updates depending on their importance.

• Adagrad
• Adadelta
• RMSprop
• Adam

WHAT’S NEXT ?

• Adagrad adapts the learning rate to the parameters
• Performing larger updates for infrequent
• Performing smaller updates for frequent parameters.

• Ex.
• Training large-scale neural nets at Google that learned to

recognize cats in Youtube videos.

ADAGRAD

Adagrad

SGD

𝐺𝑡 =

ℝ𝑑×𝑑

⋯ ⋯

Adagrad modifies the general learning
rate 𝜼 based on the past gradients
that have been computed for 𝜽𝒊

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD

Adagrad

SGD

𝐺𝑡 is a diagonal matrix where eachdiagonal
element (𝑖,𝑖) is the sum of the squares of the
gradients 𝜃𝑖 up to 7me step 𝑡.

𝐺!,;; = <
<+&

!

𝑔!,;'

𝐺𝑡 =

ℝ𝑑×𝑑
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD

Adagrad

SGD

𝜀 is a smoothing term that avoids division by
zero (usually on the order of 1e − 8).

𝐺𝑡 =

ℝ𝑑×𝑑
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize

ADAGRAD

• Advantages :
• It is well-suited for dealing with sparse data.
• It greatly improved the robustness of SGD.
• It eliminates the need to manually tune the learning rate.

ADAGRAD’S ADVANTAGE

• Disadvantage :
• Main weakness is its accumula8on of the squared

gradients in the denominator.

ADAGRAD’S DISADVANTAGE

• The disadvantage causes the learning rate to shrink
and become infinitesimally small. The algorithm
can no longer acquire addi7onal knowledge.

• The following algorithms aim to resolve this flaw.
• Adadelta
• RMSprop
• Adam

ADAGRAD’S DISADVANTAGE

• The expected square sum of gradients is recursively
defined as a decaying average of all past squared
gradients.

• 𝐸[𝑔2]𝑡 ：The running average at 8me step 𝑡.
• 𝛾 : A frac8on similarly to the Momentum term, around

0.9

ADADELTA

GDSAdagrad

Adadelta

ADADELTA

GDSAdagrad

Replace the diagonal matrix 𝐺𝑡 with the decaying
average over past squared gradients 𝐸[𝑔2]𝑡

Adadelta

ADADELTA

SGDAdagrad

Adadelta Adadelta

Replace the diagonal matrix 𝐺𝑡 with the decaying
average over past squared gradients 𝐸[𝑔2]𝑡

ADADELTA

• The units in this update do not match and the
update should have the same hypothe7cal units as
the parameter.

• As well as in SGD, Momentum, or Adagrad

• To realize this, first defining another exponen7ally
decaying average

ADADELTA

AdadeltaAdadelta

ADADELTA

• Replacing the learning rate 𝜂 in the previous update
rule with 𝑅𝑀𝑆[∆𝜃]𝑡−1 finally yields the Adadelta
update rule:

• Note : we do not even need to set a default
learning rate

ADADELTA UPDATE RULE

RMSprop and Adadelta have both been developed
independently around the same 7me to resolve
Adagrad’s radically diminishing learning rates.

RMSprop

RMSPROP

RMSprop as well divides the learning rate by an
exponentially decaying average of squared gradients.

RMSprop

Hinton suggests 𝛾 to be set to 0.9, while a good
default value for the learning rate 𝜂 is 0.001.

RMSPROP

• Adam’s feature :
• Storing an exponen8ally decaying average of past

squared gradients 𝑣𝑡 like Adadelta and RMSprop
• Keeping an exponen8ally decaying average of past

gradients 𝑚 𝑡 , similar tomomentum.

The first moment (the mean)

The second moment (the
uncentered variance)

ADAM

• As 𝑚 𝑡 and 𝑣𝑡 are ini7alized as vectors of 0’s, they
are biased towards zero.

• Especially during the ini8al 8me steps
• Especially when the decay rates are small

• (i.e. β1 and β2 are close to 1).

• Counterac7ng these biases in Adam
Adam

Note : default values of 0.9 for 𝛽1,
0.999 for 𝛽2, and 10−8 for𝜀

ADAM

VISUALIZATION

VISUALIZATION

ENHANCEMENTS COMPARISON

• There are two main ideas at play:
• Momentum : Provide consistency in update directions by

incorporating past update directions.

• Adaptive gradient : Scale the scale updates to individual variables
using the second moment in that direction.

• This also relates to adaptively altering step length for each
direction.

SUMMARY

66
References:

• SGD convergence proof: “Confidence level solu9ons for stochas9c programming”
by Y. Nesterov, P. Vial, Automatica, 2008.

• Accelerated SGD: Ruder, Sebastian. "An overview of gradient descent
optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

• First SGD in ML paper:
Léon Bottou and Olivier Bousquet: The Tradeoffs of Large Scale
Learning, Advances in Neural Information Processing Systems, 20, MIT Press,
Cambridge, MA, 2008.

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in

mailto:sourangshu@cse.iitkgp.ac.in

